数学知识点之行程问题

合集下载

4.3 用一元一次方程解决问题课时4 行程问题 苏科版数学七年级上册课件

4.3 用一元一次方程解决问题课时4 行程问题 苏科版数学七年级上册课件

例题2
• 2. 甲、乙两人相距4km,以各自的速度同时出发。如果 同向而行,甲2小时追上乙;如果相向而行,0.5小时相 遇。试问两人的速度各是多少? • 分析:行程问题中的等量关系,还可以例借题助2 线段示意 图表示。
当堂小练
• 同时出发,同向而行
例题2 相等关系:甲2小时行程-乙2小时行程=4km
当堂小练
• 1.小明每天要在8.00前赶到学校上学,一天,小明以70米/分
的速度出发去上学,11分钟后,小明的爸爸发现儿子忘了带
数学作业,于是爸爸立即以180米/分的建度去追小明,并且
与小明同时到达学校,设小明从家到学校用了x分钟,则小
C 明家到学校的路程可表示为( )米,
• ①180x;②70(x-11);③180(x-11): ④(180-例70题)x2:⑤70x.
每小时行驶5km,慢车行驶1小时后,另一列快车从B
站开往A站。每小时行驶85km.设快车行驶了x小时后
D 与慢车相遇,则依题意可列方程为(

• A.55x+85x=670
B.55(x 例-1题)+2 85x=670
• C.55x +85(x-1)=670
D.55(x+1)+85x=670
课堂小结
例题2
• 那么提速后火车平均每小时行驶(x+40) km
• 提速后,货车行驶路程1110 km,平均度x+__4_0_k_m__/h_
10h
例题2
• 所需时间
,三者之间有什么关系?
• 解:设提速前火车平均每小时xkm.由题意, 得
• 10(x+40) =1110
• 解得
x=71

五年级数学应用题的知识点

五年级数学应用题的知识点

五年级数学应用题的知识点一、行程问题:1.火车从甲城到乙城,现已行了200千米,是剩下路程的4倍。

甲乙两城相距多少千米?2.甲港到乙港的航程有210千米,一艘轮船运货从甲港到乙港,用了6小时,返回时每小时比去时多行7千米,返回时用了几小时?3.小方从家到学校,每分钟走60米,需要14分钟,如果她每分钟多走10米,需要多少分钟?4.一辆汽车3小时行了135千米,一架飞机飞行的速度是汽车的28倍还少60千米,这架飞机每小时行多少千米?5.某工地需水泥240吨,用5辆汽车来运,每辆汽车每次运3吨,需运多少次才能运完?6.甲乙两地相距750千米,一辆汽车以每小时50千米的速度行驶,多少小时可以到达乙地?7.甲乙两地相距560千米,一辆汽车从甲地开往乙地,每小时行48千米,另一辆汽车从乙地开往甲地,每小时行32千米.两车从两地相对开出5小时后,两车相距多少千米?8.一段公路原计划20天修完.实际每天比原计划多修45米,提前5天完成任务.原计划每天修路多少米?9.这辆汽车每秒行18米,车的长度是18米,隧道长324米,这辆汽车全部通过隧道要用多长时间10.石家庄到承德的'公路长是546千米.红红一家从石家庄开车到承德游览避暑山庄,如果平均每小时行驶78千米,上午8时出发,那么几时可以到达二、面积问题:1.一个平行四边形四条边长度相等都是5厘米高是3厘米求这个平行四边形面积是多少?2.一个长方形长是18厘米宽是长的一半多2厘米求这个长方形面积和周长分别是多少?3.一个正方形边长9厘米把它分成四个相等大小的小正方形请问小正方形的面积是多少?4.一个长方形是由两个大小相等的正方形拼成的正方形的边长是4厘米求这个长方形的面积是多少?5.一个正方形纸条周长是64厘米把这个正方形对折变成两个大小相同的长方形求这两个大小相同的长方形的面积是多少?三、综合问题:1、商店运来梨子650千克,运来的苹果是梨子的2倍。

这两种水果共运来多少千克?(画图表示出题里的已知条件和问题,再解答)2、某校办工厂去年原计划平均每月生产文具盒3190个,实际生产11个月就完成了全年的计划任务。

小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!“行程问题”作为小学数学常用知识点之一,想必大家并不陌生。

然而面对各种古怪的命题陷阱,不少考生还是心内发苦,看不出解题思路,频频出错。

解答“行程问题”时,究竟该怎么做呢?“行程问题”离不开三个基本要素:路程、速度和时间。

这也是解题的关键所在!今天为大家分享一份行程问题资料,包含公式、例题和解析,有需要的为孩子收藏一下,希望对学习行程问题有帮助~题型公式行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)5.列车过桥问题①火车过桥(隧道)火车过桥(隧道)时间=(桥长+车长)÷火车速度②火车过树(电线杆、路标)火车过树(电线杆、路标)时间=车长÷火车速度③火车经过迎面行走的人迎面错过的时间=车长÷(火车速度+人的速度)④火车经过同向行走的人追及的时间=车长÷(火车速度-人的速度)⑤火车过火车(错车问题)错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)⑥火车过火车(超车问题)错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。

小学六年级数学行程问题

小学六年级数学行程问题

行程问题一、基本知识点1、常见题型:一般行程问题,相遇问题,追及问题,流水问题,火车过桥问题。

2、行程问题特点:已知速度、时间、和路程中的两个量,求第三个量。

3、基本数量关系:速度x 时间=路程路程速度和x 时间(相遇时间)=路程和(相遇路程)路程和(相遇路程)速度差x 时间(追及时间)=路程差(追击路程)路程差(追击路程)二、学法提示二、学法提示1.火车过桥:火车过桥路程=桥长+车长车长过桥时间=路程÷车速路程÷车速过桥过程可以通过动手演示来帮助理解。

2.水流问题:水流问题: 顺水速度=静水速度+水流速度水流速度逆水速度=静水速度-水流速度水流速度顺水速度-逆水速度=2x 水流速度水流速度3.3.追及问题:追击路程÷速度差追及问题:追击路程÷速度差=追及时间追及时间追击距离÷追及时间=速度差速度差4.相遇问题:相遇问题: 相遇路程÷相遇时间=速度和速度和相遇路程÷速度和=相遇时间相遇时间三、解决行程问题的关键三、解决行程问题的关键画线段图,画线段图,标出已知和未知。

标出已知和未知。

标出已知和未知。

能够从线段图中分析出数量关系,能够从线段图中分析出数量关系,能够从线段图中分析出数量关系,找到解决问找到解决问题的突破口。

题的突破口。

四、练习题四、练习题(一)火车过桥(一)火车过桥1.一列火车长150米,每秒行20米,全车要通过一座长450米的大桥,需要多长时间?长时间?2.一列客车通过860米的大桥要45秒,用同样的速度穿过620米的隧道要35秒,求客车行驶的速度和车身的长度。

求客车行驶的速度和车身的长度。

3.一列车长140米的火车,以每秒10米的速度通过一座大桥,共用30秒,求大桥的长度。

桥的长度。

4.一人在铁路便道上行走,一列客车从身后开来,在她身旁通过的时间为7秒,已知客车长105米。

每小时行72千米,这个人每秒行多少米?千米,这个人每秒行多少米?5.在有上下行的轨道上,两列火车相对开出,甲车长235米,每秒行25米,乙车长215米,每秒行20米,求两车从车头相遇到车尾离开要多长时间。

行程问题的知识点归纳

行程问题的知识点归纳

行程问题的知识点归纳行程问题是一种经典的数学问题,它涉及到物体或人在某个空间中移动的路径、速度、时间等概念。

行程问题在现实生活中有着广泛的应用,如交通规划、物流运输、行程安排等。

下面将对行程问题的知识点进行归纳和总结。

一、基本概念1. 距离:距离是指物体或人在空间中移动的直线距离。

2. 速度:速度是指物体或人在单位时间内移动的距离。

3. 时间:时间是指物体或人移动所需的时间。

4. 速度、时间和距离之间的关系:距离= 速度×时间。

二、行程问题的分类1. 直线行程问题:物体或人在一条直线上移动,涉及到相遇、追及、环形跑道等问题。

2. 曲线行程问题:物体或人在一条曲线上移动,涉及到最短路径、时间最少等问题。

3. 综合行程问题:结合了直线和曲线行程问题,涉及到行程安排、交通规划等问题。

三、解题思路和方法1. 画图分析:通过画图的方式将问题可视化,帮助理解问题的本质和规律。

2. 方程求解:根据速度、时间和距离之间的关系,建立方程求解。

3. 逻辑推理:根据题目中的条件和规律,进行逻辑推理,得出结论。

四、知识点归纳1. 相遇问题:两个物体或人在同一直线上相对运动,求相遇时的距离和时间。

2. 追及问题:两个物体或人在同一直线上相对运动,一个追赶另一个,求追及时的距离和时间。

3. 环形跑道问题:两个或多个物体或人在同一直线上同向运动,求再次相遇所需的时间和距离。

4. 最短路径问题:在平面或曲面上,求两个点之间的最短路径和时间。

5. 时间最少问题:在给定路径和速度的情况下,求最少所需的时间。

6. 行程安排问题:在给定多个任务和时间限制的情况下,如何合理安排行程,使得完成任务的总时间最短。

7. 交通规划问题:在给定道路网络和交通流量的情况下,如何规划路线,使得运输效率最高,交通拥堵最小。

8. 流水行船问题:在河流中,船只顺流而下或逆流而上,求船行的速度、时间和距离之间的关系。

9. 火车过桥问题:火车过桥时,求火车和桥的长度、速度之间的关系,以及火车过桥所需的时间。

小升初复习:知识点22行程问题

小升初复习:知识点22行程问题

第二十二节:典型应用题(七)行程问题一般行程问题【例1】“共享单车”既环保,又方便,已经成为人们绿色出行的重要交通工具。

如图是小亮某次行程的详情。

请认真阅读下图信息,解答下列问题。

(1)小亮平均每分钟骑行多少米?(2)照这样的速度,他在一次远骑时骑行了105分钟,他一共骑行了多远?(3)小亮每骑行1分钟节约碳排量多少克?思路引导(1)根据路程÷时间=速度,用小亮骑行的路程除以用的时间,求出小亮平均每分钟骑行多少米;(2)他在一次远骑时骑行了105分钟,根据速度×时间=路程,可以求出一共骑行了多少米;(3)已知小亮骑行11分钟节约碳排量121克,那么小亮每骑行1分钟,节约碳排量(121÷11)克。

正确解答:(1)968÷11=88(米)答:小亮平均每分钟骑行88米。

(2)105×88=9240(米)答:他一共骑行了9240米。

(3)121÷11=11(克)答:小亮每骑行1分钟节约碳排量11克。

此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间。

【变式1】1. 如图是一辆汽车与一列火车的行程图表,根据图示回答问题。

(1)如图是()统计图。

(2)汽车的速度是每分钟()千米。

(3)火车停站时间是()分钟。

(4)火车停站后时速比汽车每分钟快()千米。

(5)汽车比火车早到()分钟。

相遇问题【例2】甲、乙两辆汽车同时从东西两座城市相向开出,甲车每小时行88千米,乙车每小时行80千米。

两车在距中点40千米处相遇。

东西两城相距多少千米?思路引导两车在距中点40千米处相遇,那么甲车比乙车多行了80千米,即两车行的路程相差是80千米,有了路程差与速度差就可以求出相遇的时间,进而根据速度和就可以求出距离。

正确解答:40×2÷(88-80)=80÷8=10(小时)(88+80)×10=168×10=1680(千米)答:东西两城相距1680千米。

小学奥数---行程问题

小学奥数---行程问题

行程问题教学目标:1、理解行程的基本概念,会解一些简单的行程题.2、掌握单个变量的平均速度问题及其三种基本解题方法:“特殊值法”、“设而不求法”、“设单位1法”3、利用对比分析法解终(中)点问题知识点讲解:一、路程s、速度v、时间t三者的基本关系我们经常在解决行程问题的过程中用到s、v、t三个字母,并用它们来分别代表路程、速度和时间。

速度×时间=路程可简记为:s vt=路程÷速度=时间可简记为:t s v=÷路程÷时间=速度可简记为:v s t=÷二、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度⨯总时间。

题型一、简单行程公式解题1、韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?2、小白从家骑车去学校,每小时15千米,用时2小时,回来以每小时10千米的速度行驶,需要多少时间?【考点】行程问题【难度】2星【题型】解答3、甲、乙两地相距100千米。

下午3点,一辆马车从甲地出发前往乙地,每小时走10千米;晚上9点,一辆汽车从甲地出发驶向乙地,为了使汽车不比马车晚到达乙地,汽车每小时最少要行驶多少千米?.4、两辆汽车都从北京出发到某地,货车每小时行60千米,15小时可到达。

客车每小时行50千米,如果客车想与货车同时到达某地,它要比货车提前开出几小时?5、一天,梨和桃约好在天安门见面,梨每小时走200千米,桃每小时走150千米,他们同时出发2小时后还相距500千米,则梨和桃之间的距离是多少千米?6、两列火车从相距480千米的两城相向而行,甲列车每小时行40千米,乙列车每小时行42千米,5小时后,甲、乙两车还相距多少千米?7、甲、乙两辆汽车分别从 A、B 两地出发相向而行,甲车先行三小时后乙车从B 地出发,乙车出发5 小时后两车还相距15千米.甲车每小时行 48千米,乙车每小时行 50千米.求 A、 B 两地间相距多少千米?8、小燕上学时骑车,回家时步行,路上共用50分。

【小高数学知识点】火车行程问题

【小高数学知识点】火车行程问题

火车过桥 火车过点火车前进方向火车火车行程问题一、学问构造图火车行程二、方法讲解火车在行驶中,常常发生过桥与通过隧道,两车对开错车与快车超越慢车等状况, 通常,在行程问题中所涉及的运动物体(人或者车)是不考虑它本身长度的,可是考虑火车的行程问题时,由于一列火车有百米以上的长度,所以在解答问题时,火车本身的长度是不能无视不计的.因此,火车过桥是指“全车通过”,即从车头上桥直到车尾离桥才算“过桥”.如 以以以以下图:火车过桥的总路程是桥长加车长,这是解决过桥问题的关键.过桥问题也要用到一般行程问题的根本数量关系:过桥的路程=桥长+车长车速=(桥长+车长)÷过桥时间通过桥的时间=(桥长+车长)÷车速桥长=车速×过桥时间-车长车长=车速×过桥时间-桥长后三个都是依据其次个关系式逆推出的.对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候确定得结合着图来进展.下面我们先来看看火车经过静止的人的过程。

火车前进的路程通过线段图我们可以看出,从火车车头与人相遇始终到火车车尾离开人,火车前进的路程就是火车的长度。

我们也可以这样来理解:当车头和人相遇时,车尾和人相距一个火车长火车根本数量关系不同类型错车问题度,所以整个过程就是车尾和人的相遇问题。

以上是人不动状况下的火车行程问题,下面我们来介绍一下行人和火车的相遇和追及问题,如以以以以下图所示:火车前进方向车尾离开行人车头遇到行人 火车行人的路程火车前进的路程火车的长度我们可以将火车看成一个点:开头的时候行人和车尾的距离为一个车长,完毕的时候行人和车尾相遇了。

也就是说,从火车与行人的相遇到错开,这个过程可以看成是行人与车尾相遇了。

也就是说,从火车与行人的相遇到错开,这个过程可以看成是行人与车尾的相遇问题,火车和行人经过的路程和等于火车的长度。

类似的,对于火车追行人的过程,从追上到离开,火车和行人的路程差等于火车的长 度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学知识点之行程问题
数学知识点之行程问题
知识点
(1)单次相遇问题
1、概念:两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题;
2、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;
②在一定时间内,两个运动物体相遇;
3、解题公式:相遇时间=总路程÷速度和
总路程=速度和×相遇时间
(2)单次追及问题
1、概念:两个运动的物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的行进速度要快些,在前面的行进速度要慢些,在一定时间之内,后面的追上前面的,这类应用题就叫做追及问题;
2、特征:①两个运动的.物体一般同地不同时(或同时不同地)出发作同向运动;
②在后面的行进速度快些,前面的行进速度慢些;
③在一定时间内,后面的追上前面的;
3、解题公式:追及时间=追及路程÷速度差
追及路程=速度差×追及时间
(3)多次相遇问题
在这里,我们只讲直线型两地往返的相遇问题,以后我们会专门开辟一个专题来讲环形相遇、追击问题--环形跑道,这里牵涉到的多次追击问题比较多。

我们把第一次相遇走的路程和看成是一个全程,那么到第二次相遇时的路程和就是3个全程,第三次相遇时的路程和就是5个全程,……,第n次相遇时的路程和就是2n-1个全程。

而由于运动物体
的速度是不变的,所以每个全程花的时间一样,抓住这两点,我们就可以解决所有的多次相遇问题!。

相关文档
最新文档