电动势公式高中物理
高中物理人教版选修3-1课件:2.2 电动势

3.电动势的大小:在电源的内部从负极到正极移送单位正 电荷非静电力做功的数值.一定要注意必须是“单位正电 荷”,而不是“任意电荷”.
目标定位
预习导学
课堂讲义
对点练习
课堂讲义
电动势
例 1 关于电动势E的说法中
正确的是( BC )
A.电动势E的大小,与非静电 力所做的功W的大小成正比,与 移送电荷量q的大小成反比
预习导学
课堂讲义
对点练习
课堂讲义
二、电动势与电路中能量转化的有关计算
电动势
区别电动势与电势差,理解电路中能量的转化:
1.电动势和电势差虽然单位相同——都是伏特(V);
定义式U= W
别.
q
、 EW=
q
类似,但二者有本质的区
电势差反映电场力做功,将电势能转化为其他形式的能;
而电动势反映非静电力做功,将其他形式的能转化为电能. 能的转化方向不同. 2.电动势等于电源未接入电路时两极间的电势差
预习导学
电动势
一、电源
1. 其他形式的能 电势能 2. 正极 负极 非静电力 增加 静电力 正极 负极
3 . 化学 化学能 电磁 机械能
二、电源的参数——电动势、内阻
1.(1)本领 电动势
(2)非静电力 1C 电荷q
(3)非静电力 无关 无关 (4)相同 伏特
2 . (1)内阻
想一想:如图所示是不同型号的干电池,其电动势都是1.5 V,这说明什么问题?用久了的干电池,它的内阻会变吗?
目标定位
预习导学
课堂讲义
对点练习
课堂讲义
电动势
例 1 关于电动势E的说法中
正确的是( BC )
A.电动势E的大小,与非静电
电动势公式3个公式高中

电动势公式3个公式高中以《电动势公式3个公式高中》为标题,写一篇3000字的中文文章电动势公式是物理实验室中非常重要的,有三种不同的公式可以用来描述其作用。
在这里,我们将介绍这三种公式,以便高中生可以利用这些公式来研究电动势以及其它相关现象。
第一个公式是弗洛伊德定律,用它来描述电动势的大小。
它可以用来描述一些重要的物理过程,比如电荷的迁移,场的耦合等。
它的简单公式如下:V=E/d其中,V是指电动势,E是指电场强度,而d是指相邻电荷之间的距离。
第二个公式是麦克斯韦方程,它用来描述电动势的方向。
它的简单公式如下:V=kQ/r^2其中,V表示电动势,k是一个常数,Q代表电荷数,r则为两个电荷之间的距离。
最后一个公式是电荷斯定律,它反映了电动势的弱化和磁场的影响。
它的简单公式如下:V=Q/4π0r其中,V为电动势,Q为电荷数,r为两个电荷之间的距离,ε0为真空介电常数。
以上就是电动势公式的三个常用公式,高中生可以利用这些公式研究电动势以及其它相关现象。
首先,要理解这三个公式,就需要了解电动势的概念,为什么会有电动势,它是如何产生的,它又是怎样影响其它现象的。
这些基本概念都需要由高中生熟悉,以便他们通过自己的研究来更好地理解这些公式。
其次,高中生可以利用这三个公式来研究电动势的影响。
他们可以通过推算,来计算电动势随距离的变化,或者通过模型,来研究电动势的弱化和磁场的影响等。
这些探究任务,可以帮助高中生更好地理解和应用电动势公式。
最后,要有效地利用电动势公式,高中生还要熟悉和掌握物理学的基础知识,比如电荷、电场和磁场的概念,了解它们之间的关系,以及它们与电动势的关系,在此基础上,高中生才能有效地利用电动势公式。
总之,电动势公式是一个重要的物理工具,在高中阶段,学生可以通过对电动势公式的学习,更好地理解和应用它们,拓展对电学现象的认知,从而为将来从事物理科学方面的研究打下坚实的基础。
高中物理公式总结--电磁感应

高中物理公式总结:电磁感应
电磁感应
1.[感应电动势的大小计算公式]
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}
3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值}
4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
*4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),
ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}
注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕
(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=1 06μH。
(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。
物理教案:高中电动势计算公式推导

物理教案:高中电动势计算公式推导在高中物理学科中,电学部分是一个非常重要的学习内容。
电学的一个重要指标就是电动势,它是电流产生的原因,也是电路工作的前提。
因此,本教案旨在帮助高中物理学生深入理解电动势的由来,了解电动势的计算方法,并掌握电动势计算公式的推导过程。
本教案涵盖了基本概念和公式,以及实例演示和课后练习,希望能为广大学生提供一个深入探讨电动势的学习机会。
一、电动势的基本概念电动势是指产生电流的电能源。
在电路中,通常是通过一些电化学反应或磁场变化来产生电动势。
电动势的单位是伏特(V),它的符号是 E。
电动势是与电池的正负极性有关的,通常电流的方向是从正极到负极。
电动势与电势差有所不同。
电势差指的是两个电势点之间的电势差异,通常是指电路中直接连接的两个电极之间的电势差。
而电动势则是指电路中一个电源(例如电池、发电机、燃料电池等)本身所具有的电压。
二、电动势的计算方法1.理论计算法理论计算法指的是通过计算电化学反应的标准电动势得到电池的电动势。
标准电动势E° 是指电极在标准状态下(压强为1 atm、温度为298 K,离子的活动度为1)与标准氢电极之间的电势差。
电池的标准电动势可以通过以下公式进行计算:E°(V)= E°(阳极) - E°(阴极)其中,阳极和阴极的标准电动势都可以在化学手册中找到。
例如,想要计算锌-铜电池的电动势,可以通过以下公式计算:E°(锌/Cu)= E°(Cu) - E°(锌)= 0.34 V - (-0.76 V)= 1.10 V2.实际计算法实际计算法指的是通过测量电路中的电压和电流来计算电动势。
在理论上,电流通过一个电源时,设其内阻为 r,内部电势差为E0,则在外部电路中的电动势为:E = E0 - Ir其中,E 为电源的电动势,I 为电路中的电流强度,r 为电池的内阻。
通常情况下,电动势是由电源本身决定的,而内阻则可以由电源的质量和性质来决定。
高中人教物理选择性必修二第2章第1节法拉第电磁感应定律

第二章 电磁感应第2节 法拉第电磁感应定律一、电磁感应定律 1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体相当于电源. (2)在电磁感应现象中,只要闭合回路中有感应电流,这个回路就一定有感应电动势;回路断开时,虽然没有感应电流,但感应电动势依然存在.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比. (2)公式:E =ΔΦΔt .若闭合导体回路是一个匝数为n 的线圈,则E =n ΔΦΔt .①若ΔΦ仅由磁场变化引起,则表达式可写为E =n ΔBΔt S .②若ΔΦ仅由回路的面积变化引起,则表达式可写为E =nB ΔSΔt .3、Φ、ΔΦ、ΔΦΔt的比较磁通量Φ 磁通量的变化量ΔΦ 磁通量的变化率ΔΦΔt物理 意义某时刻穿过磁场中某个面的磁感线条数在某一过程中穿过某个面的磁通量的变化量穿过某个面的磁通量变化的快慢大小 计算Φ=BS ⊥ΔΦ=⎩⎪⎨⎪⎧Φ2-Φ1B ·ΔS S ·ΔBΔΦΔt =⎩⎪⎨⎪⎧|Φ2-Φ1|ΔtB ·ΔSΔtΔB Δt ·S注意穿过某个面有方向相反的磁场时,则不能直接应用Φ=B ·S .应考虑相反方向的磁通量抵消以后所开始和转过180°时,平面都与磁场垂直,但穿过平面的磁通量是不同的,一正一负,ΔΦ=2B ·S 而不既不表示磁通量的大小也不表示变化的多少.在Φt 图象中,可用图线的斜率表示剩余的磁通量 是零4、磁通量的变化率ΔΦΔt 是Φ-t 图像上某点切线的斜率大小.如图中A 点磁通量变化率大于B 点的磁通量变化率.二、导体切割磁感线时的感应电动势 1.垂直切割导体棒垂直于磁场运动,B 、l 、v 两两垂直时,如图甲,E =Bl v .2.不垂直切割导线的运动方向与导线本身垂直,但与磁感线方向夹角为 θ时,如图乙,则E =Bl v 1=Bl v sin_θ. 3、对公式E =Blv sin θ的理解(1)对 θ的理解:当B 、l 、v 三个量方向互相垂直时, θ=90°,感应电动势最大;当有任意两个量的方向互相平行时, θ=0°,感应电动势为零.(2)对l 的理解:式中的l 应理解为导线切割磁感线时的有效长度,如果导线不和磁场垂直,l 应是导线在与磁场垂直方向投影的长度;如果切割磁感线的导线是弯曲的,如图所示,则应取与B 和v 垂直的等效直线长度,即ab 的弦长.(3)对v 的理解①公式中的v 应理解为导线和磁场间的相对速度,当导线不动而磁场运动时,也有电磁感应现象产生.②公式E =Bl v 一般用于导线各部分切割磁感线速度相同的情况,若导线各部分切割磁感线的速度不同,可取其平均速度求电动势.如图所示,导体棒在磁场中绕A 点在纸面内以角速度ω匀速转动,磁感应强度为B ,平均切割速度v =12v C =ωl 2,则E =Bl v =12Bωl 2.4.公式E =Bl v sin θ与E =n ΔΦΔt的对比E =n ΔΦΔtE =Bl v sin θ区别研究对象 整个闭合回路 回路中做切割磁感线运动的那部分导体 适用范围 各种电磁感应现象 只适用于导体切割磁感线运动的情况计算结果 Δt 内的平均感应电动势某一时刻的瞬时感应电动势联系E =Bl v sin θ是由E =n ΔΦΔt 在一定条件下推导出来的,该公式可看做法拉第电磁感应定律的一个推论【例题1】 如图所示,半径为r 的金属圆环,其电阻为R ,绕通过某直径的轴OO ′以角速度ω匀速转动,匀强磁场的磁感应强度为B .从金属圆环的平面与磁场方向平行时开始计时,求金属圆环由图示位置分别转过30°角和由30°角转到330°角的过程中,金属圆环中产生的感应电动势各是多大?[思路点拨] (1)确定磁感线穿过圆环的有效面积; (2)了解磁通量正负号的含义; (3)确定不同角度转过的时间. [答案] 3Bωr 2 35Bωr 2[解析] 初始位置时穿过金属圆环的磁通量Φ1=0;由图示位置转过30°角时,金属圆环在垂直于磁场方向上的投影面积为S 2=πr 2sin 30°=12πr 2,此时穿过金属圆环的磁通量Φ2=BS 2=12B πr 2;由图示位置转过330°角时,金属圆环在垂直于磁场方向上的投影面积为S 3=πr 2sin 30°=12πr 2,此时穿过金属圆环的磁通量Φ3=-BS 3=-12B πr 2.所以金属圆环在转过30°角和由30°角转到330°角的过程中磁通量的变化量分别为 ΔΦ1=Φ2-Φ1=12B πr 2,ΔΦ2=Φ3-Φ2=-B πr 2,又Δt 1= θ1ω=π6ω=π6ω,Δt 2= θ2ω=5π3ω=5π3ω.此过程中产生的感应电动势分别为 E 1=ΔΦ1Δt 1=12B πr 2π6ω=3Bωr 2,E 2=|ΔΦ2Δt 2|=B πr 25π3ω=35Bωr 2.[例2] 如图所示,有一半径为R 的圆形匀强磁场区域,磁感应强度为B ,一条足够长的直导线以速度v 进入磁场.从直导线进入磁场至匀速离开磁场区域的过程中,求:(1)感应电动势的最大值为多少?(2)在这一过程中感应电动势随时间变化的规律如何?(3)从开始运动至经过圆心的过程中直导线中的平均感应电动势为多少? [思路点拨] (1)求瞬时感应电动势选择E =Bl v . (2)求平均感应电动势选择E =n ΔΦΔt .(3)应用E =Bl v 时找准导线的有效长度. [答案] (1)2BR v (2)2B v 2R v t -v 2t 2(3)12πBR v[解析] (1)由E =Bl v 可知,当直导线切割磁感线的有效长度l 最大时,E 最大,l 最大为2R ,所以感应电动势的最大值E =2BR v .(2)对于E 随t 变化的规律应求的是瞬时感应电动势,由几何关系可求出直导线切割磁感线的有效长度l 随时间t 变化的情况为l =2R 2-(R -v t )2,所以E =2B v 2R v t -v 2t 2.(3)从开始运动至经过圆心的过程中直导线的平均感应电动势E =ΔΦΔt =12πBR 2R v=12πBR v .1.(多选)单匝矩形线圈在匀强磁场中匀速运动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图所示,则O ~D 过程中( )A .线圈中O 时刻感应电动势最大B .线圈中D 时刻感应电动势为零C .线圈中D 时刻感应电动势最大D .线圈中O 至D 时间内平均感应电动势为0.4 V2.如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中,在Δt 时间内,磁感应强度的方向不变,大小由B 均匀增大到2B ,在此过程中,线圈中产生的感应电动势为( )A.na 2B 2ΔtB.a 2B 2ΔtC.na 2B ΔtD.2na 2B Δt3.(多选)关于感应电动势的大小,下列说法不正确的是( ) A .穿过闭合电路的磁通量最大时,其感应电动势一定最大 B .穿过闭合电路的磁通量为零时,其感应电动势一定为零C .穿过闭合电路的磁通量由不为零变为零时,其感应电动势一定为零D .穿过闭合电路的磁通量由不为零变为零时,其感应电动势一定不为零 4.如图所示,在竖直向下的匀强磁场中,将一水平放置的金属棒ab 以水平速度v 0抛出,运动过程中棒的方向不变,不计空气阻力,那么金属棒内产生的感应电动势将( )A .越来越大B .越来越小C .保持不变D .方向不变,大小改变5、如图所示,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a -b -c -aC .U bc =-12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿a -c -b -a6、如图所示,A 、B 两闭合圆形导线环用相同规格的导线制成,它们的半径之比r A ∶r B =2∶1,在两导线环包围的空间内存在一正方形边界的匀强磁场区域,磁场方向垂直于两导线环的平面向里.当磁场的磁感应强度随时间均匀增大的过程中,流过两导线环的感应电流大小之比为( )A.I AI B =1 B.I AI B =2 C.I A I B =14D.I A I B =127、如图所示,abcd 为水平放置的平行“”形光滑金属导轨,间距为l ,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B ,导轨电阻不计.已知金属杆MN 倾斜放置,与导轨成 θ角,单位长度的电阻为r ,保持金属杆以速度v 沿平行于cd 的方向滑动(金属杆滑动过程中与导轨接触良好).则( )A .电路中感应电动势的大小为Bl vsin θB .电路中感应电流的大小为B v sin θrC .金属杆所受安培力的大小为B 2l v sin θrD .金属杆的热功率为B 2l v 2r sin θ8.(多选)如图所示,三角形金属导轨EOF 上放有一根金属杆AB ,在外力作用下,保持金属杆AB 和OF 垂直,以速度v 匀速向右移动.设导轨和金属杆AB 都是用粗细相同的同种材料制成的,金属杆AB 与导轨接触良好,则下列判断正确的是( )A .电路中的感应电动势大小不变B .电路中的感应电流大小不变C .电路中的感应电动势大小逐渐增大D .电路中的感应电流大小逐渐增大9.一个面积为S =4×10-2 m 2、匝数为n =100匝的线圈放在匀强磁场中,磁场方向垂直于线圈平面,磁感应强度B 随时间t 变化的规律如图所示,则下列判断正确的是( )A .在开始的2 s 内穿过线圈的磁通量的变化率等于8 Wb/sB .在开始的2 s 内穿过线圈的磁通量的变化量等于零C .在开始的2 s 内线圈中产生的感应电动势的大小等于8 VD .在第3 s 末线圈中的感应电动势等于零10.(多选)如图所示,单匝线圈在匀强磁场中绕垂直于磁场的轴匀速转动,穿过线圈的磁通量Φ随时间t 的关系可用图像表示,则( )A .在t =0时刻,线圈中的磁通量最大,感应电动势也最大B .在t =1×10-2 s 时刻,感应电动势最大 C .在t =2×10-2 s 时刻,感应电动势为零D .在0~2×10-2 s 时间内,线圈中感应电动势的平均值为零11.如图所示,面积为0.2 m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面.已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4 Ω,求:(1)磁通量变化率及回路的感应电动势; (2)a 、b 两点间电压U ab .12.如图甲所示,轻质细线吊着一质量m =0.32 kg 、边长L =0.8 m 、匝数n =10的正方形线圈,总电阻为r =1 Ω,边长为L2的正方形磁场区域对称分布在线圈下边的两侧,磁场方向垂直纸面向里,大小随时间的变化关系如图乙所示,从t =0开始经t 0时间细线开始松弛,g 取10 m/s 2.求:(1)从t =0到t =t 0时间内线圈中产生的电动势; (2)从t =0到t =t 0时间内线圈的电功率; (3)t 0的值.1.【答案】:ABD【解析】:由法拉第电磁感应定律知线圈中O 至D 时间内的平均感应电动势E =ΔΦΔt =2×10-30.012 V =0.4V ,D 项正确;由感应电动势的物理意义知,感应电动势的大小与磁通量的大小Φ和磁通量的改变量ΔΦ均无必然联系,仅由磁通量的变化率ΔΦΔt 决定,而任何时刻磁通量的变化率ΔΦΔt 就是Φ-t 图像上该时刻切线的斜率,不难看出O 时刻处切线斜率最大,D 点处切线斜率最小为零,故A 、B 正确,C 错误.2.【答案】:A【解析】:正方形线圈内磁感应强度B 的变化率ΔB Δt =BΔt ,由法拉第电磁感应定律知,线圈中产生的感应电动势为E =nS ΔB Δt =n ·a 22·B Δt =na 2B2Δt,选项A 正确.3.【答案】:ABC【解析】:磁通量的大小与感应电动势的大小不存在内在的联系,故A 、B 错;当磁通量由不为零变为零时,闭合电路的磁通量发生改变,一定有感应电流产生,有感应电流就一定有感应电动势,故C 错,D 对.4.【答案】:C【解析】:由于导体棒中无感应电流,故棒只受重力作用,导体棒做平抛运动,水平速度v 0不变,即切割磁感线的速度不变,故感应电动势保持不变,C 正确.5、【答案】:C【解析】:金属框abc 平面与磁场平行,转动过程中磁通量始终为零,所以无感应电流产生,选项B 、D 错误.转动过程中bc 边和ac 边均切割磁感线,产生感应电动势,由右手定则判断U a <U c ,U b <U c ,选项A 错误.由转动切割产生感应电动势的公式得U bc =-12Bl 2ω,选项C 正确.6、【答案】:D【解析】:A 、B 两导线环的半径不同,它们所包围的面积不同,但穿过它们的磁场所在的区域面积是相等的,所以两导线环上的磁通量变化率是相等的,E =ΔΦΔt =ΔB Δt S 相同,得E A E B =1,I =E R ,R =ρlS (S 为导线的横截面积),l =2πr ,所以I A I B =r B r A ,代入数值得I A I B =r B r A =12.7、【答案】:B【解析】:由电磁感应定律可知电路中感应电动势为E =Bl v ,A 错误;感应电流的大小I =Bl v r l sin θ=B v sin θr ,B 正确;金属杆所受安培力的大小F =B B v sin θr ·l sin θ=B 2l v r ,C 错误;热功率P =(B v sin θr )2r l sin θ=B 2l v 2sin θr ,D 错误.8、【答案】:BC【解析】:设三角形金属导轨的夹角为θ,金属杆AB 由O 点经时间t 运动了v t 的距离,则E =B v t ·tan θ·v ,电路总长为l =v t +v t tan θ+v t cos θ=v t (1+tan θ+1cos θ),又因为R =ρl S ,所以I =ER =B v S sin θρ(1+sin θ+cos θ),I 与t 无关,是恒量,故选项B 正确.E 逐渐增大,故选项C 正确.9.【答案】:C【解析】:在开始的2 s 内,磁通量的变化量为ΔΦ=|-2-2|×4×10-2 Wb =0.16 Wb ,磁通量的变化率ΔΦΔt =0.08 Wb/s ,感应电动势大小为E =n ΔΦΔt=8 V ,故A 、B 错,C 对;第3 s 末虽然磁通量为零,但磁通量的变化率为0.08 Wb/s ,感应电动势不等于零,故D 错.10.【答案】:BC【解析】:由法拉第电磁感应定律知E ∝ΔΦΔt,故t =0及t =2×10-2 s 时刻,E =0,A 错,C 对.t =1×10-2s ,E 最大,B 对.0~2×10-2 s ,ΔΦ≠0,E ≠0,D 错. 11.【答案】:(1)0.04 Wb/s 4 V (2)2.4 V 【解析】:(1)由B =(2+0.2t )T 得ΔBΔt =0.2 T/s ,故ΔΦΔt =S ΔBΔt=0.04 Wb/s , E =n ΔΦΔt=4 V.(2)线圈相当于电源,U ab 是外电压,则 U ab =ER 1+R 2R 1=2.4 V .12.【答案】:(1)0.4 V (2)0.16 W (3)2 s 【解析】:(1)由法拉第电磁感应定律得 E =n ΔΦΔt =n ΔB Δt ×12×⎝⎛⎭⎫L 22=0.4 V .(2)I =Er =0.4 A ,P =I 2r =0.16 W.(3)分析线圈受力可知,当细线松驰时有 F 安=nB t 0I ·L 2=mg ,I =E r ,则B t 0=2mgrnEL =2 T.由图象知B t 0=1+0.5 t 0(T),解得t 0=2 s.。
高中物理选修3-1人教版2-2电动势

①它们的定义、物理含义不同(见上面电势差与电动势的 比较)
②它们的决定因素不同:电势差取决于电场本身,在电 路中两点间的电势差取决于电路的特点,电动势取决于电源 本身,与其他因素无关。
另外,这两个物理量的测量方法也是不同的,这将在后 面进行讨论。
知识体系构建
重点难点突破
一、正确理解非静电力 在电源外部的电路里,自由电荷在电场力作用下移动, 电场力做正功,电势能转化为其他形式的能;在电源内部自 由电荷移动的方向与受到的电场力方向相反,移送电荷的不 再是电场力,叫做“非静电力”。非静电力做功将电荷“移 送”到电势能高的电极,增加电势能(消耗其他形式的能)。所 以可以说:电源是通过非静电力做功,将其他形式的能转化 为电能的装置。
考点题型设计
对电动势的理解
(2012·镇江高二检测)关于电动势下列说法中正确 的是( )
A.在电源内部把正电荷从负极移到正极,非静电力做 功,电能增加
B.对于给定的电源,移送正电荷非静电力做功越多, 电动势就越大
C.电动势越大,说明非静电力在电源内部从负极向正极 移送单位电荷量做的功越多
D.电动势越大,说明非静电力在电源内部把正电荷从负 极移送到正极的电荷量越多
解析:电源是将其他形式的能量转化为电能的装置,是 通过电源内部的非静电力做功来完成的,所以非静电力做功, 电能就增加,A 正确;电源电动势是反映电源把其他形式的 能转化为电能本领大小的物理量,电动势在数值上等于移送 单位电荷量非静电力所做的功,不能说电动势越大,非静电 力做功越多,也不能说电动势越大,移送的电荷量越多,C 正确,B、D 错误。
答案:1.2 600 20 充电时间和充电电流
高中物理公式推导(线圈切割磁感线运动的感生电动势)

一、简单说明:
图(1) 线圈切割磁感线
图(2) 线圈切割磁感线
的俯视图,N、S 分别表示 T 的侧视图,虚线表示的是水平
型磁铁的北极、南极,中间 面,红线表示线圈。(T 型磁
表示线圈。
铁部分忽略)
二、推导过程:
为了推导方便,我们用侧视图来推导。如图(3)所示,
0 BS sin0
t t 时刻的磁通量为:
BSsin
磁通量的变化量为:
0
BS sin BS sin0
BS sin sin0
BS • 2 cos 0 sin 0
2
2
此处应用了
sin A sin B sin A B A B sin A B A B
2
2 2
动势最小,磁通量的变化也最慢。
可以用一个图表做一个简单的总结:
当线圈方向与磁感 当线圈方向与磁感
线方向平行时
线方向垂直时
磁通量
最小
最大
磁通量变化量
最快
最慢
说明:本章推导,中间用到的公式,都用框圈出,此处
不再讨论。
cos(t
t 2
)
t
t
BS cos(t t )
2
BS cost
此处应用了
cos(t t ) cost cos t sin t sin t
2
2
2
当
t
很小时,
cos
t 2
1, sin
t 2
0 ,所以,
cos(t t ) cost 2
这与课本上的公式有一点不同,课本上用的是 sint ,
第二,在什么情况下,磁通量变化最快、最慢的讨论。
2.2电动势

电动势精讲年级:高中 科目:物理 类型:同步 制作人:黄海辉 知识点:电动势一、对电动势的理解1.电动势的物理意义:反映电源把其他形式的能(非静电力做功)转化为电能的本领大小,电动势越大,电路中每通过1 C 电荷量时,电源将其他形式的能转化成电能的数值就越多.2.电动势在数值上等于非静电力把1 C 的正电荷在电源内从负极移送到正极所做的功.常用干电池的电动势为1.5 V ,意味着将1 C 正电荷在电池内从负极移送到正极的过程中,有1.5 J 的化学能转化成了电能.3.电动势是标量,但为研究问题的方便,常认为其有方向,规定其方向为电源内部电流的方向,即在电源内部由电源负极指向正极.二、公式E =W q的理解和应用 1.公式E =W q是电动势的定义式,是比值法定义的物理量,E 的大小与W 、q 无关. 2.由公式E =W q变形可知W =qE ,因此若已知电源的电动势和移动电荷的电荷量,就可以计算非静电力做功的大小,即把其他形式的能转化为电能的多少.例1 (多选)关于电动势E 的说法中正确的是( )A.电动势E 的大小,与非静电力所做的功W 的大小成正比,与移送电荷量q 的大小成反比B.电动势E 是由电源本身决定的,跟电源的体积和外电路均无关C.电动势E 是表征电源把其他形式的能转化为电能本领强弱的物理量D.电源的电动势越大,非静电力将正电荷从负极移送到正极的电荷量一定越多答案 BC解析 电动势是一个用比值定义的物理量,与这两个相比的项没有关系,而是由电源本身决定的,是表征其他形式的能转化为电能本领强弱的物理量.电动势大,移送的电荷量不一定多.故选B 、C.例2 一节干电池的电动势为1.5 V ,这表示( )A.电池中每通过1 C 的电荷量,该电池能将1.5 J 的化学能转变成电势能B.该电池接入电路工作时,电池两极间的电压恒为1.5 VC.该电池存储的电能一定比电动势为1.2 V 的电池存储的电能多D.将1 C 的电子由该电池负极移送到正极的过程中,非静电力做了1.5 J 的功答案 A解析 电动势大小表示电池中每通过1 C 的电荷量,电池将其他形式的能量转化为电势能本领的大小,并非表示电池内部储存的能量大小,故选项A 正确,C 错误;电动势大小等于电池接入电路前两极之间的电压大小,故选项B 错误;电动势为1.5 V ,表示电池内部非静电力将1 C 的电子由电源正极移送到负极过程中所做功的大小,故选项D 错误.例3 由六节干电池(每节的电动势为1.5 V)串联组成的电池组,对一电阻供电.电路中的电流为2 A ,在10 s 内电源做功为180 J ,则电池组的电动势为多少?从计算结果中你能得到什么启示?答案 9 V 串联电池组的总电动势等于各电池的电动势之和解析 由E =W q及q =It 得 E =W It =1802×10V =9 V =1.5×6 V 故可得出:串联电池组的总电动势等于各电池的电动势之和.例4 将电动势为3 V 的电源接入电路中,测得电源两极间的电压为2.4 V ,当电路中有6 C 的电荷流过时,求:(1)有多少其他形式的能转化为电能;(2)外电路中有多少电能转化为其他形式的能;(3)内电路中有多少电能转化为其他形式的能.答案 (1)18 J (2)14.4 J (3)3.6 J解析 由电动势的定义可知,在电源内部非静电力每移送1 C 电荷,有3 J 其他形式的能转化为电能.也可认为在电源中,非静电力移送电荷做多少功,就有多少其他形式的能转化为电能;在电路中,静电力移送电荷做多少功,就有多少电能转化为其他形式的能.(1)W =Eq =3×6 J =18 J ,电源中共有18 J 其他形式的能转化为电能.(2)W 1=U 1q =2.4×6 J =14.4 J ,外电路中共有14.4 J 的电能转化为其他形式的能.(3)W 2=W -W 1=3.6 J ,内电路中有3.6 J 电能转化为其他形式的能.电动势E =W q 和电压U =W q的区别 电动势E =W q 是电动势的计算式,其中W 为非静电力做的功;电压U =W q为电压的计算式,其中W 为静电力做的功.两者的单位虽然相同,但表示的意义不同;电动势反映非静电力做功把其他形式的能转化为电能的本领,表征电源的性质;电压就是电势差,即电路(电场)中两点电势的差值,反映电场能的性质.知识点拓展:(1)如图1,水池A 、B 的水面有一定的高度差,若在A 、B 之间用一细管连起来,则水在重力的作用下定向运动,A 、B 之间的高度差很快消失.在这种情况下,水管中只有一个短暂水流.怎样才能保持A 、B 之间的高度差,在A 、B 之间形成持续的水流呢?(2)如图2所示,电源在电路中的作用相当于抽水机的作用,它能不断地将流到负极的正电荷搬运到正极,从而保持正、负极有稳定的电势差,维持电路中有持续的电流.电源是通过什么力做功实现这个功能的?图1 图2(3)对比上述抽水过程和电荷在电路中的运动,分析它们的能量转化情况.答案 (1)需要加一个抽水机,把水池B 中的水抽到水池A 中.(2)通过非静电力做功.(3)①当水由A 池流向B 池时重力做正功,减少的重力势能转化为其他形式的能;在电源外部,电场力对正电荷做正功,减少的电势能转化为其他形式的能;②当抽水机将B 中的水抽到A 的过程中,要克服水的重力做功,将其他形式的能转化为水的重力势能;在电源内部,要靠非静电力作用于正电荷克服电场力做功,将其他形式的能转化为电荷的电势能.精练年级:高中科目:物理类型:同步知识点:难度:中等总题量:10题预估总时间:30min一、选择题(1题为单选题,2~6题为多选题)1.下列说法中正确的是()A.在外电路和电源内部,正电荷都受静电力作用,所以能不断定向移动形成电流B.静电力与非静电力都可以使电荷移动,所以本质上都是使电荷的电势能减少C.在电源内部正电荷能从负极到正极是因为电源内部只存在非静电力而不存在静电力D.静电力移动电荷做功电势能减少,非静电力移动电荷做功电势能增加答案 D2.关于电动势,下列说法中正确的是()A.在电源内部把正电荷从负极移到正极,非静电力做功,电势能增加B.对于给定的电源,移动正电荷非静电力做功越多,电动势就越大C.电动势越大,说明非静电力在电源内部把正电荷从负极向正极移动时,单位电荷量做功越多D.电动势越大,说明非静电力在电源内部把正电荷从负极移到正极时,移送的电荷量越多答案AC解析电源是将其他形式的能转化为电势能的装置,是通过电源内部的非静电力做功来完成的,所以,非静电力做功,电势能就增加,因此选项A正确.电源的电动势是反映电源内部其他形式的能转化为电势能本领的物理量.电动势在数值上等于移送单位电荷量的正电荷所做的功,不能说非静电力做功越多,电动势越大,也不能说电动势越大,移送的电荷量越多,所以选项C正确,选项B、D错误.3.电池给灯泡供电与人将球抛出在能量转化方面有相似之处,我们可以将电势能类比于重力势能,如图1所示,下列说法正确的是()图1A.可以将电流通过灯泡时电流做功与抛球时人对球做功相类比B.可以将电池的非静电力做功与抛球时人对球做功类比C.可以将电流通过灯泡时电流做功与重力对球做功类比D.可以将电池的非静电力做功与重力对球做功类比答案BC解析将电势能类比重力势能,电流通过灯泡做功,电势能减少,可类比重力做功,重力势能减少.非静电力做功,电势能增加,可类比人抛球对球做功,球重力势能增加,故B、C 正确.4.下列说法中正确的是()A.同一型号干电池,旧电池比新电池的电动势小,内阻大,容量小B.电源电动势E与通过电源的电流I的乘积EI表示电源内非静电力的功率C.1号干电池比5号干电池的电动势小,容量大D.当通过同样的电荷量时,电动势为2 V的蓄电池比电动势为1.5 V的干电池提供的电能多答案AD解析同种型号的旧电池比新电池的电动势略小,内阻略大.但不同型号的干电池相比较,电动势相同而容量不同,故选项A正确,选项C错误;电动势是表征电源把其他形式的能转化为电势能的本领的物理量,它等于非静电力移送单位电荷量所做的功,非静电力功率的表达式为EI,故选项B错误,选项D正确.5.太阳能电池已经越来越多地应用于我们生活中,有些太阳帽前安装的小风扇就是靠太阳能电池供电的.可以测得某太阳能电池可产生0.6 V的电动势,这表示()A.电路中每通过1 C电荷量,太阳能电池把0.6 J的太阳能转变为电能B.无论接不接入外电路,太阳能电池两极间的电压都为0.6 VC.太阳能电池在1 s内将0.6 J的太阳能转变为电能D.太阳能电池将太阳能转化为电能的本领比一节干电池(电动势为1.5 V)将化学能转化为电能的本领小答案 AD解析 电动势在数值上等于非静电力把1 C 的正电荷从电源内部的负极移到正极所做的功,即把太阳能转化为电能的多少,而不是在1 s 内转变的电能.电动势越大,将其他形式的能转化为电能的本领越大.故A 、D 对,C 错;电源在不接入电路时,两极间的电压大小等于电动势大小,故B 错.6.如图2为一块手机电池的背面印有的一些符号,下列说法正确的是( )图2A.该电池的容量为500 mA·hB.该电池的电动势为3.6 V ,内阻为0C.该电池在工作时的电流为500 mAD.若电池以10 mA 的电流工作,可用50小时答案 AD解析 电池上的3.6 V 表示电动势,但该电池的内阻不为零,故B 错;该电池在工作时的电流很小,远小于500 mA ,故C 错;500 mA·h 表示电荷容量,可以由电荷容量计算在一定放电电流下使用的时间,由500 mA·h =t ×10 mA ,得t =50 h ,所以A 、D 选项正确.二、非选择题7.有一铅蓄电池,当移动1 C 电荷时非静电力做功是2 J ,该铅蓄电池的电动势是多少?给一小灯泡供电,供电电流是0.2 A ,供电10 min ,非静电力做功是多少?答案 2 V 240 J解析 由电动势公式E =W q =21 V =2 V ,所以电动势为2 V.由E =W q变形得到W =qE ,q =It , 所以W =ItE =0.2×10×60×2 J =240 J ,所以供电10 min ,非静电力做功为240 J.8.近年来,国产手机在手机市场上占有的份额越来越大.如图3所示是某公司生产的一块手机电池外壳上的文字说明.图3(1)该电池的电动势是多少?(2)该手机待机状态下的平均工作电流是多少?(3)每次完全放电过程中,该电池将多少其他形式的能转化为电能?答案 (1)3.7 V (2)14.58 mA (3)9 324 J解析 (1)由题图可以读得该电池的电动势为3.7 V .(2)由题图知该电池的容量为700 mA· h ,所以I =q t =700 mA·h 48 h≈14.58 mA. (3)转化的电能为ΔE 电=W =E ·q=3.7×700×10-3×3 600 J =9 324 J. 9.国家大力推广节能环保汽车,电动汽车是许多家庭的首选.已知电动汽车的电源是由30组蓄电池串联组成的,当正常行驶时,电路中的电流为5 A ,在10 min 内电源做功1.8×105 J ,则这组蓄电池的总电动势是多少?每组的电动势为多少?答案 60 V 2 V解析 电源移送电荷量为:q =It =5×10×60 C =3 000 C ,这组蓄电池的总电动势为:E =W q =1.8×1053 000V =60 V 每组的电动势为:E 1=E n =6030V =2 V . 10.铅蓄电池的电动势为2 V ,一节干电池的电动势为1.5 V ,将铅蓄电池和干电池分别接入电路,两个电路中的电流分别为0.1 A 和0.2 A.试求:两个电路都工作20 s ,电源所消耗的化学能分别为多少?哪一个电源把化学能转化为电能的本领更大?答案 4 J 6 J 铅蓄电池把化学能转化为电能的本领更大解析 对于铅蓄电池的电路,20 s 内通过的电荷量为q 1=I 1t =2 C ,对于干电池的电路,20 s 内通过的电荷量为q 2=I 2t =4 C.由电动势的定义式得电源消耗的化学能分别为W1=q1E1=4 J,W2=q2E2=6 J.电动势越大,电源把其他形式的能转化为电能的本领越大,故铅蓄电池把化学能转化为电能的本领更大.:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动势公式高中物理
电动势公式(电位差公式)
一、什么是电动势:
1、定义:电动势(Electric Potential)是电荷在不同的位置的受力的能
量的度量,常用计量单位是伏特(V)。
2、电动势能引力:在两个拥有不同电荷的物体之间,存在电动势引力,对其中一个物体会产生电力力,常称之为电动势引力。
3、电动势能量:在两个拥有不同电荷的物体间通过电力线传送的能量,称为电动势能量,是一种动能,单位是千围(KJ)。
二、电动势公式:
1、基本公式:电动势公式(electric potential formula)指的是电位差公
式中的常用公式,即:U=V/I(U为电动势,V为电压,I为电流)。
2、优势:该公式的优点是由于其简单实用性,这个变量可用来描述不
同类型的电路,并可以计算出不同条件下电路中元器件的作用和电流、电压的关系。
3、电动势差:电动势差(Electric Potential Difference),即电动势梯度,是只要两点之间存在电动势引力,则存在电动势差。
它用来描述
电荷的流动的依据:当在一定的电动势差范围内时,电荷可以被自由
传送,而当电动势差超出这个范围,电荷就不能被自然传送。
三、电动势的实际应用:
1、用于计算电子学专业:电动势公式可用于电子学中计算电荷流动,电压、电流和能量关系等,以及电路设计中能量分配和流程控制。
2、用于电机工程:电动势公式可用于电机工程中研究电力分布和参数计算,如解决电势场中电动势时也可以使用该公式。
3、用于建筑工程:在建筑结构中,可以用电动势公式计算不同电子设备在同一区域的电动势及电压等关系,以便正确的构建电子系统。
4、用于电气工程:在电气工程中,电动势公式可被用来计算电路中电压、电流和能量的关系,以及计算电流的漏电流量。