考研必考的数学知识点
考研数学概率论重要考点总结

考研数学概率论重要考点总结概率论是考研数学中的重要考点之一。
下面是概率论中的一些重要考点总结。
一、概率基本概念1. 随机试验与样本空间2. 事件与事件的关系3. 概率的定义、性质和运算法则4. 条件概率及其性质二、随机变量与概率分布1. 随机变量的概念及其分类2. 离散型随机变量与连续型随机变量3. 随机变量的分布函数和密度函数4. 两个随机变量的独立性5. 随机变量的函数及其分布三、数学期望与方差1. 数学期望的概念及其性质2. 数学期望的计算3. 方差的概念及其性质4. 方差的计算5. 协方差和相关系数四、大数定律与中心极限定理1. 大数定律的概念及其性质2. 切比雪夫不等式3. 中心极限定理的概念及其性质4. 泊松定理5. 极限定理的应用五、随机变量的常见分布1. 二项分布、泊松分布2. 均匀分布、指数分布3. 正态分布4. 伽马分布、贝塔分布5. t分布、F分布、卡方分布六、矩母函数与特征函数1. 矩母函数的概念及性质2. 矩母函数的计算3. 特征函数的概念及性质4. 特征函数的计算5. 中心极限定理的特征函数证明七、样本与抽样分布1. 随机样本的概念及其性质2. 样本统计量的概念及其性质3. 样本均值和样本方差4. 正态总体抽样分布5. t分布,x^2分布,F分布的定义及其应用八、参数估计与假设检验1. 点估计的概念及性质2. 极大似然估计3. 置信区间的概念及计算4. 参数假设检验的概念及流程5. 正态总体均值的假设检验九、回归与方差分析1. 回归分析的概念及方法2. 多元回归模型、回归模型的检验3. 方差分析的概念及方法4. 单因素方差分析、双因素方差分析以上是概率论中的一些重要考点总结。
在备考过程中,需要对这些知识点有一定的掌握,并进行大量的练习和习题训练,只有充分理解和掌握这些知识,并能运用到实际问题中,才能在考试中取得好成绩。
考研数学高数知识点归纳

考研数学高数知识点归纳考研数学是众多考研科目中的重要一环,高等数学作为数学基础课程,其知识点广泛且深入。
以下是对考研数学高数知识点的归纳:一、函数、极限与连续性- 函数的概念、性质和分类- 极限的定义、性质和求法- 无穷小的比较和等价无穷小替换- 函数的连续性、间断点及其分类- 连续函数的性质和应用二、导数与微分- 导数的定义、几何意义和物理意义- 基本初等函数的导数公式- 高阶导数和隐函数的求导法则- 微分的概念、几何意义和应用- 导数的四则运算和复合函数的求导法则三、微分中值定理与导数的应用- 罗尔定理、拉格朗日中值定理和柯西中值定理- 泰勒公式和麦克劳林公式- 导数在几何上的应用,如曲线的切线、法线和弧长- 导数在物理上的应用,如速度、加速度和变力做功四、不定积分与定积分- 不定积分的定义和基本计算方法- 定积分的定义、性质和计算- 牛顿-莱布尼茨公式- 定积分在几何和物理上的应用,如面积、体积和功五、多元函数微分学- 多元函数的概念和极限- 偏导数和全微分- 多元函数的极值问题- 多元函数的泰勒展开六、重积分与曲线积分、曲面积分- 二重积分和三重积分的定义和计算方法- 曲线积分和曲面积分的计算- 格林公式、高斯公式和斯托克斯定理七、无穷级数- 常数项级数的收敛性判别- 幂级数和函数的泰勒级数展开- 函数项级数的一致收敛性- 傅里叶级数和傅里叶变换八、常微分方程- 一阶微分方程的求解方法,如分离变量法、变量替换法等- 高阶微分方程的求解,如常系数线性微分方程- 微分方程的物理背景和应用结束语:考研数学高数部分要求考生不仅要掌握基础概念和计算方法,还要能够灵活运用这些知识解决实际问题。
通过对上述知识点的系统学习和深入理解,考生可以为考研数学的高数部分打下坚实的基础。
希望每位考生都能在考研数学的征途上取得优异的成绩。
考研数学核心知识点宋浩

考研数学核心知识点宋浩一、核心知识点之极限考研数学里极限可是相当重要的基础知识点呢。
就像盖房子得打地基一样,极限要是学不好,后面的好多知识就像摇摇欲坠的大楼。
极限的定义大家一定要好好理解,什么趋近于某个值的时候函数值的变化情况。
比如说,当x趋近于0的时候,sinx/x的极限是1,这可是个超级经典的例子哦。
而且求极限的方法有好多,洛必达法则就很常用,不过在用的时候得注意它的条件,可不能乱用。
要是函数是0/0型或者∞/∞型的时候,就可以考虑洛必达法则,对分子分母分别求导再求极限。
二、核心知识点之导数导数也是个大重点。
导数的定义其实就是函数的变化率。
从几何意义上讲,就是函数图像在某一点的切线斜率。
求导公式得背得滚瓜烂熟,像(x^n)' = nx^(n - 1)这种基本的公式要是忘了,那做题可就费劲了。
导数的应用也很多,比如判断函数的单调性。
如果导数大于0,那函数在这个区间就是单调递增的;要是导数小于0,函数就是单调递减的。
还有求函数的极值,先求导数为0的点,再判断这些点两侧导数的符号。
三、核心知识点之积分积分分为不定积分和定积分。
不定积分就是求原函数,定积分可以理解为求面积。
换元积分法和分部积分法是计算积分的两大法宝。
换元积分法就像是给函数换个衣服,把复杂的式子变得简单一些再求积分。
分部积分法呢,是根据uv'=(uv)'-u'v这个公式来的,在面对一些乘积形式的函数求积分的时候特别好用。
比如说,求xe^x的不定积分,用分部积分法就很方便。
四、核心知识点之多元函数微积分到了多元函数微积分,就更复杂一点啦。
多元函数的偏导数,就是把其他变量看成常数,对一个变量求导。
全微分的概念也很重要,它和偏导数有密切的关系。
多元复合函数求导的链式法则一定要掌握,就像一条链子一样,一环扣一环地求导。
还有多元函数的极值和最值问题,要通过求偏导数来找驻点,再根据二阶偏导数判断是极大值、极小值还是鞍点。
考研大学的数学知识点总结

考研大学的数学知识点总结
一、数学分析
1. 函数的极限与连续
2. 函数的导数与微分
3. 不定积分与定积分
4. 微分方程
5. 级数
6. 多元函数微分学
二、线性代数
1. 行列式与矩阵
2. 线性方程组
3. 矩阵的特征值与特征向量
4. 空间解析几何
5. 线性空间
三、概率统计
1. 随机变量与概率分布
2. 多个随机变量的概率分布
3. 统计推断
4. 假设检验
5. 相关与回归分析
四、离散数学
1. 集合与逻辑
2. 图论
3. 树与树的应用
4. 排列组合
5. 代数系统
五、常微分方程
1. 一阶常微分方程的基础理论
2. 高阶常微分方程与常系数齐次线性微分方程
3. 变系数线性微分方程
4. 高阶线性常系数齐次线性微分方程
5. 常微分方程的应用
六、数学建模
1. 数学建模的基本概念
2. 数学建模的基本方法
3. 实际问题的数学建模
4. 建立模型的思路与方法
5. 数学建模的应用
七、复变函数
1. 复数的基本概念
2. 复变函数的基本概念
3. 复变函数的解析性
4. 几何意义与应用
5. 复变函数的应用
以上是考研大学数学知识点的总结。
希望能对大家的学习有所帮助。
2024数学考研范围

2024年数学考研的范围包括以下几个部分:数学分析、高等代数、空间几何、解析几何、多元微积分、线性代数方程组和实数连续性及其应用。
其中,数学分析是考研数学的必考内容,包括极限、连续、一元函数微积分、级数等知识。
高等代数也是考研数学的必考内容,包括多项式代数、矩阵代数和特征值等内容。
空间几何和解析几何是考研数学的常考内容,主要考察空间想象能力和运用数学知识解决实际问题的能力。
多元微积分和线性代数方程组也是考研数学的常考内容,主要是为了考察抽象思维能力、逻辑推理能力、空间想象能力和综合运用数学知识解决问题的能力。
此外,2024年数学考研范围还包括了实数连续性及其应用,包括极限论、连续复分析、复数、级数和微积分等内容。
这一部分内容对于理工科专业的学生来说尤为重要,因为它涉及到研究生的研究方向和学术论文的撰写。
此外,对于从事金融领域工作的人来说,实数连续性及其应用也是不可或缺的数学知识。
同时,针对一些基础较弱或者初次接触数学的同学,还建议进行适当的补习,可以考虑使用网络教学视频、公开课、考研辅导书籍等方式进行复习和巩固。
当然,除了考试内容之外,还要注重数学思维的培养,如抽象思维能力、逻辑推理能力、空间想象能力和综合运用数学知识解决问题的能力等。
在复习过程中,应该注重知识点之间的联系和对比,建立知识体系,把握重点难点。
同时,要根据自己的实际情况制定合理的复习计划,注重效率和质量,适当调整复习策略和方法。
此外,还应该多做习题和历年真题,以检验自己的学习成果和理解程度,发现问题并及时解决。
总之,对于准备2024年数学考研的同学来说,要全面了解考试范围和要求,合理安排复习计划和时间,注重数学思维的培养和运用数学知识解决实际问题的能力。
只有经过充分的准备和努力,才能取得优异的成绩,为自己的未来发展奠定坚实的基础。
2023-2024年考研《数学》必备知识点考点汇编

考研数学公式整理1 1.等价代换的补充2.泰勒公式3.基本导数公式4.几个常用函数的高阶导数5.不定积分的基本积分公式6.定积分性质7.渐近线8.微分中值定理考研数学公式整理2 ⚫二重积分的性质⚫对称性⚫ 莱布尼茨判别法则⚫麦克劳林级数⚫狄利克雷收敛定理⚫奇偶函数的傅里叶级数⚫常用的二次曲面考研数学公式整理31.行列式的性质()()()11121311121321222321222331323331323311111212131321222331.0,0.,.,.T A A k k ka ka ka a a a a a a k a a a a a a a a a a b a b a b a a a a ==+++行列互换,其值不变,即某行列全为则行列式的值为某行列有公因子则可把提到行列式外面某行列每个元素都是两个数之和则可拆成两个行列式之和性质1 性质2 性质3 性质4 ()()()11121311121321222321222332333132333132331112131112132122231121122213313233..0..a a ab b b a a a a a a a a a a a a a a k a a a a a a a a a ka a ka a ka a a a =+=++两行列互换,行列式的值变号两行列元素相等或对应成比例,则行列式的值为某行列倍加到另一行(列),行列式的值不变性质5 性质6 性质7 23313233a a a a +2.抽象型行列式—解法解题思路:对抽象型行列式,计算方法主要是利用行列式的性质,矩阵的性质,特征值及相似等。
主要的公式有:11112121.,2.,3.,4.5.6.,,,,7..T T n n n n A n A A A A A n kA k A A B n AB A B A n A AA n A A n A A n AB A B λλλλλλ−*−−=======L L 若是阶矩阵是的转置矩阵,则;若是阶矩阵则;若都是阶矩阵,则;若是阶矩阵,则;若是阶可逆矩阵,则;若是阶矩阵的特征值则;若阶矩阵与相似,则4.逆矩阵的性质()()111111111111;10;;.A A kA A k k AB B A AA AB A B −−−−−−−−−−−−==≠==+≠+1)()2)()3)();4) 没公式特别注意:5.逆矩阵—解法()()()()111111111110,..,,,.0000.0000A A A AA E E A AB n AB E A B A B AB A A A B B BB A*−−−−−−−−−−−≠=→==+⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦若则都是阶矩阵则对型化为型.;方法一:用伴随方法二:用初等变换方法三:用定义方法四:用单位矩阵恒等变形方法五:用分块公式6.矩阵的秩定理8.具体向量组如何判定相关无关()()1212121212,,,,,,0,,,1.,,,,,,00.m m m n n x r m m n n n n ααααααααααααααα⇔=⇔<=+⇔=≠L L L L L 对具体(含参数)向量组如何判定相关无关?向量组相关(无关)齐次方程组有非零解(只有零解)(向量个数)((向量个数)).个维向量必相关个维向量相关(无关)()定理1推论1推论21212112121212,,,,,,,,,,,,,,,,,,,,,m m m m nm m m r m ααααααααβββααααααβββ++−⎧⎨⎩⎧⎨⎩L L L L L L L 若向量组相关,增加个数后的向量组则仍相关;对应减少向量坐标后的向量组若向量组无关,减少个数后的向量组则仍无关.对应增加向量坐标后的向量组定理29.抽象向量组如何证明无关10.特征值和特征向量的性质11.相似矩阵的性质()()111,.A B nnii ii i i A B A B r A r B E A E B a b λλλλ==⇒=⇒=⇒−=−=⇒=∑∑:()(必要条件);;即;()()()11112,,,,,,,.n n n n n n A B P AP B P A kE P B kE P A P B A B A kE B kE A kE B kE r A kE r B kE A B A B A PB P −−−−=+=+=+++=++=+=:::::()如设则因此由要想到进而;由要想到进而可用相似求 12.矩阵相似对角化的条件()()11,0.n i i nTn ii i A A n A i i n r E A i A n A r A A A a λλαβ=Λ⇔⇔−−=⇐⇐==Λ⇔≠∑::有个线性无关的特征向量;的重特征值有个无关的特征向量,即;有个不同的特征值;是实对称阵.对或的矩阵注:13.正定定理()12,,,0,0000,T n T ii f x x x x Ax x x Ax A A A a A =⇔∀≠>⇔⇔≤L 二次型正定有;的特征值都大于;的全部顺序主子式大于.若的主对角线某元素则必不正定.定理4注:14.等价、相似、合同()(),.,.A B A B A B A B A B P Q PAQ B r A r B ≅⇔=⇔=两个同型矩阵与,若可经过初等变换变成称与等价,记作同型矩阵矩阵与等价存在可逆矩阵和使;判定1,,,.,,A B P P AP B A B A B A B A B A B A B A B A B −=ΛΛΛ::::两个方阵与若存在可逆矩阵使称与相似,记作若与的迹或秩或行列式或特征值不相等,则与不相似;若,但不能对角化则与不相似;若,且则与相似.判定,,,..T T T A B C C AC B A B A B A B x Ax x Bx A B =⇔⇔:两个实对称矩阵与若存在可逆矩阵使称与合同,记作实对称矩阵与合同二次型和有相同的正、负惯性指数;实对称矩阵与有相同的正、负特征值个数判定考研数学公式整理41.概率基本公式()()()()()()()()()()()()()()()()()()1.=.3.=..P A P A P A B P A P B P AB P A B C P A P B P C P AB P AC P BC P ABC P A B P A P AB P AB =−+−=++−−−+−−=U U U 正面直接求概率困难时可考虑此公式,比如涉及"至少、至多"等字眼.超过个事件的加法公式往往会有两两互斥的条件考减法公式是考试的重点;(1)逆事件的概率(2)加法公式(3)减法公式注:注:注: ()()()()()()()()()()()()0,,=.1;.P A A B P AB P B A P B A P A P B A P B A P B A P B C A P B A P BC A P BC A >=−−=−= 若称在发生的条件下,发生的概率为条件概率记为,且条件概率也是概率,满足概率的一切性质与公式,如(4)条件概率注:()()()()0,=.P A P AB P A P B A >⋅如果则 (5)乘法公式()()()()121=,,1,,.,.n i j ni i i i A A A A A i j n B P B P A P B A B A B P B =Ω=Φ≤≠≤=∑U UL U I 若且则对任一事件有如果某个事件的发生总是与某些原因或前一阶段的某些结果有关则总是使用全概率公式把各种导致发生的可能性(概率)加起来求(6)全概率公式 注:()()()()()()()121=,,1,0,.,,.n i j i jj niii j j A A A A A i j n P A P B A B P B P A B P A P B A B A P A B =Ω=Φ≤≠≤>=∑U UL U I 若且,则对任一事件只要则如果已知发生了去探求是某原因导致发生的可能性(概率)则总是使用贝叶斯公式看这一原因占总的原因的比例注(7)贝叶斯公式 :2. 独立与互斥、包含的关系()()01,01,,P A P B A B A B <<<<设如果与互斥或存在包含关系则与不独立.3.常见的分布{}()(){}()()()1011,0,1.0101,1,.1,0,1,,.,01,,.12,,kk n k k kn X P X k p p k X p p X B p X P X k C p p k n X n p p X B n p n X X B n p −−−==−=<<−==−=<<:L ::1.分布如果随机变量的分布律为则称服从参数为()的分布记为2.二项分布如果随机变量的分布律为则称服从参数为()的二项分布记为()次伯努利试验中试验成功的次数服从二项分布;()对最可能发生(成注:()(){}(){}()()1111.,0,1,2,!0,.1,1,2,1,.k k k n p k n p e X P X k k k X X P X P X k p p k X p p X G p X λλλλλ−−+−≤≤+===>==−=<<L:L:功)的次数满足3.泊松分布如果随机变量的分布律为则称服从参数为()的泊松分布记为4.几何分布如果随机变量的分布律为则称服从参数为(0)的几何分布记为伯努利试验中首次成功所需的试验次数服从几何分布.注:()()()()(){}5.1,,0,0,,,,.,.1,,,,.a x b X f x b a x a x a X a b X U a b X F x a x b b a x b d cX U a b a c d b P c X d b a⎧<<⎪=−⎨⎪⎩<⎧⎪−⎪=≤<⎨−⎪≥⎪⎩−≤<≤<<=−::均匀分布如果随机变量的概率密度为其他则称服从上的均匀分布记为的分布函数为若对则注: ()()()(){}{}{}o o ,0,00,1,0..0,0,10,;2,0,.x x a e x X f x e x X X E X F x x X E a P X a e t s P X t s X s P X t λλλλλλλλ−−−⎧>=>⎨⎩⎧−≥=⎨<⎩∀>≥=∀>≥+≥=≥::6.指数分布如果随机变量的概率密度为其中为参数;其他则称服从参数为的指数分布,记为的分布函数为若则对则对则注:()()()()()()()()()()()()()222222222o 2o ,.,,,.,0,10,1;,;.1,,0,1;21,0x x x x x X f x x X X N X N x x x t dt dt X X N N x x μσμσμσμσϕϕμμσσ−−−−−∞=−∞<<+∞===−∞<<+∞Φ==−Φ−=−ΦΦ=⎰⎰::::7.正态分布如果随机变量的概率密度为:则称服从参数为的正态分布记为特别地当时称为记为概率密度分布函数若则标准化标准正态分布,注:()()o 222o 1;23,,,;4,X N aX b N a b a X Y aX bY μσμσ+++::若则若分别服从正态分布,且相互独立,则服从正态分布.4. 两个常见的二维连续型随机变量1.二维均匀()()()()(){},,1,,,0,,,,,D D GDX Y D X Y DS f x y S D S X Y D G D P X Y G S ⎧∈⎪=⎨⎪⎩⊂∈=在平面区域上服从均匀分布则,其中是的面积.其他设在区域上服从均匀分布若则;注:2.二维正态()()()()()222212121212221122,,,,;.,,,;1,1.,,,,,,,,0.X Y N EX EY DX DY X N Y N X Y aX bY X Y X Y μμσσρμμσσρμσμσρ====∈−+⇔=:::其中(1)反之不对(独立时可以);(2)的条件分布都是正态分布;(3)服从正态分布;(4)独立不相关即注:5.期望{}()()()()()()()()()()111,2,,.,.i i i i i i i i X P X x p i Y g X X EX x p Eg X g x p X f x Y g X X EX xf x dx Eg X g x f x dx ∞∞==+∞+∞−∞−∞=========∑∑⎰⎰L 设离散型随机变量的分布律为是的函数,则;设连续型随机变量的概率密度为是的函数,则;(1)一维离散型(2)一维连续型(){}()()()()()()()()()()()()11,,,1,2,,,,,,.,,,,,,,,.i j iji j ij i j X Y P X x Y y p i j Z g X Y X Y Eg X Y g x y p X Y f x y Z g X Y X Y Eg X Y g x y f x y dxdy ∞∞==+∞+∞−∞−∞========∑∑⎰⎰L 设二维离散型随机变量的联合分布为是的函数,则设二维连续型随机变量的联合概率密度为是的函数,则(3)二维离散型(4)二维连续型()()()o o o o 1234,,.Ec c E aX c aEX c E X Y EX EY X Y E XY EX EY =+=+±=±=⋅;;;若独立则(5)性质6.方差()()222.DX E X EX EX EX =−=−(1)定义()()()()()()()()2o 2o o 2o o 2210,;20342,5,,,.DX EX EX DX Dc D aX b a DX D X Y DX DY Cov X Y X Y D X Y DX DY D XY DXDY DX EY DY EX ≥=+=+=±=+±±=+=++;;;若独立则(2)性质7.常用分布的数学期望和方差()()()()()()()()()()()o o o o 22o o 2o 22o 11,,12,,13,114,5,,212116,7,,280,11.X B p EX p DX p p X B n p EX np DX np p X P EX DX p X G p EX DX p pb a a bX U a b EX DX X E EX DX X N EX DX X N E X D X λλλλλλμσμσπ==−==−==−==−+========−::::::::如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;如果,则8.协方差()()()()()()()()()()()()()()()o oo o 121211122122,.1,,,,2,03,,,,,,,.Cov X Y E X EX Y EY E XY EX EY Cov X Y Cov Y X Cov X X DX Cov X c Cov aX bY abCov X Y Cov aX bX cY dY acCov X Y adCov X Y bcCov X Y bdCov X Y =−−=−⋅⎡⎤⎣⎦====++=+++;;;4(1)定义(2)性质9.相关系数,0,.XY XY Cov X Y X Y ρρ==如果称和不相关(1)定义{}oo o o 1123=1,11,04,1,0XY YX XX XY XY XYa b P Y aX b a Y aX b a ρρρρρρ==≤⇔=+=>⎧=+=⎨−<⎩;;1;存在使;如果则.(2)性质10.大数定律1.依概率收敛{}1212,,,,,,0,lim 1,,,,,,,.n n n Pn n X X X a P X a X X X a X a εε→∞>−<=⎯⎯→L L L L 对随机变量序列和常数如果对任意的有则称随机变量序列依概率收敛于记为2.切比雪夫大数定律1211,,,,,,,1,2,,110,lim 1.n k k k n ni i n i i X X X EX DX DX k P X EX n n εε→∞===⎧⎫>−<=⎨⎬⎩⎭∑∑L L L 设独立,期望方差都存在,方差有一致上界则对任意的有3.伯努利大数定律(),,,,0,lim 1.n X n A A p X X B n p P p n εε→∞⎧⎫>−<=⎨⎬⎩⎭:设是重伯努利试验中事件发生的次数每次试验事件发生的概率为即则对任意的有4.辛钦大数定律1211,,,,,,0,lim 1.n n k i n i X X X EX P X n μεμε→∞=⎧⎫=>−<=⎨⎬⎩⎭∑L L 设独立同分布,期望存在则对任意的有11.中心极限定理1.列维—林德伯格中心极限定理()22122,,,,,,,,lim .n k k n t i x n X X X EX DX X n x P x dt x μσμ−−∞→∞==⎧⎫−⎪⎪⎪≤==Φ⎬⎪⎪⎪⎩⎭∑⎰L L 设独立同分布期望方差都存在,则对任意的有2.拉普拉斯中心极限定理()()22,,lim .t x n X B n p x P x dt x −→∞⎧⎫⎪≤==Φ⎬⎪⎭⎰:设,则对任意的有12.三大抽样分布()()()()(){}()()()()()()()2122222222212122222222,,,01,,.01,,,2;n n n n X X X N X X X n X X X n P n n f x dx f x n n n X n EX n DX n X ααχαχχααχχαχχχαχχ+∞++++++<<>====⎰L L L :::设相互独立且都服从标准正态,则服从自由度为的分布记为对于给定的()称满足(是的概率密度)的数为的上分位点.若则若221.χn 分布(1)定义:(2)上α分位点(3)χ分布的性质()()()221212,,,.n Y n X Y X Y n n χχ++::,且独立则()()()()(){}()()()()()()()()()()()()21201,,,,.01,,,01,1,t n X N Y n X Y n t t n P t n t n fx dx fx t n t n t n t f x t n t n n t n N t t n t F αααααχαααα+∞−<<>===−⎰:::::设,且独立,的分布对于给定的()称满足(是的概率密度)的数为的上分位点.分布的概率密度是偶函数故,且当自由度充分大时分布近似于,;则2.t 分布(1)定义:(2)上α分位点(3)t 分布的性质().n()()()()(){}()()()()()()()122212111212221212,12121212,,,,,.01,,,,,,1,,F n n X n Y n X Y X Xn n n n F F n n Y Y n n P F n n F n n f x dx f x F n n F n n F n n F F n n F Fαααχχαααα+∞<<>==⎰:::::设且独立,则服从第一自由度为,第二自由度为的分布记为对于给定的()称满足(是的概率密度)的数为的上分位点.若则3.F 分布(1)定义:(2)上α分位点(3)F 分布的性质()()()()211211221,1,,,.,n n F F n n F n n F n n αα−=:;若则13.矩估计的求法1222111,...11()n kk k k i i n ni ii i A X EX n X EX X EX X EX X EX X X DX n n α======⎧⎧==⎪⎪⎨⎨=−=⎪⎪⎩⎩∑∑∑:用样本矩替换总体矩——即:对一个未知参数的情形 令对两个未知参数的情形 令或原理步骤14.最大似然估计的求法()()()()121121.,,,;,,,,;,.ln ln .0,.ln 0,ln .i nn i i i nn i i a L x x x f x L x x x p x b Ld L c d d L L d θθθθθθθθ=====⎡⎤⎣⎦=⎡⎤⎣⎦==∏∏L L :写出样本的似然函数取对数得求导解出即可若无解即单调,则应该用定义法找出的最大似然估计量步骤连续型离散型15.估计量的评价标准121212,.,,,.0,lim 1,,Pn E D D P θθθθθθθθθθθεθθεθθθθ∧∧∧∧∧∧∧∧∧∧∧→∞=<⎧⎫>−<=⎯⎯→⎨⎬⎩⎭若则称是的无偏估计量设都是的无偏估计量若则称比更有效若对任意的有即则称是的一致估计量.(1)无偏性(2)有效性(3)一致性16. 求置信区间的步骤{}1212,,12:,,.T a b P a T b a T b ααθθθθθθ∧∧∧∧<<=−⎛⎫<<<< ⎪⎝⎭(1)构造统计量并确定其分布;(2)给定,确定常数使得;(3)由()反解出的范围得置信区间。
2023考研数学必须掌握七大知识点

2023考研数学必须掌握七大知识点2023考研数学必须掌握七大知识点1、两个重要极限,未定式的极限、等价无穷小代换这些小的知识点在历年的考察中都比较高。
而透过我们分析,假设考极限的话,主要考的是洛必达法那么加等价无穷小代换,特别针对数三的同学,这儿可能出大题。
2、处理连续性,可导性和可微性的关系要求掌握各种函数的求导方法。
比方隐函数求导,参数方程求导等等这一类的,还有注意一元函数的应用问题,这也是历年考试的一个重点。
数三的同学这儿结合经济类的一些试题进展考察。
3、微分方程:一是一元线性微分方程,第二是二阶常系数齐次/非齐次线性微分方程对第一部分,考生需要掌握九种小类型,针对每一种小类型有不同的解题方式,针对每个不同的方程,套用不同的.公式就行了。
对于二阶常系数线性微分方程大家一定要理解解的构造。
另一块对于非齐次的方程来说,考生要注意它和特征方程的联络,有齐次为方程可以求它的通解,当然给出的通解大家也要写出它的特征方程,这个变化是咱们这几年的一个趋势。
这一类问题就是逆问题。
对于二阶常系数非齐次的线性方程大家要分类掌握。
当然,这一块对于数三的同学来说,还有一个差分方程的问题,差分方程不作为咱们的一个重点,而且提醒大家一下,学习的时候要注意,差分方程的解题方式和微方程是相似的,学习的时候要注意这一点。
4、级数问题,主要针对数一和数三这部分的重点是:一、常数项级数的性质,包括敛散性;二、牵扯到幂级数,大家要纯熟掌握幂级数的收敛区间的计算,收敛半径与和函数,幂级数展开的问题,要掌握一个纯熟的方法来进展计算。
对于幂级数求和函数它可能直接给咱们一个幂级数求它的和函数或者给出一个常数项级数让咱们求它的和,要转化成适当的幂级数来进展求和。
5、一维随机变量函数的分布这个要重点掌握连续性变量的这一块。
这里面有个难点,一维随机变量函数这是一个难点,求一元随机变量函数的分布有两种方式,一个是分布函数法,这是最根本要掌握的。
考研数一归纳知识点

考研数一归纳知识点考研数学一(高等数学)是考研数学中难度较大的科目,它涵盖了高等数学的多个重要领域。
以下是考研数学一的归纳知识点:1. 函数、极限与连续性:- 函数的概念、性质和分类。
- 极限的定义、性质和求法。
- 函数的连续性及其判断方法。
2. 导数与微分:- 导数的定义、几何意义和物理意义。
- 基本导数公式和导数的运算法则。
- 高阶导数的概念和求法。
- 微分的概念和微分中值定理。
3. 积分学:- 不定积分和定积分的概念、性质和计算方法。
- 换元积分法和分部积分法。
- 定积分的应用,如面积、体积和物理量的计算。
4. 级数:- 级数的概念、收敛性判断。
- 正项级数的收敛性判断方法,如比较判别法和比值判别法。
- 幂级数和泰勒级数。
5. 多元函数微分学:- 多元函数的概念、偏导数和全微分。
- 多元函数的极值问题和条件极值问题。
6. 重积分与曲线积分:- 二重积分和三重积分的概念和计算方法。
- 对坐标的曲线积分和曲面积分。
7. 常微分方程:- 一阶微分方程的解法,如可分离变量方程、线性微分方程等。
- 高阶微分方程的解法,如常系数线性微分方程。
8. 解析几何:- 空间直线和平面的方程。
- 空间曲线和曲面的方程。
9. 线性代数:- 矩阵的运算、行列式、特征值和特征向量。
- 线性空间和线性变换的概念。
- 线性方程组的解法。
10. 概率论与数理统计:- 随机事件的概率、条件概率和独立性。
- 随机变量及其分布,包括离散型和连续型随机变量。
- 数理统计中的参数估计和假设检验。
结束语:考研数学一的知识点广泛且深入,要求考生不仅要掌握基础概念和计算方法,还要能够灵活运用这些知识解决实际问题。
因此,考生在复习过程中需要注重理解、练习和总结,以提高解题能力和应试技巧。
希望以上的归纳能够帮助考生更好地准备考研数学一的考试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研必考的数学知识点
数学是考研必考科目之一,对于大多数考生来说,数学无疑是最头疼的一门科目。
虽然数学是一门纯粹的科学,但其中的知识点却需要考生们在短时间内熟练掌握。
本文将介绍考研必考的数学知识点,帮助考生们更好地复习备考。
一、高等代数
高等代数是考研数学的基础,也是考生们必须掌握的知识点。
其中,矩阵与行
列式是必考的重点内容。
考生们需要熟悉矩阵的运算规则,掌握矩阵的特征值和特征向量的计算方法。
行列式的性质也需要了解透彻,包括行列式的定义、性质、求法和应用等。
二、数理统计与概率论
数理统计与概率论也是考研必考的重点内容。
对于数学专业考生来说,这也是
相对复杂且难度较大的一部分。
其中,概率论包括基本概念、概率的计算、条件概率、随机变量及其分布等内容;而数理统计则包括样本与总体的概念、参数估计、假设检验等知识点。
三、数学分析
数学分析是考研数学中的核心内容,也是考生们必须熟悉并且掌握的重点部分。
它主要包括实变函数、级数、多元函数及其微分、一元函数的积分等内容。
考生们需要在复习过程中重点关注实变函数和级数的性质,熟练掌握极限、连续、可导、积分等概念及其应用。
四、常微分方程
常微分方程也是考研数学中的重点内容之一。
它主要包括一阶常微分方程和二
阶常微分方程的解法和应用。
考生们需要掌握方程的分类讨论法、变量分离法、线性方程的解法等常见求解方法,并能熟练应用于实际问题。
五、离散数学
离散数学是考研数学中的一部分,也是比较冷门的一门学科。
它主要涉及集合、命题逻辑、关系、图论等内容。
虽然相对较少,但考生们需要熟悉这些概念的定义和基本性质,并能够灵活运用于解题中。
六、数学建模
数学建模是考研数学中的一个新兴学科,也是考生们需要重视的知识点。
在实
际的数学建模过程中,考生们需要综合运用数学分析、线性代数、概率论与数理统计等知识,从实际问题中提取数学模型,并用适当的方法对模型进行分析、求解和验证,最终得出有意义的结论。
以上便是考研必考的数学知识点的部分内容。
当然,考生们在复习过程中还需
注重题型的练习和解题技巧的掌握。
只有通过不断地练习和总结,才能在考试中取得好成绩。
同时,建议考生们理清思路,合理安排时间,将重点知识点和难点部分合理分配备考时间,提前做好复习规划和准备。
祝愿考生们能够顺利应对考试,取得优异的成绩!。