南昌大学计算机控制实验报告数/模转换实验
计算机控制课程实验实验报告

计算机控制课程实验实验报告姓名:学号:班级:实验一输入与输出通道1.A/D转换实验1.1实验内容:编写实验程序,将-5V ~ +5V的电压作为ADC0809的模拟量输入,将转换所得的8位数字量保存于变量中。
1.2实验原理:实验设备中的ADC0809芯片,其输出八位数据线以及CLOCK线已连到控制计算机的数据线及系统应用时钟1MCLK (1MHz)上。
其它控制线根据实验要求可另外连接 (A、B、C、STR、/OE、EOC、IN0~IN7)。
根据实验内容的要求,可以设计出如图1所示的实验线路图。
上图中,AD0809的启动信号“STR”是由控制计算机定时输出方波来实现的。
“OUT1”表示386EX内部1#定时器的输出端,定时器输出的方波周期=定时器时常。
图中ADC0809芯片输入选通地址码A、B、C为“1”状态,选通输入通道IN7;通过单次阶跃单元的电位器可以给A/D转换器输入-5V ~ +5V的模拟电压;系统定时器定时1ms输出方波信号启动A/D转换器,并将A/D转换完后的数据量读入到控制计算机中,最后保存到变量中。
1.3程序流程:1.4实验步骤及结果:(1) 打开联机操作软件,参照流程图,在编辑区编写实验程序。
检查无误后编译、链接。
(2) 按图1接线 (注意:图中画“o”的线需用户自行连接),连接好后,请仔细检查,无错误后方可开启设备电源。
(3) 装载完程序后,系统默认程序的起点在主程序的开始语句。
用户可以自行设置程序起点,可先将光标放在起点处,再通过调试菜单项中设置起点或者直接点击设置起点图标,即可将程序起点设在光标处。
(4) 加入变量监视,具体步骤为:打开“设置”菜单项中的“变量监视”窗口或者直接点击“变量监视”图标,将程序中定义的全局变量“AD0~AD9”加入到变量监视中。
在查看菜单项中的工具栏中选中变量区或者点击变量区图标,系统软件默认选中寄存器区,点击“变量区”可查看或修改要监视的变量。
微机实验及课程设计——数模与模数转换

东南大学《微机实验及课程设计》实验报告实验八数模与模数转换姓名:学号:专业:实验室:计算机硬件技术实验时间:2010年06月1日报告时间:2010年06月2日评定成绩:审阅教师:一. 实验目的与内容1)了解数/模转换器的基本原理,掌握DAC0832 芯片的使用方法;2)了解模/数转换器的基本原理,掌握ADC0809 芯片的使用方法。
二. 基本实验原理(1)D/A 转换① 8 位D/A 转换器DAC0832 的口位置为290H,输入数据与输出电压的关系为:(UREF 表示参考电压,N 表示数数据),这里的参考电压为PC 机的+5V 电源。
②产生锯齿波只须将输出到DAC0832 的数据由0 循环递增,产生正弦波可根据正弦函数建一个下弦数字量表,取值范围为一个周期,表中数据个数在16 个以上。
电路连接如下图所示:图1产生锯齿波和正弦波的程序流程图如下所示:(2)A/D 转换① ADC0809 的IN0 口位置为298H,IN1 口位置为299H。
② IN0 单极性输入电压与转换后数字的关系为:其中Ui 为输入电压,UREF 为参考电压,这里的参考电压为PC 机的+5V 电源。
③一次A/D 转换的程序可以为:MOV DX,口位置OUT DX,AL ;启动转换;延时IN AL,DX ;读取转换结果放在AL 中电路连接如下图所示:图2 程序流程图(含子程序流程图)如下所示:(3)A/D转换曲线绘制流程图如下所示:三. 方案实现与测试(一)、获取TPC 扩展卡 I/O 和存储基位置直接在windows 下利用控制面板查看占用的存储和中断资源,可知:TPC设备内存范围: FDDFF000—FDDFF0FF接口芯片输入输出范围: BC00—BCFFTPC设备输入输出范围: B800—B87F接口芯片内存范围: FDC00000—FDCFFFFF(二)、DAC 实验电路原理如图1所示,DAC0832 采用单缓冲方式,具有单双极性输入端(图中的Ua、Ub)。
南昌大学EDA实验报告一

南昌大学实验报告学生姓名:翁学号:专业班级:中兴131实验类型:验证□综合□设计■创新□实验日期:2015.10.29实验一、模可变计数器(一)实验目的1、进一步熟悉实验装置和QuartusⅡ软件的使用;2、进一步熟悉和掌握EDA设计流程;3、学习简单组合、时序电路的EDA设计;4、学习计数器中二进制码到BCD码的转换技巧;5、学习实验装置上数码管的输出方法。
(二)设计要求完成设计、仿真、调试、下载、硬件测试等环节,在EDA实验装置上实现模可变计数器功能,具体要求如下:1、设置一个按键控制改变模值,按键按下时模为10-99之间(具体数值自行确定)的数,没按下时模为100-199之间(具体数值自行确定)的数;2、计数结果用三位数码管十进制显示。
(三)实验预习1、了解SOPC实验台上数码管的连接方式。
如下图所示:可以知道8位数码管的段选由芯片74HC245来控制,位选由三个输入经74LS138译码器控制。
2、BCD码的转换技巧。
由于数码管最多要显示3位十进制数。
所以程序中通过设定一个12位的输出寄存器q。
q[11:8]表示百位,q[7:4]表示个位,q[3:0]表示个位。
但如果q按二进制计数增加的话,8421BCD码在 0000 0000 1001(十进制9)到 0000 0001 0000(十进制10)之间计数还需要多计数 1010~1111之间的7个数。
所以8421BCD 到十进制的调整需要 +7 处理。
同理,十位到百位BCD调整需要做 +103 处理。
3、数码管的点亮。
数码的扫描频率设置为1KHz。
通过case语句实现扫描数码管的指定位数,并同时通过74HC245对选定数码管赋值(段显操作)。
4、模值通过if语句对q的值进行改变。
(设置一个中间变量model)(四)实验仿真仿真图(实际操作时CLK_RN为CLK_EN一千分频)(五)实验现象及结果将3个开关设置为rst、en、switch按键,分别达到置位、使能、模可变功能。
计算机控制技术实验报告册

计算机控制技术实验报告册学院:SSS专业:电气工程及其自动化班级:SS姓名:XXXX学号:XXXX核自学院电气工程及其自动化计算机控制系统实验报告1实验一 D/A数模转换实验一、实验目的1.掌握数模转换的基本原理。
2.熟悉12位D/A转换的方法。
二、实验仪器1.EL-AT-II型计算机控制系统实验箱一台2.PC计算机一台三、实验内容通过A/D&D/A卡完成12位D/A转换的实验,在这里采用双极性模拟量输出,数字量输入范围为:0~4096,模拟量输出范围为:-5V~+5V。
转换公式如下:Uo= Vref - 2Vref(211K11+210K10+...+20K0)/ 212Vref=5.0V例如:数字量=1 则K11=1,K10=0,K9=1,K8=0,K7=1,K6=1,K5=0,K4=1,K3=0,K2=0,K1=0,K0=1模拟量Uo= Vref - 2Vref(211K11+210K10+...+20K0)/ 212=4.0V四、实验步骤1.连接A/D、D/A卡的DA输出通道和AD采集通道。
A/D、D/A卡的DA1输出接A/D、D/A卡的AD1输入。
检查无误后接通电源。
2.启动计算机,在桌面双击图标[Computerctrl]或在计算机程序组中运行[Computerctrl]软件。
23.测试计算机与实验箱的通信是否正常,通信正常继续。
如通信不正常查找原因使通信正常后才可以继续进行实验。
4.在实验项目的下拉列表中选择实验一[D/A 数模转换实验], 鼠标单击按钮,弹出实验课题参数设置对话框。
5.在参数设置对话框中设置相应的实验参数后,在下面的文字框内将算出变换后的模拟量,6. 点击确定,在显示窗口观测采集到的模拟量。
并将测量结果填入下表1-1:表1-1 五、实验结果实验得出数字量与模拟量的对应曲线如下图1-1:核自学院电气工程及其自动化计算机控制系统实验报告3图1-1六、实验结果分析表1-1中计算出理论值,与实验结果比较,分析产生误差的原因系仪器误差。
计算机控制技术实验报告_ 组

实验一A/D与D/A转换一、实验目的1.通过实验了解实验系统的结构与使用方法;2.通过实验了解模拟量通道中模数转换与数模转换的实现方法。
二、实验设备1.THBCC-1型信号与系统•控制理论及计算机控制技术实验平台2.THBXD数据采集卡一块(含37芯通信线、16芯排线和USB电缆线各1根)3.PC机1台(含软件“THBCC-1”)三、实验内容1.输入一定值的电压,测取模数转换的特性,并分析之;2.在上位机输入一十进制代码,完成通道的数模转换实验。
四、实验原理1.数据采集卡本实验台采用了THBXD数据采集卡。
它是一种基于USB总线的数据采集卡,卡上装有14Bit分辨率的A/D转换器和12Bit分辨率的D/A转换器,其转换器的输入量程均为±10V、输出量程均为±5V。
该采集卡为用户提供4路模拟量输入通道和2路模拟量输出通道。
其主要特点有:1) 支持USB1.1协议,真正实现即插即用2) 400KHz14位A/D转换器,通过率为350K,12位D/A转换器,建立时间10μs3) 4通道模拟量输入和2通道模拟量输出4) 8k深度的FIFO保证数据的完整性5) 8路开关量输入,8路开关量输出2. AD/DA转换原理数据采集卡采用“THBXD”USB卡,该卡在进行A/D转换实验时,输入电压与二进制的对应关系为:-10~10V对应为0~16383(A/D转换为14位)。
其中0V为8192。
其主要数据格式如下表所示(采用双极性而DA转换时的数据转换关系为:-5~5V对应为0~4095(D/A转换为12位),其数据格式(双极性电压输出时)为:五、实验步骤1. 启动实验台的“电源总开关”,打开±5、±15V电源。
将“阶跃信号发生器”单元输出端连接到“数据采集接口单元“的“AD1”通道,同时将采集接口单元的“DA1”输出端连接到接口单元的“AD2”输入端;2、将“阶跃信号发生器”的输入电压调节为1V;3. 启动计算机,在桌面双击图标“THBCC-1”软件,在打开的软件界面上点击“开始采集”按钮;4. 点击软件“系统”菜单下的“AD/DA实验”,在AD/DA实验界面上点击“开始”按钮,观测采集卡上AD转换器的转换结果,在输入电压为1V(可以使用面板上的直流数字电压表进行测量)时应为00001100011101(共14位,其中后几位将处于实时刷新状态)。
微机原理实验报告--数模转换

微机原理实验报告实验题目:数/模转换器DAC0832系部:电子与信息工程系学生姓名:专业班级:学号:指导教师:2013.12.30一. 实验目的1.掌握D/A转换原理;2.熟悉D/A芯片接口设计方法;3.掌握DAC0832芯片的使用方法。
二. 实验设备1.PC微机一台;2.TD-PIT实验装置一台;3.示波器一台。
三. 实验要求用DAC0832设计一个D/A转换接口电路,采用单缓冲工作方式,产生方波、三角波、锯齿波和正弦波。
四.实验原理1.DAC3802的结构及性能(1)输入/输出信号。
D7-D为8位数据输入线;IOUT1为DAC电流输出1,I OUT2为DAC电流输出2,IOUT1和IOUT2之和为一常量;RFB为反馈信号输入端,反馈电阻在芯片内。
(2)控制信号。
ILE为允许输入锁存信号;WR1和WR2分别为锁存输入数据信号和锁存输入寄存器到DAC寄存器的写信号;XFER为传送控制信号;CS为片选信号。
(3)电源。
VCC 为主电源,电压范围为+5V到+15V;VREF为参考输入电压,范围为-10V到+10V。
DAC0832管脚及其内部结构框图2.工作方式外部五个控制信号:ILE,CS,WR1,WR2,XFER连接方式的不同,可工作于多种方式:直通方式,单缓冲方式,双缓冲方式(1)直通方式ILE接高、CS、WR1、WR2、XFER接地,两级寄存器均直通;(2)单缓冲方式两级寄存器一个受控,一个直通;(3)双缓冲方式两级寄存器均受控。
0832为电流输出型D/A ,要得模拟电压,必需外加转换电路(运放)。
五. 实验内容1.硬件电路图:2.软件程序设计(1)产生方波stack segment stack 'stack'dw 32 dup(?)stack endscode segmentbegin proc farassume ss:stack,cs:codepush dssub ax,axpush axMOV DX,0D800H;片选信号输入地址MOV AL,0NEXT:OUT DX,ALMOV DX,0D800HOUT DX,ALLOOP $;延时NOT AL;求反,由高电平转为低电平或有低电平转为高电平 PUSH AX;保护数据MOV AH,11INT 21HCMP AL,0;有按键退出POP AXJZ NEXTretbegin endpcode endsend begin(2)产生三角波stack segment stack 'stack'dw 32 dup(?)stack endsdata segmentdata endscode segmentbegin proc farassume ss:stack,cs:code,ds:datapush dssub ax,axpush axMOV DX,0D800HMOV AL,0NEXT:OUT DX,ALCALL DELAY;调用延时CMP AL,0FFHJNE NEXT;自增至15NEXT1:OUT DX,ALCALL DELAY;调用延时DEC ALCMP AL,0JNE NEXT1PUSH AXMOV AH,11INT 21HCMP AL,0POP AXJZ NEXT;自减至0retbegin endpDELAY PROCPUSH CXMOV CX,10000LOOP $POP CXRETDELAY ENDP;延时子程序code endsend begin(3)产生锯齿波stack segment stack 'stack' dw 32 dup(?)stack endscode segmentbegin proc farassume ss:stack,cs:code push dssub ax,axpush axMOV DX,0D800HMOV AL,0UP:OUT DX,ALINC ALPUSH AX;保护数据MOV AH,11INT 21HCMP AL,0JZ UP;循环从0自增至15retbegin endpcode endsend begin(4)产生正弦波stack segment stack 'stack'dw 32 dup(?)stack endsdata segmentDATA DB7FH,87H,8FH,97H,9FH,0A6H,0AEH,0B5H,0BCH,0C3H,0CAH,0D0H,0D6H,0DCH,0E1H,0E6H,0EBH,0EFH,0F2H,0F6H,0F8H,0FAH,0FCH,0FDH,0FEH,0FFH,0FEH,0FDH,0FCH,0FAH,0F8H,0F6H,0F2H,0EFH,0EBH,0E6H,0E1H,0DCH,0D6H,0D0H,0CAH,0C3H,0BCH,0B5H,0AEH,0A6H,9FH,97H,8FH,87H,7FH,77H,6FH,67H,5FH,58H,50H,49H,42H,3BH,34H,2EH,28H,22H,1DH,18H,13H,0FH,0CH,8H,6H,4H,2H,1H,0,0,0,1H,2H,4H,6H,8H,0CH,0FH,13H,18H,1DH,22H,28H,2EH,34H,38H,42H,49H,50H,58H,5FH,67H,6FH,77H;建表,在正弦波一个周期内均匀采样100个点,用matlab将每点的值转换为相应的波形数字量(该处用16进制数表示)data endscode segmentbegin proc farassume ss:stack,cs:code,ds:datapush dssub ax,axpush axmov ax,datamov ds,axAG:MOV SI,OFFSET DATA;将表DATA放入SI中MOV DX,0D800HMOV BX,0NEXT:MOV AL,BYTE PTR[SI]OUT DX,ALCALL DELAY;调用延时INC BXINC SICMP BX,100JE AGPUSH AX;保护数据MOV AH,11CMP AL,0POP AXJZ NEXT;循环100次将表中的值输出 retbegin endpDELAY PROCPUSH CXMOV CX,10000LOOP $POP CXRETDELAY ENDP;延时子程序code endsend begin六. 实验结果用示波器观测波形,截图如下:1.方波2.三角波3.锯齿波4.正弦波七. 实验总结在本次实验中,首先自己在课外将实验原理充分掌握,提前画好电路图,并思考软件部分的代码核心,进入实验室后,进行电路连接及与软件的连调。
南昌大学计算机控制实验报告数/模转换实验汇编

南昌大学实验报告学生姓名:学号:专业班级:实验类型:■验证□综合□设计□创新实验日期:实验成绩:实验一数/模转换实验一.实验要求掌握DAC0832芯片的性能、使用方法及对应的硬件电路。
编写程序控制D/A输出的波形,使其输出周期性的三角波。
二.实验说明电路实现见主板模块B1,具体说明请见用户手册。
DAC0832的片选CS0832接00H,观察输出端OUTl(B1部分)产生三角波由数字量的增减来控制,同时要注意三角波要分两段来产生。
三.实验步骤1、接线:此处无需接线。
2、示例程序:见Cpl源文件,程序流程如下图所示。
3、运行虚拟示波器方法:打开LCAACT软件中“设置”一>“实验机”,将其中的程序段地址设为8100,偏移地址0000。
然后选择“设置”一>“环境参数”一>“普通示波”,选择“工具”一>“加载目标文件”,本实验加载C:\AEDK\LCAACT\试验软件\CPI.EXE,然后选择在“工具”栏中“软件示波器”中“普通示波”,点击开始示波器即程序运行。
以后每个实验中的虚拟示波器运行方法同上。
只是加载的程4、现象:程序执行,用虚拟示波器(CHl)观察输出点OUT(B1数模转换中),可以测量到连续的周期性三角波。
通过实验结果的图片,我们可以知道得出来的三角波的幅值为U=(3.01V+1.95V)=4.96V。
T=1.3s模拟输出来的幅值和我们输入的5V有一定的偏差。
相对误差为(5-4.96)/5=0.8%,因为0832是8为的,所以分辨率为1/256即0.004。
相比较一下本次实验的误差只有0.8%,相当于掉了两个单位的分辨率。
在允许的误差范围之内。
所以本次实验的结果还算是比较成功的。
四、实验小结通过本次实验,我对数模转换的知识理解得更加透彻,以及如何使用DAC0832进行数模转换把数字量转换为模拟量并以三角波形式输出。
还知道实践和理论是有一定差距的南昌大学实验报告学生姓名:学号:专业班级:实验类型:■验证□综合□设计□创新实验日期:实验成绩:实验二模/数转换实验一.实验要求了解A/D芯片ADC0809转换性能及编程。
计算机控制实验(共6次)

实验一 A/D与D/A 转换一.实验目的1.通过实验,熟悉并掌握实验系统原理与使用方法。
2.通过实验掌握模拟量通道中模数转换与数模转换的实现方法。
二.实验内容1.利用实验系统完成测试信号的产生2.测取模数转换的量化特性,并对其量化精度进行分析。
3.设计并完成两通道模数转换与数模转换实验。
三.实验步骤1.了解并熟悉实验设备,掌握以C8051F060为核心的数据处理系统的模拟量通道设计方法,熟悉上位机的用户界面,学习其使用方法;2.利用实验设备产生0~5V的斜坡信号,输入到一路模拟量输入通道,在上位机软件的界面上测取该模拟量输入通道当A/D转换数为4位时的模数转换量化特性;3.利用实验箱设计并连接产生两路互为倒相的周期斜坡信号的电路,分别输入两路模拟量输入通道,在上位机界面的界面上测取它们的模数转换结果,然后将该转换结果的数字量,通过数模转换变为模拟量和输入信号作比较;4.编写程序实现各种典型测试信号的产生,熟悉并掌握程序设计方法;5.对实验结果进行分析,并完成实验报告。
四.附录1.C8051F060概述C8051F060是一个高性能数据采集芯片。
芯片内集成了:(1)与8051兼容的内核:额定工作频率25MHz,流水线指令结构,70%的指令的执行时间为一个或两个系统时钟周期。
5个通用16位定时器∕计数器,59条可编程的I/O线,22个中断源(2个优先级)。
(2)模拟I/O:C8051F060的ADC子系统包括两个1Msps、16 位分辨率的逐次逼近寄存器型ADC,ADC 中集成了跟踪保持电路、可编程窗口检测器和DMA 接口;两个12位电压输出DAC转换器,用于产生无抖动的波形。
内部电压基准,精确的VDD监视器和欠压监测器。
(3)存贮器:64KB片内闪速/电擦除程序存贮器(EEPROM),4KB片内数据存贮器(SRAM)。
(4)片内其它外围:2个UART串行I/O,SPI串行I/O,专用的看门狗定时器,电源监视器,温度传感器,内部可编程振荡器3~24.5MHz或外接震荡器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南昌大学实验报告
学生姓名:学号:专业班级:
实验类型:■验证□综合□设计□创新实验日期:实验成绩:
实验一数/模转换实验
一.实验要求
掌握DAC0832芯片的性能、使用方法及对应的硬件电路。
编写程序控制D/A输出的波形,使其输出周期性的三角波。
二.实验说明
电路实现见主板模块B1,具体说明请见用户手册。
DAC0832的片选CS0832接00H,观察输出端OUTl(B1部分)产生三角波由数字量的增减来控制,同时要注意三角波要分两段来产生。
三.实验步骤
1、接线:此处无需接线。
2、示例程序:见Cpl源文件,程序流程如下图所示。
3、运行虚拟示波器方法:打开LCAACT软件中“设置”一>“实验机”,将其中的程序段地址设为8100,偏移地址0000。
然后选择“设置”一>“环境参数”一>“普通示波”,选择“工具”一>“加载目标文件”,本实验加载C:\AEDK\LCAACT\试验软件\CPI.EXE,然后选择在“工具”栏中“软件示波器”中“普通示波”,点击开始示波器即程序运行。
以后每个实验中的虚拟示波器运行方法同上。
只是加载的程序要根
据实验的不同而不同。
如果以后用到该方法,不再赘述。
4、现象:程序执行,
用虚拟示波器
(CHl)观察输
出点OUT(B1
开始
设置初始电平为0V
D/A输出并增<=0FFH?
Y
N
数模转换中),可
以测量到连续的
周期性三角波。
通过实验结果的图片,我们可以知道得出来的三角波的幅值为U=(3.01V+1.95V)=4.96V。
T=1.3s模拟输出来的幅值和我们输入的5V有一定的偏差。
相对误差为(5-4.96)/5=0.8%,
因为0832是8为的,所以分辨率为1/256即0.004。
相比较一下本次实验的误差只有0.8%,相当于掉了两个单位的分辨率。
在允许的误差范围之内。
所以本次实验的结果还算是比较成功的。
四、实验小结
通过本次实验,我对数模转换的知识理解得更加透彻,以及如何使用DAC0832进行数模转换把数字量转换为模拟量并以三角波形式输出。
还知道实践和理论是有一定差距的
南昌大学实验报告
学生姓名:学号:专业班级:
实验类型:■验证□综合□设计□创新实验日期:实验成绩:
实验二模/数转换实验
一.实验要求
了解A/D芯片ADC0809转换性能及编程。
编制程序通过0809采样输入电压并转换成数字量值。
二.实验说明
电路实现见主板模块B5,具体说明请见用户手册。
ADC0809的片选CS0809接0A0H。
由于0809的A、B、C三脚依次接至A0、A1、A2,所以模拟输入通道IN0~IN7的端口地址为0A0~0A7。
其中IN0与模拟地之间预先接一个500欧电阻,并提供接线端子,供外接电烤箱使用。
IN0~IN5标准接法,有效输入电平为0V~一5V。
IN6、IN7为双极性输入接法,有效输入电平为0V~一5V。
模数转换结束信号EOC引出至EOC插孔,并经反相后引出至EOC/孔。
A/D转换船大致有三类:一是双积分A/D转换器,优点是精度高。
抗干扰性好,价格便宜。
但速度慢;二是逐次逼近法A/D转换器,精度,速度,价格适中,三是并行A/D转换器,速度快,价格也昂贵。
实验用的ADC0809属第二类,是八位A/D转换器。
典型采样时间需100us,编程中应该保证A/D转换的完成,这可以在程序中插入适当延时代码或监视EOC信号的电平来实现。
后—种方式尤其适合采样中断处理。
三.实验步骤
1.接线:模块B5的IN0接电位器模块C4的中心抽头,C4的一端与+5V短接,另一端与GND短接。
2.示例程序:见Cp2源文什。
程序流程如下图所示。
3.现象:由电位器模块C4提供0V~+5V可调的电平值;经模块B5中0809的通道0采样;采样值送到从8600开始的扩展存贮器单元贮存。
程序执行方法:打开LCAACT软件中“设置”一>
“实验机”,将其中的程序段地址设为8100,偏移地址0000。
然后选择“工具”一>“加载目标文件”,本实验加载C:\AEDK\LCAACT\试验软件\CP2.EXE,然后在对话窗口中输入G8100:0000
回车,等待几秒钟后按实验机的复位键,此时程序运行结束,再输入D8600:0000用户可以察看该段存贮器内容来观察实际采样转换的结果。
开始
启动A/D采样
适当延时
读取A/D转换结果
达到采样次
结束
Y
N
列表:。
而我们这次实验的最大误差是
5V-4.98V=0.02V。
0.02V很接近0.0195V。
由于一些硬件上本身就有可能有一些误差所以这次实验也算是比较精准的。
四、实验小结
本次实验我们主要是学习把模拟量转换为数字量显示,并观察其转换范围及其分辨率,让我们对模数转换的原理及实现方法更加熟练。
在实验中总有那么一些意外发生,这些意外足以导致实验数据的偏差。