高思导引-四年级第四讲-数阵图初步教师版
高思学校竞赛数学导引(四年级)

$应用题第#*讲% !!!!!!!!!! &)
第!%讲!!复杂竖式
$数字谜问题第(讲%!!!!!!!!! &$
第!&讲!!横式问题
$数字谜问题第%讲%!!!!!!!!! $(
第!’讲!!格点与割补
$几何问题第’讲% !!!!!!!!! #"#
第!(讲!!行程问题二
$应用题第#)讲%!!!!!!!!!! #"&
)!012"’#(3!" ##/""+!##"#.!#!4!"! "!#&#!)$!!!!!!!!!!!!""#!)#&!
!*!012"’ (3!" #/"##.""+##!4!"! "!#( &$!!!""#& ($!!!"$#"* (# ’$!!!"’#* "( ’#!
$%#
!!!"!"!#-"#"-#&&%",#!!#!"#$!!""#$!#!"!.&&#!"(%"!)))%!"!#!
目 录
!目!录
第 ! 讲!!整数计算综合
$计算问题第(讲% !!!!!!!!!! #
第 " 讲!!数阵图初步
$数字谜问题第)讲% !!!!!!!!! %
第 # 讲!!竖式问题
$数字谜问题第’讲%!!!!!!!!! #’
第 $ 讲!!几何图形剪拼
$几何问题第*讲%!!!!!!!!!! !!
奥数知识点 简单数阵图

简单数阵图一、辐射型数阵图从一个中心出发,向外作若干条射线,在每条射线上安放同样多个数,使其和是一个不变的数。
突破关键:确定中心数,多算的次数,公共的和。
先求重叠数。
数总和+中心数×重复次数=公共的和×线数重叠部分=线总和-数总和/线总和=公共的和×线数数和:指所有要填的数字加起来的和中心数:指中间那数字,即重复计算那数字(重叠数)重复次数:中心数多算的次数,一般比线数少1公共的和:指每条直线上几个数的和线数:指算公共和的线条数例1、把1-5这五个数分别填在左下图中的方格中,使得横行三数与竖列三数之和都等于9。
例2、把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以:总和数=(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。
分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。
所以,必须先求出这个“和”。
根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10。
例3、把1~5这五个数填入右图中的○里,使每条直线上的三个数之和相等例4、将1~7这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都等于10。
分析与解:例1是知道每条直线上的三数之和,不知道重叠数;例2是知道重叠数,不知道两条直线上的三个数之和;本例是这两样什么都不知道。
但由例1、例2的分析知道,(1+2+3+4+5)+重叠数=每条直线三数之和×2,每条直线上三数之和=(15+重叠数)÷2。
高思导引-四年级第十一讲-几何图形剪拼教师版

第11讲几何图形剪拼教师版内容概述与图形的剪切、拼接有关的问题,学会利用对称性和面积计算对剪拼问题进行分析;了解某些特殊的剪拼办法.典型问题兴趣篇1. 如图11-1,将一个正方形纸片剪成形状、大小都相同的四块,可以怎么剪?请大家画出尽量多的方法. (如果两个图形通过旋转或翻转后重合,就认为它们的形状、大小是相同的)2. 观察图11-2,ABCDEF是正六边形,O是它的中心,画出线段PQ后,就把正六边形ABCDEF分成了两个形状、大小都相同的五边形. 能否画出3条线段,把正六边形分成6个形状、大小都相同的图形?能否画出几条线段,把正六边形分成3个形状、大小都相同的四边形?能否画出几条线段,把正六边形分成3个形状、大小都相同的五边形?3. 如图11-3,在一块正方形纸片中有一个正方形的空洞. 现在要求用一条经过大正方形中心点的线段,把纸片分成面积相等的两部分,应该怎么办?4. 请把图11-4中的两个图形分别沿格线剪成四个形状、大小都相同的图形.5. 请把图11-5沿格线分成形状、大小都相同的三部分,使得每部分都恰好含有一个“○”.6. 如图11-6,三角形和六角星的每条边长都相等,那么用多少个三角形可以拼成六角星?请在图中表示出来.7. 如图11-7,左图是由五个相同大小的小正方形拼成的,右图是一个正方形和一个等腰直角三角形拼成的. 请把这两个图形分别剪成四个形状、大小都相同的图形.8. 如图11-8,请把一个大正方形分割为两种面积不同的小正方形.(1)如果要求两种小正方形一共有6个,应该怎么分?(2)如果要求两种小正方形一共有7个,应该怎么分?9. 如图11-9,有两个面积相等的正方形纸片,现在想把它们剪拼成一个更大的正方形,要求如下:(1)如果分别剪开这两个正方形,再拼接成一个大正方形,应该怎么办?(2)如果只允许剪开一个正方形,再拼接成一个大正方形,应该怎么办?10. 图11-10是由若干个小正方形组成的图形,你能将其剪成两块,然后拼成一个正方形吗?拓展篇1. 请在图11-11中标出分割线,把下图沿格线分成形状、大小都相同的四个部分,(如果两个图形通过旋转或翻转后重合,就认为它们的形状、大小是相同的)2. 把图11-12沿格线分割成形状、大小都相同的四个部分,请在图中画出具体的分割办法.3. 将图11-13分割成形状、大小完全相同的四块,请至少画出4种不同的分法.4.如图11-14,从一张边长为7厘米的正方形纸片中,最多能裁出多少个长4厘米、宽1厘米的长方形纸条?请画图说明剪裁方法.5. 将图11-15分成大小、形状都相同的四块,使得每一块中都有A、B、C、D.6. 将边长分别为3厘米和4厘米的两个正方形切割成四块,然后将它们拼成一个边长是5厘米的大正方形,请在图11-16中画出切割线和拼接线.7. 请将图11-17剪成三块,再拼成一个正方形.8. 将图11-18分割成四个形状和大小都相同的部分,然后将它们拼接成一个正方形,请在原图上标明分割线,并画出正方形的拼接图.9. 图11-19中长方形的长和宽分别是9厘米和4厘米,请把这个长方形剪成两块再拼成一个正方形.10. 有一张长方形纸片,按图11-20所示剪成了三块,已知这三块纸片可拼成一个正方形,那么正方形的边长为多少?请画出具体的拼法.11.把七个长为4厘米、宽为3厘米的长方形既互不重叠又不留空隙地拼成一个大长方形,那么这个大长方形的周长最小是多少厘米?请画出具体的拼法.12. 用若干个边长为1、2、3、4的正方形纸片互不重叠地拼成一个边长为5的大正方形,那么最少需要纸片多少张?请画出具体的拼法.。
四年级奥数第4讲数阵图

第4讲数阵图一.常识要点在平庸的数学王国中,有一类异常有味的数学问题,它变更多端,惹人入胜,奥妙无限.它就是数阵,一座真正的数字迷宫,它对爱好探讨数字纪律的人有着极大的吸引力,以至有些人留连个中,用平生的精神来研讨它的变更.那么,到底什么是数阵呢?我们先不雅察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13.右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,是不是很奥妙!上面两个图就是数阵图.一些数按照必定的规矩,填在某一特定图形的划定地位上,这种图形,我们称它为“数阵图”,数阵图的种类繁多,壮丽多彩,这里只介绍两种数阵图,即凋谢型数阵图和关闭型数阵图.二.精讲精练例1:把1~5这五个数分离填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9.解析:中央方格中的数很特别,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”.也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次.因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3.重叠数求出来了,其余各数就好填了(见右图).演习1:1.把1~5这五个数分离填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于8和10.2.将1~7这七个天然数填入左下图的七个○内,使得每条边上的三个数之和都等于10.例2:把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等.解析:与例1不合之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数.所以,必须先求出这个“和”.依据例1的剖析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10.是以,两条直线上另两个数(非“重叠数”)的和等于10-5=5.在剩下的四个数1, 2, 3, 4中,只有1+4=2+ 3=5.故有右图的填法.演习2:1.将 10~20填入左下图的○内,个中15已填好,使得每条边上的三个数字之和都相等.例3:把1~5这五个数填入右图中的○里,使每条直线上的三个数之和相等.解析:例1是知道每条直线上的三数之和,不知道重叠数;例2是知道重叠数,不知道两条直线上的三个数之和;本例是这两样都不知道.但由例1.例2的剖析知道,(1+2+3+4+5)+重叠数=每条直线上三数之和×2,所以,每条直线上三数之和等于(15+重叠数)÷2.因为每条直线上的三数之和是整数,所以重叠数只可能是1,3或5.若“重叠数”=1,则两条直线上三数之和为(15+1)÷2=8.若“重叠数”=3,则两条直线上三数之和为(15+3)÷2=9.若“重叠数”=5,则两条直线上三数之和为(15+5)÷2=10.填法见右下图.由以上几例看出,求出重叠数是解决数阵问题的症结.(1)若已知每条直线上各数之和,则重叠数等于(直线上各数之和×直线条数-已知各数之和)÷重叠次数.如例1.(2)若已知重叠数,则直线上各数之和等于(已知各数之和+重叠数×重叠次数)÷直线条数.如例2.(3)若重叠数与每条直线上的各数之和都不知道,则要从重叠数的可能取值剖析评论辩论,如例3. 演习3:1、将3~9这七个数分离填入下图的○里,使每条直线上的三个数之和等于20.2.将1~11这十一个数分离填入右上图的○里,使每条直线上的三个数之和相等,并且尽可能大. :例4:将1~6,使每条边上的三个○内的数的和都等于9.解析:因为1+2+39,则三条边上的和为9×3 = 27, 27-21 = 6,这个6就是因为三个极点都被反复算了一次.所以三个极点的和为6,在1-6中,只能选1.2.3 填入三个极点中,再将4.5.6填入别的的三个圈即可.a .b .c .d f .演习4:1.把1-8个数分离填入○中,使每条边上三个数的和相等.例5:把20以内的质数分离填入下图的一个○中,使得图顶用箭头衔接起来的四个数之和都相等.解析:由上图看出,三组数都包含左.右两头的数,所以每组数的中央两数之和必定相等.20以内共有2,3,5,7,11,13,17,19八个质数,两两之和相等的有5+19=7+17=11+13,于是得到下图的填法.演习5:1.将1~8个数分离填入图中,使每个圆圈上五个数和分离为20,21,22.例6:在右图的六个○内各填入一个质数(可取雷同的质数),使它们的和等于20,并且每个三角形(共5个)极点上的数字之和都相等.解析:因为大三角形的三个极点与中央倒三角形的三个极点正好是图中的六个○,又因为每个三角形极点上的数字之和相等,所以每个三角形极点上的数字之和为20÷2=10.10分为三个质数之和只能是2+3+5,由此得到右图的填法.演习6:1.把1~9,填入下图中,使每条线段三个数和及四个极点的和也相等.2.把1~12这十二个数,填入下图中的12个○内,使每条线段上四个数的和相等,两个齐心圆上的数的和也相等.三、课后巩固1.把1~8这8个数,分离填入图中的方格内(每个数必须用一次),使“十一”三笔中每三个方格内数的和都相等.2.把1~9个数分离填入○中,使每条边上四个数的和相等.3.把1~10填入图中,使五条边上三个○内的数的和相等.4.把4~9填入下图中,使每条线上三个数的和相等,都是18.5.将1~9这九个数分离填入图中○内,使每条线段三个数相等.6. 把1~8这8个数填入下图,使每边上的加.减.乘.除成立.7.把0~9填入104个小三角形构成的大三角形的和相等.8.图有五个圆,它们订交互相分成9个区域,如今两个区域里已经填上10与6,请在别的七个区域里分离填进2.3.4.5.6.7.9七个数,使每圆内的和都等于15.9.把1~8,.10.将1-12这十二个数分离填入图中的十二个小圆圈里,使每条直线上的四个小圆圈中的数字之和26.11.将1~10这十个数分离填入下图中的十个○内,使每条线段上四个○内数的和相等,每个三角形三个极点上○内数的和也相等.。
四年级数学趣的数阵图课件

1
猴博士考考你
把3到7这5个数分别填入到“T”和“十” 字形的方格内,使横、竖两行的3个数的和 相等。
3 3
和猴博士一起玩个数学游戏好吗?
第一关 把1、2、3、4、5、6、7这7个数字填入图中 的 里,使每条线上的 里的3个数的和相等。
6 1 3 7 2
4
5
第二关 将1、2、3、4、5、6填入到下面的小圆圈里, 使每个大圆圈上4个数的和都是16,你能办到吗?
有趣的数阵图
四年级上学期 《数学探究 我快乐》第51页~54页
金坛市金城镇中心小学
丁国新
让猴博士告诉你
将一些数按照一定的规律排列而成的图 形,通常叫做数阵图。
例1 在下面的三角形数阵图的 里, 填入适当的数,使三边上3个 里的数的和 是12。
5
1
3 2
4
6
猴博士考考你
在正方形数阵图中的 里填入适当的 数,使每条线上的3个数的和等于21。
1
5
2
4
6
3
猴博士送你一句数学家名言:
数学好玩!
陈省身
谢谢各位!
; /kxiantu/ k线理论
ath18cwb
蹭过来,谁知 吩咐的是:“我身子如此,不得向诸长辈和姐妹们问安,你且替我去请安、问好、道声惭愧。”请安问好,是露脸的事啊, 光明正大可去菊花会上了,还不用偷溜的!乐韵喜出望外,当即答应下来——话说回来了,表 一向身子太弱,几乎所有的亲族活动都不参 加,也不屑得跟人面子上交代交代,今儿怎么开窍了?乐韵有些疑惑。“对了,替我给诸长辈与姐妹们带些礼物去罢!”宝音道,“你看 带些什么去好?”带点见面礼,哪怕是一朵花一根草呢,接受方出于情面,就要对乐韵有所赏赐了!带个见面礼是好的!乐韵果然拼命动 脑袋的想,临急临忙拿些什么去呢?自家人原不用太贵重,表 屋里也没什么好东西,每个人都送过来太难办……对了!重阳菊花会,就送 花儿罢!乐韵嘻嘻笑道:“ 屋后那两株芙蓉开得倒好,不如乐韵剪一篮子,送去给奶奶姑娘们添妆如何?”芙蓉?宝音微微一怔,想起来, 应该说的是表 屋后木芙蓉树,算起来,现在倒正在着花时候,攒上一篮子没问题,统总拎过去,谁爱拿就拿,做个整团儿人情,可不比给 每人准备礼物来得便当。乐韵在这方面,果然有急智。她点头道:“便是这样罢!”洛月注目宝音,分明想问,那两株木芙蓉,是 心爱之 物,平常都舍不得让人接近的,今儿怎么舍得让人剪了去?真要是韩玉笙在,听了乐韵建议,准气得咳血,不准动花儿分毫,宝音却想花 开无非要谢的,竟不如往合适的地方去,因此轻轻易易便准了。乐韵只怕宝音反悔,忙着道:“那姑娘快休息要紧!乐韵自会照料得。” 兴冲冲往门外去,宝音冷不丁又丢出来一句:“午前必要回还!”乐韵想想,她的午饭按例还在表 屋里开,菊花会那边有头有脸的人都在, 要蹭也不太好蹭,可不要回来吃饭么?这条却使得的,便应了,去掇个竹匾,寻个花剪,挎个三腿小圆凳往后头去。且喜两棵树都生得不 高,踩上凳子,就够到了下头的枝干,咔嚓咔嚓剪起来。这树一株大红、一株粉白。洛月剪完了一色,又去剪另一色,猛抬头看见邱妈妈 拢着手、虎着脸瞪着自己。乐韵一时头皮有些发麻,叫了声“邱妈妈”,辩解道:“这次可是姑娘叫我剪的,您也看见了!”邱妈妈哼了 一声,走开。临走丢下一句话:“仔细摔断你的腿!”乐韵呆了会儿,恨恨举手,“咔叭”又剪下去。这一篮子鲜洁丰丽芙蓉花朵挎去菊 花宴上,众人们反应多半是:“哟,今儿笙妹妹怎么想着我们?”各各拣了几朵,就席面上多多少少也给了乐韵一些儿赏,乐韵勾留至近 午,一向相熟的丫头筱筱过来问她:“你留在这儿吃么?听说今儿中午有九品羹,还有芋大嫂拿手的鲜虾蛋卷,连我们下头人都有份!” 乐韵还未回答,筱筱又“哦”了一声:“不过我是跟着我们四姑娘,才有
四年级奥数:数阵图

四年级奥数:数阵图(一)我们在三年级已经学习过辐射型和封闭型数阵,其解题的关键在于“重叠数”.本讲和下一讲,我们学习三阶方阵,就是将九个数按照某种要求排列成三行三列的数阵图,解题的关键仍然是“重叠数”.我们先从一道典型的例题开始.例1把1~9这九个数字填写在右图正方形的九个方格中,使得每一横行、每一竖列和每条对角线上的三个数之和都相等.分析与解:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几.我们可以这样去想:因为1~9这九个数字之和是45,正好是三个横行数字之和,所以每一横行的数字之和等于45÷3=15.也就是说,每一横行、每一竖列以及每条对角线上三个数字之和都等于15.在1~9这九个数字中,三个不同的数相加等于15的有:9+5+1,9+4+2,8+6+1,8+5+2,8+4+3,7+6+2,7+5+3,6+5+4.因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字.因为中心方格中的数既在一个横行中,又在一个竖列中,还在两对角线上,所以它应同时出现在上述的四个算式中,只有5符合条件,因此应将5填在中心方格中.同理,四个角上的数既在一个横行中,又在一个竖列中,还在一条对角线上,所以它应同时出现在上述的三个算式中,符合条件的有2,4,6,8,因此应将2,4,6,8填在四个角的方格中,同时应保证对角线两数的和相等.经试验,有下面八种不同填法:上面的八个图,都可以通过一个图的旋转和翻转得到.例如,第一行的后三个图,依次由第一个图顺时针旋转90°,180°,270°得到.又如,第二行的各图,都是由它上面的图沿竖轴翻转得到.所以,这八个图本质上是相同的,可以看作是一种填法.例1中的数阵图,我国古代称为“纵横图”、“九宫算”.一般地,将九个不同的数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等,那么这样的图称为三阶幻方.在例1中如果只要求任一横行及任一竖列的三数之和相等,而不要求两条对角线上的三数之和也相等,则解不唯一,这是因为在例1的解中,任意交换两行或两列的位置,不影响每行或每列的三数之和,故仍然是解.例2用11,13,15,17,19,21,23,25,27编制成一个三阶幻方.分析与解:给出的九个数形成一个等差数列,对照例1,1~9也是一个等差数列.不难发现:中间方格里的数字应填等差数列的第五个数,即应填19;填在四个角上方格中的数是位于偶数项的数,即13,17,21,25,而且对角两数的和相等,即13+25=17+21;余下各数就不难填写了(见右图).与幻方相反的问题是反幻方.将九个数填入3×3(三行三列)的九个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,这样填好后的图称为三阶反幻方.例3将前9个自然数填入右图的9个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,并且相邻的两个自然数在图中的位置也相邻.分析与解:题目要求相邻的两个自然数在图中的位置也相邻,所以这9个自然数按照大小顺序在图中应能连成一条不相交的折线.经试验有下图所示的三种情况:按照从1到9和从9到1逐一对这三种情况进行验算,只有第二种情况得到下图的两个解.因为第二种情况是螺旋形,故本题的解称为螺旋反幻方.例4将九个数填入左下图的九个空格中,使得任一行、任一列以及两条证明:因为每行的三数之和都等于k,共有三行,所以九个数之和等于3k.如右上图所示,经过中心方格的有四条虚线,每条虚线上的三个数之和都等于k,四条虚线上的所有数之和等于4k,其中只有中心方格中的数是“重叠数”,九个数各被计算一次后,它又被重复计算了三次.所以有九数之和+中心方格中的数×3=4k,3k+中心方格中的数×3=4k,注意:例4中对九个数及定数k都没有特殊要求.这个结论对求解3×3方格中的数阵问题很实用.在3×3的方格中,如果要求填入九个互不相同的质数,要求任一行、任一列以及两条对角线上的三个数之和都相等,那么这样填好的图称为三阶质数幻方.例5求任一列、任一行以及两条对角线上的三个数之和都等于267的三阶质数幻方.分析与解:由例4知中间方格中的数为267÷3=89.由于在两条对角线、中间一行及中间一列这四组数中,每组的三个数中都有89,所以每组的其余两数之和必为267-89=178.两个质数之和为178的共有六组:5+173=11+167=29+149=41+137=47+131=71+107.经试验,可得右图所示的三阶质数幻方.练习161.将九个连续自然数填入3×3的方格内,使得每一横行、每一竖列及两条对角线上的三个数之和都等于66.2.将1,3,5,7,9,11,13,15,17填入3×3的方格内,使其构成一个幻方.3.用2,4,6,12,14,16,22,24,26九个偶数编制一个幻方.4.在下列各图空着的方格内填上合适的数,使每行、每列及每条对角线上的三数之和都等于27.5.将右图中的数重新排列,使得每行、每列及两条对角线上的三个数之和都相等.6.将九个质数填入3×3的方格内,使得每一横行、每一竖列及两条对角线上的三个数之和都等于21.7.求九个数之和为657的三阶质数幻方.第17讲数阵图(二)例1在右图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21.解:由上一讲例4知中间方格中的数为7.再设右下角的数为x,然后根据任一行、任一列及每条对角线上的三个数之和都等于21,如下图所示填上各数(含x).因为九个数都不大于12,由16-x≤12知4≤x,由x+2≤12知x≤10,即4≤x≤10.考虑到5,7,9已填好,所以x只能取4,6,8或10.经验证,当x=6或8时,九个数中均有两个数相同,不合题意;当x=4或10时可得两个解(见下图).这两个解实际上一样,只是方向不同而已.例2将九个数填入右图的空格中,使得每行、每列、每条对角线上的三个数之和都相等,则一定有证明:设中心数为d.由上讲例4知每行、每列、每条对角线上的三个数之和都等于3d.由此计算出第一行中间的数为2d——b,右下角的数为2d-c(见下图).根据第一行和第三列都可以求出上图中★处的数由此得到3d-c-(2d-b)=3d-a-(2d-c),3d-c-2d+b=3d-a-2d+c,d——c+b=d——a+c,2c=a+b,a+bc=2.值得注意的是,这个结论对于a和b并没有什么限制,可以是自然数,也可以是分数、小数;可以相同,也可以不同.例3在下页右上图的空格中填入七个自然数,使得每一行、每一列及每一条对角线上的三个数之和都等于90.解:由上一讲例4知,中心数为90÷3=30;由本讲例2知,右上角的数为(23+57)÷2=40(见左下图).其它数依次可填(见右下图).例4在右图的每个空格中填入个自然数,使得每一行、每一列及每条对角线上的三个数之和都相等.解:由例2知,右下角的数为(8+10)÷2=9;由上一讲例4知,中心数为(5+9)÷2=7(见左下图),且每行、每列、每条对角线上的三数之和都等于7×3=21.由此可得右下图的填法. 例5在下页上图的每个空格中填一个自然数,使得每行、每列及每条对角线上的三个数之和都相等.解:由例2知,右下角的数为(6+12)÷2=9(左下图).因为左下图中两条虚线上的三个数之和相等,所以,“中心数”=(10+6)-9=7.其它依次可填(见右下图).由例3~5看出,在解答3×3方阵的问题时,上讲的例4与本讲的例2很有用处.练习171.在左下图的每个空格中填入一个数字,使得每行、每列及每条对角线上的三个数之和都相等.2.在右上图的每个空格中填入一个数字,使得每行、每列及每条对角线上的三个数之和都等于24.3.下列各图中的九个小方格内各有一个数字,而且每行、每列及每条对角线上的三个数之和都相等,求x.4.在左下图的空格中填入七个自然数,使得每行、每列、每条对角线上的三个数之和都等于48.5.在右上图的每个空格中填入一个自然数,使得每行、每列及每条对角线上的三个数之和都相等.6.在右图的每个空格中填入不大于12且互不相同的九个自然数,使得每行、每列、每条对角线上的三个数之和都等于21.第18讲数阵图(三)数阵问题是多种多样的,解题方法也是多种多样的,这就需要我们根据题目条件灵活解题.例1把20以内的质数分别填入下图的一个○中,使得图中用箭头连接起来的四个数之和都相等.分析与解:由上图看出,三组数都包括左、右两端的数,所以每组数的中间两数之和必然相等.20以内共有2,3,5,7,11,13,17,19八个质数,两两之和相等的有5+19=7+17=11+13,于是得到下图的填法.例2在右图的每个方格中填入一个数字,使得每行、每列以及每条对角线上的方格中的四个数字都是1,2,3,4.分析与解:如左下图所示,受列及对角线的限制,a处只能填1,从而b处填3;进而推知c处填4,d处填3,e处填4,……右下图为填好后的数阵图.例3将1~8填入左下图的○内,要求按照自然数顺序相邻的两个数不能填入有直线连接的相邻的两个○内.分析与解:因为中间的两个○各自只与一个○不相邻,而2~7中的任何一个数都与两个数相邻,所以这两个○内只能填1和8.2只能填在与1不相邻的○内,7只能填在与8不相邻的○内.其余数的填法见右上图.例4在右图的六个○内各填入一个质数(可取相同的质数),使它们的和等于20,而且每个三角形(共5个)顶点上的数字之和都相等.分析与解:因为大三角形的三个顶点与中间倒三角形的三个顶点正好是图中的六个○,又因为每个三角形顶点上的数字之和相等,所以每个三角形顶点上的数字之和为20÷2=10.10分为三个质数之和只能是2+3+5,由此得到右图的填法.例5在右图所示立方体的八个顶点上标出1~9中的八个,使得每个面上四个顶点所标数字之和都等于k,并且k不能被未标出的数整除.分析与解:设未被标出的数为a,则被标出的八个数之和为1+2+…+9-a=45-a.由于每个顶点都属于三个面,所以六个面的所有顶点数字之和为6k=3×(45-a),2k=45-a.2k是偶数,45-a也应是偶数,所以a必为奇数.若a=1,则k=22;若a=3,则k=21;若a=5,则k=20;若a=7,则k=19;若a=9,则k=18.因为k不能被a整除,所以只有a=7,k=19符合条件.由于每个面上四个顶点上的数字之和等于19,所以与9在一个面上的另外三个顶点数之和应等于10.在1,2,3,4,5,6,8中,三个数之和等于10的有三组:10=1+3+6=1+4+5=2+3+5,将这三组数填入9所在的三个面上,可得右图的填法.练习181.将1~6这六个数分别填入左下图中的六个○内,使得三条直线上的数字的和都相等.2.将1~8这八个数分别填入右上图中的八个方格内,使上面四格、下面四格、左边四格、右边四格、中间四格及四角四格内四个数相加的和都是18.3.在下页左上图的每个方格中填入一个数字,使得每行、每列以及每条对角线上的方格中的四个数都是1,2,3,4.4.将1~8填入右上图的八个空格中,使得横、竖、对角任何两个相邻空格中的数都不是相邻的两个自然数.5.20以内共有10个奇数,去掉9和15还剩八个奇数.将这八个奇数填入右图的八个○中(其中3已填好),使得用箭头连接起来的四个数之和都相等.6.在左下图的七个○内各填入一个质数,使每个小三角形(共6个)的三个顶点数之和都相等,且为尽量小的质数.7.从1~13中选出12个自然数填入右上图的空格中,使每横行四数之和相等,每竖列三数之和也相等.答案练习16练习173.(1)11;(2)9.提示:(1)右下角的数为(3+7)÷2=5,所以x=8×2-5=11.(2)右下角的数为(5+9)÷2=7,中心数为(6+9)-7=8,所以x=8×2-7=9提示:左下角的数为(13+27)÷2=20,中心数为48÷3=16.提示:右下角的数为(20+16)÷2=18,中心数为(8+18)÷2=13.提示:与例1类似.练习181.有下面四个基本解.。
学而思四年级秋季班幻方与数阵图

学⽽思四年级秋季班幻⽅与数阵图第⼋讲幻⽅与数阵图⼀、幻⽅基本概念1、幻⽅:是指横⾏、竖列、对⾓线上数的和都相等的数的⽅阵,具有这⼀性质的3×3的数阵称作三阶幻⽅,4×4的数阵称作四阶幻⽅,5×5的称作五阶幻⽅……2、幻和:幻⽅中每⾏/列/对⾓线的数的和幻和=总和÷阶数⼆、幻⽅的构造⽅法 1、杨辉⼝诀法(三阶)——九⼦斜排,上下对易,左右相更,四维挺出具体操作如下:九⼦斜排上下对易,左右相更四维挺出2、连续摆数法(罗伯法)适合于连续⾃然数或者等差数列的奇数阶幻⽅。
要点:1、⾸数填在第⼀⾏的正中间 2、连续往右上⽅摆数3、出格了怎么办?——卷纸筒,上⾯出格就卷到下⾯,右⾯出格就卷到左⾯。
4、格⼦中已有数了怎么办?——右上没路了就往下拐弯嘛。
如,构造三阶具体操作:⼀居上⾏正中央上出框时往下填右出框时往左填排重便在下格填(注意是原数3的下格)注意:6的右上⽅经过卷纸筒应该对应的是左下⽅“4”的位置,已经有数“4”了,7就要在原数6的下⽅写。
同学们⾃⼰试试5阶、7阶:)56398742156398742156398742121321342156342156374215638742156398742113、楼梯法(适合奇数阶)要点:1、构造楼梯2、数字按顺序斜排3、把幻⽅外的数字平移进幻⽅——上到下,下到上,左到右,右到左如,构造五阶具体操作:54 103 9 152 8 14 201 7 13 19256 12 18 2411 17 2316 22213 16 9 22 1520 8 21 14 27 25 13 1 1924 12 5 18 611 4 17 10 23 在四边都构造楼梯按顺序排好数把幻⽅外的数字平移进幻⽅——上到下,下到上,左到右,右到左移完后去掉楼梯就OK啦4、四阶(对⾓线法)总体来说,偶数阶的幻⽅构造⽐奇数阶要复杂。
但因为四阶阶数不⼤,作为拓展,程⽼师也给⼤家补充⼀下四阶的⼀种简单构造⽅法——对⾓线法。
高思导引-四年级第四讲-数阵图初步教师版

第4讲数阵图初步内容概述各种较为基本的数阵图问题,了解重数的概念,并以此进行分析;学会分析特殊位置上的数值;某些情况下还需要考虑对称性。
典型问题兴趣篇1. 在图4-1中的三个圆圈内填入三个不同的自然数,使得三角形每条边上的三个数之和都等于11.【答案】:【分析与解】:先如下图将空白处标上字母:根据题意:a=11-2-5=4;b=11-4-1=6;c=11-2-6=3.2. 请分别将1,2,4,6这四个数填在图4-2中的各空白区域内,使得每个圆圈里四个数之和都等于15.【答案】:【分析与解】:如下图,先将空白区域标上字母根据题意:上面圆内四个数之和等于15,可得a+d=15-5-7=3=1+2;同理,b+d=15-5-3=7=1+6;c+d=15-7-3=5=1+4。
由于d属于三个圆的公共部分,经对比发现可得:d=1;a=2;b=6;c=4.3. 如图4-3所示,请在三个空白圆圈内填入三个数,使得每条直线上三个数之和都相等。
【答案】:【分析与解】:如下图:因为8+9+a=b+a+7可得b=10;那么每条线的和=8+3+10=21;那么a=21-8-9=4;c=21-8-7=6.4. 把1至8分别填入图4-4的八个方格内,使得各列上两个数之和都相等,各行四个数之【答案】:【分析与解】:因为1+2+3+……+8=36;所以每行的和等于36÷2=18;每列的和=36÷4=9;从列入手,可将1~8这八个数分为和等于9的四组:1+8=2+7=3+6=4+5。
再调整使行和等于18:我们发现1+4=2+3;8+5=6+7.经过调整可得答案。
5. 把1至12分别填入图4-5的圆圈内,使图中三个小三角形三条边上的六个数之和相等。
【答案】:【分析与解】:经过观察发现,此图是个具有对称性的图案;若使三个小三角形的三边之和相等;只需要使得图中每条边上的两个数之和相等即可。
因此可将1~12对称性地分为六组如下:1+12=2+11=3+10=4+9=5+8=6+7.6. 在如图4-6所示的3×3方格表内填入1、2、3这三个数字各三次,使得每行每列以及两条对角线上的三个数字之和都相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4讲数阵图初步内容概述各种较为基本的数阵图问题,了解重数的概念,并以此进行分析;学会分析特殊位置上的数值;某些情况下还需要考虑对称性。
典型问题兴趣篇1. 在图4-1中的三个圆圈内填入三个不同的自然数,使得三角形每条边上的三个数之和都等于11.【答案】:【分析与解】:先如下图将空白处标上字母:根据题意:a=11-2-5=4;b=11-4-1=6;c=11-2-6=3.2. 请分别将1,2,4,6这四个数填在图4-2中的各空白区域内,使得每个圆圈里四个数之和都等于15.【答案】:【分析与解】:如下图,先将空白区域标上字母根据题意:上面圆内四个数之和等于15,可得a+d=15-5-7=3=1+2;同理,b+d=15-5-3=7=1+6;c+d=15-7-3=5=1+4。
由于d属于三个圆的公共部分,经对比发现可得:d=1;a=2;b=6;c=4.3. 如图4-3所示,请在三个空白圆圈内填入三个数,使得每条直线上三个数之和都相等。
【答案】:【分析与解】:如下图:因为8+9+a=b+a+7可得b=10;那么每条线的和=8+3+10=21;那么a=21-8-9=4;c=21-8-7=6.4. 把1至8分别填入图4-4的八个方格内,使得各列上两个数之和都相等,各行四个数之【答案】:【分析与解】:因为1+2+3+……+8=36;所以每行的和等于36÷2=18;每列的和=36÷4=9;从列入手,可将1~8这八个数分为和等于9的四组:1+8=2+7=3+6=4+5。
再调整使行和等于18:我们发现1+4=2+3;8+5=6+7.经过调整可得答案。
5. 把1至12分别填入图4-5的圆圈内,使图中三个小三角形三条边上的六个数之和相等。
【答案】:【分析与解】:经过观察发现,此图是个具有对称性的图案;若使三个小三角形的三边之和相等;只需要使得图中每条边上的两个数之和相等即可。
因此可将1~12对称性地分为六组如下:1+12=2+11=3+10=4+9=5+8=6+7.6. 在如图4-6所示的3×3方格表内填入1、2、3这三个数字各三次,使得每行每列以及两条对角线上的三个数字之和都相等。
【分析与解】:利用此图的对称性;可将中间数2填入此图的正中心;然后利用每行每列都是1、2、3并注意使对角线的和等于6可将此图填写完整。
7. 把1至6分别填入图4-7的六个圆圈内,使得每个正方形四个顶点的数之和都为13.【答案】:【分析与解】:如下图所示:根据题意有:a+b+c+d=13;c+d+e+f=13将上述两个算式相加可得:(a+b+c+d+e+f)+c+d=26;也就是21+c+d=26;得到:c+d=5=1+4=2+3;a+b=e+f=13-5=8;而8=2+6=3+5只有这两种组成方式;因此排除掉c+d=2+3;所以c+d=1+4。
8. 把1至6分别填入图4-8的六个方格内,使得横行三个数之和与竖列四个数之和相等. 这个和最大是多少?最小是多少?【答案】:最大13;最小11【分析与解】:如下图标上字母,并且设两条线上的和均为k。
依据题意有:a+b+c=k;b+d+e+f=k;将这两个等式相加可得:(a+b+c+d+e+f)+b=2k;21+b=2k。
由奇偶性可得:b只能取1、3、5;分别对应k 的值为11、12、13.可知和最大为13,最小为11.9. 把1至7这七个数分别填入图4-9中各圆圈内,使每条直线上三个圆圈内所填数之和都相等,如果中心圆内填入数相等,那么就视为同一种填法,请写出所有可能的填法。
【答案】:【分析与解】:如下图所示标上字母,并设每条线的和为k。
根据题意有:a+b+c=k;a+d+e=k;a+f+g=k;将三式相加可得:(a+b+c+d+e+f+g)+2a=3k;28+2a=3k;经过分析可知:当a=1时,k=10;当a=4时,k=12;当a=7时,k=14。
10.在图4-10的6个圆圈内分别填入不同的自然数,使得每一个数都是与它相连的上面两个数之和,那么最下面那个数最小是几?【答案】:8【分析与解】:根据题意可知;只要上面三个数确定,那么下面三个数也就确定了;若使最下面数最小,那么必须使最上面三个数最小,并且将最小数放在最中间;经过尝试有如下填法:拓展篇1. 将1至9分别填入图4-11中的圆圈内,可以使得图中所有三角形(共七个)的三个顶点上的数之和都等于15. 现在已经填好了其中三个,请你在图中填出剩下的数.【答案】:【分析与解】:先标上字母:c=15-5-6=4;同理可得:b=2;a=7;d=3;e=8;f=1. 2. 在图4-12中的八个圆圈内分别填入八个不同的自然数,使得正方形每条边上三个数的和相等. 现在如果已经填好了五个数,那么每条边上各数之和应该是多少?并将其补充完整。
【答案】:【分析与解】:先标上字母:有1+16+a=a+9+b;可得b=8;和=7+6+8=21;c=21-1-7=13.3. 图4-13是由四个交叠的长方形组成的,在交点处有八个小圆圈. 请你把1、2、3、4、5、6、7、8这八个自然数分别填入这些小圆圈内,使得每个长方形上的四个数之和都相等。
【答案】:【分析与解】:先标上字母:我们发现:a与b总是在一起;同样:c与d;e与f;g与h也总是在一起;考虑将1~分为4组:1+8=2+7=3+6=4+5.4. 在图4-14中的方格内填入三个0、两个2、两个3、两个4,使得每个箭头所指的列中各方格内数字之和都是6,并且使得从上到下第二行与第三行的数字之和都是7.【答案】:18;而中间三列之和=6×3=18;所以e=i=0。
同样第二、三行之和=7×2=14;所以a=18-14=4。
则可以根据和依次填出其他方框内数字。
5. 请在图4-15的每个小圆圈内填入1或2,使得每个大圆圈上四个数之和两两不同,那么所填数的总和是多少?【答案】:9【分析与解】:观察得知:每个圆上面均有四个小圆圈;经过试验可填出:;此时所有圆圈内所填数之和等于9。
6. 把1至8分别填入图4-16的八个圆圈内,使得任意两个有线段直接相连的圆圈内的数字之差都不等于1.【答案】:【分析与解】:先标上字母如下:发现b与除了d之外的所有格子相连,意味着在1~8范围内,与b相差1的只有d;同样的道理,与c相差1的只有a;那么可以推出a=7,c=8;b=1,d=2;进而可以推出其它位置。
7. 在图4-17的七个圆圈内填入七个连续自然数,使得每两个相邻圆圈内所填数之和都等于它们连线上的已知数. 请问:标有★的圆圈内填的数是多少?【答案】:5【分析与解】:从和最小的4入手;4=1+3。
若4的上面填1下面填3,可以利用线上的和算下去发现所填的数并不是7个连续的自然数;所以4的上面填3下面填1,此时可推断出★=5.8. 小悦是8月11日15点整出生的,她想把1,2,3,4,5,6,7这七个数填入图4-18的七个方框里,每个数只填一次,使三条直线上的三个数之和恰好是8,11,15,问:在圆上的三个数的乘积最大可能是多少?【答案】:168【分析与解】:先标上字母如下:可知:a+b+c=8;a+d+e=11; a+f+g=15;将三式相加有:(a+b+c+d+e+f+g)+2a=34;解得a=3;则b+c=5=1+4;若使圆上乘积最大,则c=4;同理可得:d=2;e=6;f=5;g=7.此时圆上上个数的乘积为4×6×7=168.9. 把1至6这六个数字填入图4-19六个圆圈内,使得三角形每条边上三个数之和都相等,那么这个和最小是多少?最大是多少?【答案】:最小是9,最大是12【分析与解】:标注字母如下图;并设每条线的和为k:根据题意有:a+b+d=k; b+f+c=k; a+e+c=k;将三式相加:(a+b+c+d+e+f)+(a+b+c)=3k;21+(a+b+c)=3k;若使k最小,则使a+b +c最小;此时a+b+c=1+2+3=6;k=9.若使k最大,则使a+b+c最大;此时a+b+c=4+5+6=15;k=12.10. 把1至11填入图4-20中“六一”图形的十一个空格内,使得每一条直线上的两个或三个数之和都相等。
【答案】:【分析与解】:标注字母如下图,并且设每条线上的和为m:有:a+c+d=m;b+c=m;e+f=m;g+h=m;i+j+k=m;五式相加得:(a+b+c+d+e+f+g+h+i+j+k)+c=5m;66+c=5m;设c=4,m=14;进而可得出上图结果。
11. 请将1至6填入图4-21的六个圆圈内,使得四条直线上的数字之和都相等。
【答案】:【分析与解】:标注字母如下图,且设每条线上的和为k:有:a+b+c=k;a+d+f=k;c+d+e=k;e+f=k;将上述算式相加有:2(a+b+c+d+e+f)-b=4k;42-b=4k。
解得b=6,k=9,则e=4;f=5;a=1;b =2.12. 如图4-22,有一座长方形城堡,四周有十个掩体,守城的士兵有十件武器,各种武器的威力数如下表.为了使城堡四条边上的武器威力总数都相同,并且尽量大,应如何在十个掩【答案】:【分析与解】:标注字母,并且设每条边上的和为m如下图:有:a+b+c+d=m;a+e+f=m;f+g+h+i=m;d+i +j=m将上述算式相加有:(a+b+c+d+e+f+g+h+i+j)+(a+d+f+i)=4m;也就是:55+(a+d+f+i)=4m;若使m最大,必须使a+d+f+i最大。
但是当a+d+f+i=7+8+9+10时m无整数解。
所以可解得:a+d+f+i=6+8+9+10时,m=22取得最大值。
经计算和实验,可填出如上图答案。
超越篇1. 如图4-23,四个圆共被分成十二个区域,其中已有六个区域内填有数,请将1至12中的另六个数填入其他区域内,使得每个圆中四个数之和都是28.【答案】:【分析与解】:由最下面的圆可知:空白两处所填数之和=28-2-5=21=9+12;由最右面的圆可知:空白两处所填数之和=28-7-8=13=12+1,因此下面的圆与右边的圆公共部分为12.依次类推,可将图形补充完整。
2. 如图4-24,请在三个圆圈内分别填入三个数,使得每条直线上三个数之和都等于大圆上三个数之和.【答案】:【分析与解】:标准字母如图,根据题意有:a+1+9=b+9+9=9+7+c=a+b+c可解得:a=12;b=4;c=6.3. 把1至8填入图4-25中正方体八个顶点处的圆圈内,使得正方体每个面上的四个数之和都相等。
【答案】:【分析与解】:由正方体的对称性可将四条高分为1+8=2+7=3+6=4+5=9,每个面的和为18;适当调整每条高上的两个数的位置,使其也满足上下两面为18.4. 把1至12分别填入图4-26所示六角星图案的十二个圆圈内,使得每条直线上四个数之和都相等.现在已经填好了六个数,那么每条直线上各数之和应该是多少?并把下图补充完整。