论纤维过滤技术的新进展

合集下载

功能性聚酰胺纤维技术研究新进展

功能性聚酰胺纤维技术研究新进展

综述与专论合成纤维工业,2023,46(3):53CHINA㊀SYNTHETIC㊀FIBER㊀INDUSTRY㊀㊀收稿日期:2022-08-28;修改稿收到日期:2023-04-12㊂作者简介:李婷婷(1995 ),女,硕士生,主要研究方向为功能性化纤及纺织复合材料㊂E-mail:1522063766@㊂功能性聚酰胺纤维技术研究新进展李婷婷1,2(1.江苏新视界先进功能纤维创新中心有限公司,江苏苏州215228;2.国家先进功能纤维创新中心,江苏苏州215228)摘㊀要:详述了功能性聚酰胺纤维的各种改性技术及其研究进展,介绍了 十四五 期间聚酰胺纤维的相关政策,并对功能性聚酰胺纤维今后的发展提出建议㊂功能性聚酰胺纤维的制备技术主要包括物理改性㊁化学改性和生物基聚酰胺技术,其中物理改性主要有共混法㊁复合纺丝法㊁纤维截面异形化及静电纺丝技术,化学改性主要有共聚法㊁原位聚合法及表面化学改性,生物基聚酰胺技术主要是开发具有自主知识产权的生物基聚酰胺56纤维㊂ 十四五 期间关于聚酰胺纤维需要重点突破的关键技术有聚酰胺6熔体直纺技术㊁高品质差别化纤维技术㊁生物基聚酰胺纤维规模化生产技术等㊂功能性聚酰胺纤维未来的发展应向着绿色化和可循环再生方向发展,重点在研发多功能复合型聚酰胺纤维,突破生物基聚酰胺56大容量连续聚合及熔体直纺关键技术,加快实现静电纺丝功能性聚酰胺纤维产业化㊂关键词:聚酰胺纤维㊀功能性纤维㊀物理改性㊀化学改性㊀生物基聚酰胺㊀技术进展中图分类号:TQ342+.1㊀㊀文献标识码:A㊀㊀文章编号:1001-0041(2023)03-0053-06㊀㊀随着生活水平的提高,人们对纺织品已经不只是要求蔽体㊁保暖,纺织品的保健㊁舒适等功能性也是关注的重点㊂聚酰胺纤维具有拉伸强度高㊁弹性大㊁耐磨性好等优点,被广泛应用于服用㊁装饰用和工业用纺织品等领域,但传统的聚酰胺纤维存在耐热性㊁吸湿性和染色性较差等缺点㊂为改善聚酰胺纤维的缺点,众多研究者开展了对传统聚酰胺纤维的功能改性研究,各种功能性聚酰胺纤维也随着国内外化纤行业中新技术㊁新设备的不断涌现而被开发和应用㊂功能性聚酰胺纤维是指通过对普通聚酰胺改性或采用生物基聚酰胺得到的具有某些特殊功能的聚酰胺纤维㊂功能性聚酰胺纤维的制备技术主要包括物理改性㊁化学改性和生物基聚酰胺技术㊂其中,物理改性包括共混法㊁复合纺丝法㊁纤维截面异形化和静电纺丝法等;化学改性包括共聚法㊁原位聚合法及表面化学改性等[1]㊂此外,生物基聚酰胺也是目前功能性聚酰胺纤维的研发热点之一㊂作者综述了功能性聚酰胺纤维的不同改性技术及其研究进展,以及近两年国家的相关政策方针,并对今后聚酰胺纤维功能改性技术的发展提出建议㊂1㊀物理改性1.1㊀共混法共混法是聚合物改性的一种常用方法,通常是将无机小分子㊁有机低分子或有机高分子与聚酰胺切片共混㊁熔融纺丝制备功能性聚酰胺纤维㊂杜邦公司在共混改性领域的研究较多,在20世纪80年代就开展了对聚酰胺共混改性的研究㊂共混改性适合微观尺寸较大的添加剂或改性剂,其工艺简单,可用于常规纺丝设备生产,纤维的物理性能可以达到常规纤维的质量要求㊂HAN J [2]采用溶液聚合法,以4-乙烯基吡啶㊁甲基丙烯酸甲酯及2-(全氟辛基)合成长链季铵盐(NP),将NP 与聚己内酰胺(PA 6)混合,通过熔融纺丝及拉伸制得抗菌PA 6纤维,与纯PA 6纤维相比,在经过洗涤7d 后仍能灭活96%以上的接种大肠杆菌和金黄色葡萄球菌㊂CHEN T等[3]将聚己二酰己二胺(PA 66)分别和球磨法处理后的对羧基化的多壁碳纳米管及十二烷基苯磺酸钠改性的碳纳米管共混熔融纺丝制备复合纤维,复合纤维拉伸强力相比于纯PA 66纤维分别提高27%和24%㊂袁修钦[4]通过在熔融纺丝过程中添加黑色母㊁自发热粉体㊁抗菌粉体,与PA 6共混熔融纺丝制备黑色PA 6纤维㊁自发热PA 6纤维㊁抗菌PA6纤维,黑色PA6纤维具有较好的黑色光泽性,抗菌PA6纤维对大肠杆菌具有90%以上的杀菌率㊂赖慧玲[5]将PA6与一种新型架状硅酸盐(QE粉)熔融共混,经双螺杆挤出㊁造粒得到QE/PA6母粒,使用高速纺丝机通过纺丝㊁拉伸一步法工艺制备QE/PA6并列复合纤维,纤维在UVA波段(320~400nm)的透过率较纯PA6纤维降低20%~35%,说明复合纤维较纯PA6纤维的抗紫外性能有明显提升㊂蔡倩等[6-7]以季戊四醇磷酸酯(PEPA)㊁二乙基次膦酸铝(ADEP)和三聚氰胺磷酸盐(MPP)为阻燃剂,共混熔融制备阻燃PA6,结果表明将质量比为3 1的PEPA和MPP复配加入PA6中,具有一定的协同阻燃效果,当阻燃剂总质量分数为20%时,共混体系的极限氧指数(LOI)为28%,阻燃等级为UL-94V-2级㊂共混改性是制备功能性聚酰胺纤维的常见方法,工艺简单,可通过添加不同的改性剂制备具有不同功能的聚酰胺纤维,如阻燃㊁抗菌㊁抗紫外聚酰胺纤维等㊂1.2㊀复合纺丝法复合纺丝法是将两种或两种以上不同化学组成或不同浓度的纺丝流体同时通过一个具有特殊分配系统的喷丝头制得复合纤维[8]㊂复合纤维以皮芯结构和海岛结构为主㊂何淑霞等[9]以二甲苯作为开纤剂,制得PA6/聚乙烯(PE)海岛型复合超细纤维㊂甘宇等[10]制备了聚酰胺/聚酯皮芯型复合纤维,当两组分熔体温度差较小㊁黏度相近时,更易制备结构稳定和性能较好的复合纤维㊂李顺希等[11]以高密度聚乙烯(HDPE)为皮,以PA6为芯,通过皮芯复合纺丝制备HDPE/PA6复合纤维,当以HDPE与PA6切片的质量比为40 60进行复合纺丝时,制备的复合纤维断裂强度较高,达到3.57~3.82cN/dt-ex,且复合纤维面料具有较好的接触凉感性能,接触凉感系数达0.23J/(cm2㊃s)㊂崔晓玲等[12]以聚苯硫醚(PPS)为皮层㊁PA6为芯层,制备PPS/ PA6偏心皮芯型复合纤维,拉伸后得到具有三维卷曲性能的纤维,改善了纤维的蓬松性,并且在酸处理后,芯层PA6被腐蚀,形成C形截面纤维,有利于改善复合纤维过滤材料的过滤性能㊂复合纺丝技术是制造超细纤维的重要手段之一,可以实现改善纤维的吸湿性㊁永久卷曲性㊁蓬松性,尤其是可以开发力学性能优异的超细聚酰胺纤维㊂1.3㊀纤维截面异形化纤维截面异形化是指采用特殊形状的喷丝孔纺制非圆形截面的异形纤维,如三角形㊁星形和Y 形纤维等㊂纤维截面异形化是制备功能纤维的一种重要方法,异形截面纤维具有特殊的光泽㊁膨松性和耐污性,并具有抗起球性,能改善纤维的回弹性等㊂2014年日本东丽公司推出的速干尼龙纤维产品Salacona是通过六叶形截面尼龙纤维与圆形截面尼龙纤维的混纺丝所产生的毛细现象来实现快速吸汗[13]㊂陈立军等[14]通过母粒法共混熔融纺丝制备圆形㊁三角形和十字形截面的PA6/石墨烯复合纤维,纤维截面异形度显著增加,具有较好的负离子释放功能㊁远红外保健效果,以及优异的吸湿和干燥效果,其中十字形截面纤维异形度达58.29%,负离子释放浓度最高达1820个/cm3,远红外法向发射率达0.93,远红外辐射温升为1.70ħ,3h吸水率达4.4%,1h失水率达到2.6%㊂凌荣根等[15]采用纳米级负氧离子粉体改性PA6制备功能母粒,与PA6切片进行共混纺丝,制备出扁平形及三叶形的PA6纤维,纤维异形度达40%以上,因比表面积大更容易释放负氧离子,其释放负离子浓度达到4560个/cm3,三叶形PA6纤维还具有优良的毛细芯吸作用和干爽的手感,所制备的织物具有良好的悬垂性㊁吸汗㊁清凉感和快干特点,适合夏季等高热湿环境㊂赵晓敏[16]首先使用硅烷偶联剂KH550对纳米级玉石粉㊁氮化铝粉㊁碳化硅粉进行改性处理,通过熔融共混制备改性PA6切片,采用熔融纺丝法制备十字形截面PA6纤维;再对其进行织造,得到凉感PA6织物,织物的芯吸高度达102mm,符合国家标准中对织物吸湿性指标的规定㊂与常规纤维相比,纤维截面异形化显著增加了纤维截面异形度,改善了纤维的膨松性㊁吸湿性㊁光泽㊁弹性等,可用于开发速干型纺织品及其他功能性纺织品㊂1.4㊀静电纺丝法静电纺丝法[17]是一种新型的物理改性方法,将不同性质㊁相对分子质量的聚合物和活性成分通过静电纺丝加工成纳米级纤维,可改善纤维的孔隙结构㊁亲水性㊁催化性㊁抗菌性和生物相容性等,使其在吸附分离㊁污水处理㊁生物传感㊁防护㊁空气过滤㊁智能穿戴及组织工程等不同领域和场45㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年第46卷景具有广泛的应用前景㊂ZHANG H T等[18]采用静电纺丝技术制备PA6/壳聚糖复合纳米纤维膜,壳聚糖的添加提高了纳米纤维膜的亲水性㊂M.FAZELI[19]采用静电纺丝技术成功制备PA6/壳聚糖纳米复合膜,纤维中PA6和壳聚糖之间存在分子间相互作用,形成新的氢键,且纳米复合膜的电导率随着壳聚糖含量的增加而提高㊂J.S.JEONG等[20]采用静电纺丝技术制备多壁碳纳米管/PA66复合纳米纤维,随着多壁碳纳米管的添加纤维的电性能得到改善㊂牛小连[21]以PA6/PA66为基质,通过静电纺丝和仿生矿化等技术开发出仿生人工骨修复材料㊂熔体静电纺丝法与溶液静电纺丝法相比,具有无溶剂污染㊁产率较高的优势,但是制备的纤维相对较粗㊂杜远之等[22]采用自主设计的熔体静电纺丝设备成功制备PA6超细纤维,纤维平均直径为2.25~6.31μm㊂刘伟伟[23]利用自行设计制造的高效熔体静电纺丝装置成功制备PA6微纳米纤维,平均直径在7μm左右㊂静电纺丝技术是近年来的研究热点,很多科研机构㊁高等院校都在进行研究,主要方向是静电纺超细纤维在空气过滤㊁柔性电子材料及医用防护等领域的应用㊂聚酰胺纤维的静电纺丝技术目前仍处于实验室阶段,将其应用于产业化还有较大困难㊂2㊀化学改性2.1㊀共聚法共聚法是聚酰胺纤维化学改性的主要手段,通过共聚单体的选择改变聚合物的性能[24],在改变聚合物的组成和结构的同时改变其熔点㊁溶解性㊁结晶度和透明性等,从而制备具有多功能的共聚酰胺㊂将两种及两种以上聚酰胺单体进行共聚,可制得多种具有特殊性能的共聚酰胺纤维,如美国Auied公司已工业化生产的高吸水共聚酰胺纤维 drofile 系列化产品是以PA6与聚氧化乙烯二胺的嵌段共聚物通过熔体纺丝制得[25]㊂此外,将聚乙二醇(PEG)端基进行氨基化改性,与PA6制备的共聚酰胺纤维具有优良的吸湿性㊂欧育湘等[26]采用双(4-竣苯基)苯基氧化膦己二胺盐/己二酸己二胺盐无规共聚得到本质阻燃PA66,由于双(4-羧苯基)苯基氧化膦中含有大量的苯环结构,显著提升PA66燃烧后的残炭量,明显改善PA66的阻燃性能㊂2021年,天津科技大学与天津长芦海晶集团有限公司合作,通过选择合适的共聚单体和聚合物,制备出具有软化点低㊁柔软㊁透明性好和易溶解等特殊性能的聚酰胺㊂共聚改性是聚酰胺最为简单有效的改性方法之一,是从分子结构入手,利用共聚方法制备具有阻燃性能㊁吸水率低㊁抗静电㊁柔软㊁透明性好㊁易溶解等功能的聚酰胺纤维㊂2.2㊀原位聚合法原位聚合法是通过在聚酰胺聚合过程中添加改性剂对其进行改性㊂通过原位聚合可开发出品种繁多的功能性聚酰胺纤维新产品㊂WU Z Y等[27]选用三聚氰胺氰尿酸酯(MCA)作为阻燃剂,通过原位聚合制备阻燃PA6,原位聚合后体系中的MCA粒子具有直径小于50nm的纳米尺寸,且均匀地分散在PA6基体中,得到的阻燃PA6的阻燃性能可以达到UL-94V-0级㊂原位聚合阻燃PA6的特点是不同种类的粉体阻燃剂在PA6基体中均匀分散,并且阻燃剂在PA6中不易析出,具有阻燃持久稳定性㊂TANG L等[28]通过原位聚合法制备PA6/石墨烯复合材料,再通过熔融纺丝制备PA6/石墨烯复合纤维,加入石墨烯质量分数为0.05%时复合纤维的断裂强度最大达5.3cN/dtex,与纯PA6纤维相比,复合纤维表现出更好的抗蠕变性能㊂王一帆[29]设计并合成一种具有活性端基的刚性芳香族聚酰胺预聚体,然后将其分散于己内酰胺熔体之中,通过原位聚合制备芳香族聚酰胺-聚己内酰胺共聚物(APA),并通过熔融纺丝制备APA纤维,结果表明,通过向PA6的主链中引入芳香族聚酰胺,APA纤维的最大抗拉强度较未改性的PA6纤维高出140.97%,断裂伸长率明显下降㊂于昆[30]通过原位聚合法制备出PA6/11/氧化石墨烯复合切片,并经熔融纺丝工艺制备PA6/11/氧化石墨烯复合纤维;当添加的氧化石墨烯质量分数为0.5%时,复合纤维的拉伸强度可达610 MPa;当添加的氧化石墨烯质量分数为1.0%时,复合纤维的饱和吸水率下降61.6%,电导率达到3.4ˑ10-9S/m,纤维热性能㊁导电性能和吸湿性能都得到了有效改善㊂原位聚合改性技术是在生产源头添加不同的改性剂制备不同功能性的聚酰胺纤维,如阻燃聚酰胺纤维㊁凉感聚酰胺纤维和原液着色聚酰胺纤55第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀李婷婷.功能性聚酰胺纤维技术研究新进展维等,其中原液着色聚酰胺纤维已经很好地实现了产业化㊂2019年中国平煤神马集团帘子布发展公司制备出工业用PA66色丝,2021年神马实业股份有限公司成为全球最大PA66原液着色纤维生产基地,该技术是在PA66纤维生产源头直接添加染色剂,并在封闭㊁高温㊁高压环境下一次聚合而成[31]㊂2020年化纤联盟开发出原液着色聚酰胺纤维高效制备成套技术,成功制得高色牢度㊁深色细旦的多色彩㊁多功能高品质聚酰胺纤维㊂2021年海阳科技股份有限公司研发出细旦㊁超细旦长丝用高性能黑色原位聚合PA6切片及超高强PA6长丝,该技术是在聚合过程中采用纳米级着色剂与PA6熔体充分混合,经纺丝得到有色PA6纤维,纤维色牢度高,织造后无需再染色,无染色污水排放,省水节能,绿色环保[32]㊂恒申集团以颜料㊁尼龙粉末和助剂为原料制备PA6色母粒,再通过高温熔融纺丝制备原液着色PA6长丝;还通过添加玉石粉制备可快速逸散热量的凉感PA6纤维,纤维接触凉感系数可达0.25 J/(cm2㊃s)㊂2.3㊀表面化学改性表面化学改性是通过改变聚酰胺纤维大分子的表面化学结构,以达到改善纤维的表面性能的目的㊂D.PAPPAS等[33]将PA6纤维在大气压辉光放电(APGD)下用氮气㊁氦气和乙炔进行等离子处理,等离子处理后纤维的水接触角显著降低,表面亲水性得到改善㊂徐娜等[34]用常压等离子对PA6纤维进行改性处理,然后采用(3-巯基丙基)三甲氧基硅烷(MPS)对PA6纤维表面进行巯基化改性,并用乙烯基胶原蛋白对巯基化PA6纤维进行表面修饰,得到的纤维吸水率提高155%,具有良好的吸湿性能㊂表面化学改性是在纤维成形后进行,该方法应用最多的是在聚酰胺分子链中引入大量亲水性基团,通过接枝共聚或通过添加某些有机物从而提高聚酰胺纤维亲水性和染色性㊂3㊀生物基聚酰胺纤维生物基聚酰胺纤维技术是指利用可再生的生物质为原料,通过生物㊁化学及物理等手段制备用于合成聚酰胺的原料包括生物基二元酸和生物基二元胺等,再通过聚合反应合成生物基聚酰胺,通过纺丝制备生物基聚酰胺纤维㊂该方法具有绿色㊁环境友好和原料可再生等特点㊂2016年,北京中丽制机工程技术有限公司通过系统研究生物基聚酰胺56(PA56)的纺丝工艺技术,开发出国产生物基PA56长丝一步法纺牵联合机及生物基PA56工业丝纺牵联合机,为生物基PA56纤维产业化提供了设备保障[35]㊂东华大学和盛虹集团等10家单位联合承担 十三五 国家重点研发计划项目 生物基聚酯㊁聚酰胺高效聚合纺丝技术,开发了生物基聚酰胺高效聚合纺丝技术㊂MAO L等[36]以2,5-二羧酸二甲基呋喃和1,3-环己二胺为原料,通过熔体聚合合成生物基聚酰胺㊂CAO K K等[37]采用生物基2,5-呋喃二甲酰氯和3,4-二氨基二苯醚在N,N-二甲基乙酰胺中进行低温溶液缩聚制备一种含有呋喃环的芳族聚酰胺树脂,并采用干喷湿法纺丝法制备出溶解性㊁可纺性㊁耐热性和阻燃性能优良的含呋喃环的芳香族聚酰胺纤维,纤维的LOI为40%,阻燃等级为UL-94V-0级,其中单体2,5-呋喃酰氯为生物质,资源丰富㊂目前,我国自主研发且具有完整知识产权的生物基聚酰胺纤维品种是生物基PA56纤维㊂生物基PA56纤维的强度和密度可以媲美PA66纤维,染色性㊁吸湿快干性和阻燃性更优于PA66纤维㊂上海凯赛生物技术股份有限公司推出了生物基PA56纤维产品 泰纶®,其生物质质量分数高达47%~100%,原料主要以自主研发的生物基戊二胺和不同的二元酸聚合而成㊂生物基PA56纤维具有良好的力学性能㊁吸湿性㊁柔软性㊁耐磨性㊁染色性㊁耐热性㊁耐化学性与阻燃性,适合应用于服装㊁家纺㊁产业用纺织品等领域,但生物基PA56纤维的大规模推广还面临生物原料供给与成本控制,生产中能耗降低及副产物综合利用等问题,今后需要继续在生物基单体发酵与纯化㊁聚合㊁纺丝及应用等领域加大研发投入,不断降低生产成本,才能促进生物基PA56纤维在纺织领域的大规模应用[38]㊂4㊀相关政策随着地球环境问题和资源能源问题的日益突出,绿色可持续发展成为各界关注的焦点㊂为巩固提升纺织工业竞争力,满足消费升级需求,服务战略性新兴产业发展,国家出台了相应的政策支持㊂65㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年第46卷2021年6月,中国纺织工业联合会发布的‘纺织行业 十四五 科技发展指导意见“中关于聚酰胺需要重点突破的关键共性技术有:研究PA6熔体直纺技术,突破生物基聚酰胺纤维规模化生产关键技术,开发高品质差别化产品,加强应用技术开发,2025年聚酰胺纤维材料高效柔性制备技术达到国际先进水平㊂2022年4月,工信部㊁国家发改委联合印发的‘关于化纤工业高质量发展的指导意见“指出:加快生物基化学纤维和可降解纤维材料的发展,提升生物基化学纤维单体及原料纯度,加快稳定㊁高效㊁低能耗成套技术与装备集成,实现规模化㊁低成本生产,并强调了提升生物基聚酰胺纤维的规模化生产关键技术,加快生物基聚酰胺纤维的发展㊂此外,根据政策的指导方向,为实现绿色可持续发展,国内化学纤维行业龙头企业均对全流程生产低碳化㊁产品绿色化㊁可再生循环等方面制定了发展目标㊂5 结语随着应用研究的不断深入,功能性聚酰胺纤维在服用㊁民用及军用领域的应用将不断扩大,同时对其综合性能的要求也越来越高㊂ 十四五 期间是我国纺织工业迈向世界科技强国前列的重要时期,绿色发展成为全球产业发展的刚性要求㊂功能性聚酰胺纤维未来的发展应向着绿色化和可循环再生方向发展㊂(1)研发耐高低温㊁耐辐照及具备阻燃抗菌等多功能复合型聚酰胺纤维,满足在各种特种条件下的应用㊂(2)生物基聚酰胺纤维将成为未来的研究重点㊂推动生物基聚酰胺纤维在军用领域和民用领域的规模化应用,推动再生循环发展,实现 低碳 甚至 零碳 排放㊂重点突破生物基PA56大容量连续聚合及熔体直纺关键技术,实现生物基PA56纤维的规模化生产㊂(3)加快实现静电纺丝功能性聚酰胺纤维产业化㊂静电纺功能性聚酰胺纤维在光电子传感器㊁过滤材料和生物医学材料等方面的应用十分广泛,这些方向将成为未来改性研究的重点㊂参㊀考㊀文㊀献[1]㊀孙振华.聚酰胺改性技术及改性产品研究进展[J].纺织科学与工程学报,2018,35(4):163-166,121. [2]㊀HAN J,YIN S,ZHANG X,et al.Design and synthesis ofbactericidal block copolymer for preparing durably antibacterial PA6fiber[J].Micro&Nano Letters,2019,15(1):47-51.[3]㊀CHEN T,LIU H H,WANG X C,et al.Properties and fabri-cation of PA66/surface-modified multi-walled nanotubes com-posite fibers by ball milling and melt-spinning[J].Polymers, 2018,10(5):547.[4]㊀袁修钦.功能尼龙6纤维的制备及性能表征[D].武汉:武汉纺织大学,2018.[5]㊀赖慧玲.量子能微粒改性聚酰胺6纤维的制备及应用[D].杭州:浙江理工大学,2019.[6]㊀蔡倩.阻燃PA6的制备及结构性能研究[D].北京:北京服装学院,2017.[7]㊀蔡倩,王锐,董振峰,等.PA6/PEPA复合物的制备及结构性能研究[J].化工新型材料,2018,46(1):144-149. [8]㊀宁宁,甘佳佳,冯培,等.并列型PA6/PET复合扁平纤维挤出成形工艺的数值模拟[J].合成纤维工业,2016,39(6):60-64.[9]㊀何淑霞,胡国樑,李霞.PA6/PE海岛型复合超细纤维的开纤工艺研究[J].现代纺织技术,2016,24(2):4-7. [10]甘宇,姬洪,徐锦龙,等.聚酰胺/聚酯皮芯复合纤维的研究开发[J].合成纤维,2020,49(2):7-12,18. [11]李顺希,许志强,詹莹韬,等.高密度聚乙烯/聚酰胺6复合纤维的制备及性能[J].合成纤维工业,2020,43(1): 42-45,49.[12]崔晓玲,王依民,胡申伟,等.PPS/PA6偏心皮芯型复合纤维的研究[J].合成纤维,2008,37(2):14-17. [13]钱伯章.东丽推出速干尼龙纤维材料[J].合成纤维,2014,43(10):54.[14]陈立军,钟百敏,胡泽旭,等.截面形状对聚酰胺6/石墨烯复合纤维性能的影响[J].合成纤维,2019,48(7):5-8.[15]凌荣根,李彩娥,郭成越,等.负氧离子PA6异形纤维的制备[J].丝绸,2010(5):35-37.[16]赵晓敏.凉感聚酰胺6纤维的制备及性能评价[D].上海:东华大学,2016.[17]李福顺,李显波,潘福奎.电极丝静电纺制备聚酰胺纳米纤维膜[J].塑料工业,2017,45(5):78-82. [18]ZHANG H T,LI S B,BRANFORD WHITE C J,et al.Studieson electrospun nylon-6/chitosan complex nanofiber interactions [J].Electrochimica Acta,2009,54(24):5739-5745. [19]FAZELI M,FAZELI F,NUGE T,et al.Study on the prepara-tion and properties of polyamide/chitosan nanocomposite fabri-cated by electrospinning method[J].Journal of Polymers and the Environment,2022,30:644-652.[20]JEONG J S,JEON S Y,LEE T Y,et al.Fabrication ofMWNTs/nylon conductive composite nanofibers by electrospin-ning[J].Diamond and Related Materials,2006,15(11/12): 1839-1843.[21]牛小连.仿生矿化静电纺聚酰胺纳米纤维骨组织工程支架研究[D].太原:太原理工大学,2021.75第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀李婷婷.功能性聚酰胺纤维技术研究新进展[22]杜远之,徐阳,魏取福,等.熔体静电纺PA6超细纤维的制备与工艺研究[J].工程塑料应用,2013,41(10):38-41.[23]刘伟伟.熔体静电纺丝法制备高分子纤维材料的实验研究[D].青岛:青岛科技大学,2013.[24]WHA K,KIM S H,KIM E A.Improved surface characteristicsand the conductivity of polyaniline-nylon6fabrics by plasma treatment[J].Journal of Applied Polymer Science,2001,81(3):684-694.[25]朱建民.聚酰胺纤维[M].北京:化学工业出版社,2014.[26]欧育湘,陈宇,王筱梅.阻燃高分子材料[M].北京:国防工业出版社,2001.[27]WU Z Y,XU W,XIA J K,et al.Flame retardant polyamide6by in situ polymerization ofε-caprolactam in the presence of melamine derivatives[J].Chinese Chemical Letters,2008,19(2):241-244.[28]TANG L,LI Y R,CHEN Y,et al.Preparation and character-ization of graphene reinforced PA6fiber[J].Journal of Ap-plied Polymer Science,2018,135(10):45834.[29]王一帆.芳香族聚酰胺预聚体共聚改性聚已内酰胺的研究[D].苏州:苏州大学,2013.[30]于昆.聚酰胺6/11/碳纳米复合纤维的制备与性能研究[D].广州:华南理工大学,2020.[31]郑宁来.神马尼龙66工业用色丝顺利下线[J].合成纤维工业,2020,43(2):36.[32]李若欣,陈国强,常广涛,等.一种尼龙6原位着色切片及其制备方法:112724399B[P].2021-06-22. [33]PAPPAS D,BUJANDA A,DEMAREE J D,et al.Surfacemodification of polyamide fibers and films using atmospheric plasmas[J].Surface and Coatings Technology,2006,201(7):4384-4388.[34]徐娜,王学川,黄剑锋,等.常压等离子体对聚酰胺纤维表面刻蚀及巯基化研究[J].西部皮革,2018,40(21):43-47.[35]刘博.国产尼龙56长丝一步法纺牵联合机的探究[J].价值工程,2016,35(27):107-111.[36]MAO L,PAN L J,MA B,et al.Synthesis and characteriza-tion of bio-based amorphous polyamide from dimethyl furan-2, 5-dicarboxylate[J].Journal of Polymers and the Environment, 2022,30(3):1072-1079.[37]CAO K K,LIU Y F,YUAN F,et al.Preparation and proper-ties of an aromatic polyamide fibre derived from a bio-based fu-ran acid chloride[J].High Performance Polymers,2021,33(9):1083-1092.[38]孙朝续,刘修才.生物基聚酰胺56纤维在纺织领域的应用研究进展[J].纺织学报,2021,42(4):26-32.New progress in technology research of functional polyamide fiberLI Tingting(1.Jiangsu New Vision Advanced Functional Fiber Innovation Center Co.,Ltd.,Suzhou215228;2.National Advanced Functional Fiber Innovation Center,Suzhou215228) Abstract:The different modification technologies of functional polyamide fibers and their research progress were reviewed.The relevant policies for polyamide fibers during the14th Five Year Plan period were introduced.And some suggestions for the future development of functional polyamide fibers were put forward.The preparation technology of functional polyamide fibers mainly in-cludes physical modification,chemical modification and bio-based polyamide technology,among which the physical modification mainly includes blending method,composite spinning technology,fiber profiled cross-section modification and electrospinning technology,the chemical modification mainly includes copolymerization method,in-situ polymerization method and surface chem-ical modification,and the bio-based polyamide technology is to mainly develop bio-based polyamide56fiber with independent in-tellectual property rights.During the14th Five Year Plan period,the key technologies of polyamide fibers that need to make breakthroughs include polyamide6melt direct spinning technology,high-quality differentiated fiber technology,and large-scale bio-based polyamide fiber production technology.The future development of functional polyamide fibers should be oriented to-wards greening and recyclable regeneration,with a focus on the research and development of multifunctional composite polyamide fibers,the breakthroughs in the key technologies of high-capacity continuous polymerization and melt direct spinning of bio-based polyamide56,and the acceleration of electrospun functional polyamide fibers industrialization.Key words:polyamide fiber;functional fiber;physical modification;chemical modification;bio-based polyamide;technology progress85㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年第46卷。

论纤维过滤技术的新进展

论纤维过滤技术的新进展

论纤维过滤技术的新进展摘要:论文介绍、分析了“自然堆积式”和“有序装填式”等纤维过滤技术的特点,阐述了结合两类滤床优势的柔性自反馈纤维过滤技术的原理。

该技术有效解决了纤维滤料过滤与清洗相矛盾的难题,其过滤精度高,运行成本低,滤料使用寿命长,设备结构简单、操作方便、基本免维护。

关键词:纤维束过滤柔性自反馈纤维过滤技术从20世纪80年代在我国开始工业应用以来,以过滤精度高、滤速快、截污容量大等特点,成为石英砂等颗粒状滤料过滤器的替代产品,市场占有率不断扩大。

在实际的应用过程中,研究人员不断改进,从以纤维球[1]和彗星式[2]纤维滤料等为代表的“自然堆积式”和以胶囊挤压[3]和活动孔板[4]结构等为代表的“有序装填式”两个方向对纤维过滤技术进行了发展和探索。

特别是近年来,研究人员从理论上大胆创新,结合两类纤维过滤器的技术优势,从纤维本身的特性出发,通过深入的理论分析和试验研究,在选择最适宜用作滤料的纤维和最佳膨化工艺基础上,设计出过滤效果好,又有利于反洗的设备结构,在解决纤维滤料过滤精度高而清洗困难的技术难题的同时,实现纤维过滤装置的自反馈运行,同时达到了设备结构简单、操作方便、基本免维护的理想效果,形成了柔性自反馈纤维过滤技术。

1 自然堆积式短纤维过滤器所谓“自然堆积式”纤维过滤器,是指床型结构类同于颗粒床,仅是以纤维滤料代替了颗粒滤料。

目前,主要的自然堆积式纤维过滤器有:纤维球过滤器、彗星式纤维过滤器。

纤维球过滤器过滤精度高,截污量大:3~10kg/m3,过滤周期长,短路、偏流现象少。

纤维球滤料的不足之处在于:反冲洗时,滤芯密实处积泥难以冲洗掉,这部分残存积泥一方面使纤维球截污能力降低,另一方面在再次过滤时因滤料受压释放而影响出水水质,滤料使用寿命较短,造价较高。

彗星式纤维过滤器因过滤材料外形近似于“彗星”而得名,滤速最高可达50m/h,反冲洗性能得到较大的改善。

彗星式纤维滤料在使用过程中存在的主要问题有:反洗采用机械搅拌,容易使滤料破坏,如采取大强度气水合洗则滤料易流失。

2023年纤维过滤材料行业市场前景分析

2023年纤维过滤材料行业市场前景分析

2023年纤维过滤材料行业市场前景分析
随着人们对环境和健康的关注度不断提高,纤维过滤材料行业市场前景越来越广阔。

纤维过滤材料可以有效去除空气中的微小颗粒物,如PM2.5、PM10等,也可以过滤水中的杂质,防止水源受到污染,所以纤维过滤材料在工业、家居、医疗等领域都有广泛的应用。

以下是对纤维过滤材料行业市场前景的分析。

一、工业领域
在工业生产中,许多工艺需要使用纤维过滤材料进行过滤和分离,如化工、电子、食品、医药等等。

而纤维过滤材料具有良好的耐腐性和耐高温性能,能够去除微小颗粒和细菌,因此在这些行业中都有着广泛的应用。

随着工业发展的推动,纤维过滤材料的应用前景将更加广阔。

二、家居领域
在家居领域中,随着国家对室内环境的重视,人们越来越注重室内空气的质量。

利用纤维过滤材料制成的空气净化器、空气过滤器等产品的应用越来越广泛。

在京东商城、淘宝等电商平台上,纤维过滤材料类产品的销售量居高不下,可以预见,随着技术的推进,纤维过滤材料产品的应用将会更加普及。

三、医疗领域
在医疗领域中,纤维过滤材料的应用不仅是在医疗器械上,还包括在医疗废水处理、病毒分离等方面。

纤维过滤材料能够去除水中的细菌和病毒,防止水源受到污染,老年人、儿童、病人等对室内空气的质量有较高的要求,在医院、养老院等场所中,纤维过滤材料的应用前景也非常广阔。

综合来看,纤维过滤材料行业市场前景非常广阔。

随着科技的进步和人们环保意识的增强,纤维过滤材料行业将逐渐发展壮大。

在实际应用中,纤维过滤材料的质量、性能以及生产技术等都将面临严峻的考验,但是可以肯定的是,纤维过滤材料将会在人们的生产和生活中扮演更为重要的角色。

高效纤维过滤器最新过滤工艺原理分析

高效纤维过滤器最新过滤工艺原理分析

高效纤维过滤器最新过滤工艺原理分析高效纤维过滤器采用纤维束为过滤介质垂直悬挂在多孔板上构成滤料层,在纤维过滤介质内设有加压室,利用加压室来调节滤层密度,属于一种新型水处理过滤器,在各个环保领域中都得到很好的发挥。

过滤器加压室充水后过滤器运行,预过滤水从设备下部进入,清水从设备上部引出;加压室排水后对过滤器清洗。

通过控制加压室充水量,可调节滤料的堆积密度,并根据出水水质要求,可方便地实现过滤器的运行和清洗。

其下部设有空气分配系统和上下配水挡板,加压室充水为自动控制,设备整体可实现自动控制。

高效纤维过滤器以纤维丝束为滤料,若干纤维束以一定的密度排布于过滤器中,构成松散并易于清洗的滤层,当加压室充入一定体积的水使纤维处于一定的压实状态,待过滤的水在压力作用下沿纤维束伸展的方向流过,即得到过滤。

清洗时,排出加压室内的水,纤维束被放松,用水沿纤维束伸展方向冲出截留物,即使之得到清洗再生。

滤层状态对过滤性能的影响截污容量:工作时水从空隙较大的滤层一侧流入,从孔隙较小的滤层一侧流出,泥渣可以渗透到滤层深处被吸附截留,能有效发挥整个滤层的截污作用,提高截污容量。

测试表明高效纤维过滤器的截污容量可达8~10 kg/ m2 。

过滤精度:高效纤维过滤器滤料比表面积大,吸附能力强;出水侧滤层存在压实区,保证了足够大的滤料密度,可以起到水质保护作用;清洗时可使纤维全部处于松散状态,能得到很彻底的清洗。

这些条件使高效纤维过滤器具有很高的过滤精度,源水经过滤后透明度非常好,浊度近于零。

由于其使用的是软填料,通过加压室随时调节滤层密度,达到了适时调节过滤精度的目的。

过滤阻力:压实区的存在将增大过滤阻力,但由于压实区的厚度只占整个滤层厚度的小部分,整体滤层的孔隙率较大,滤层总压头损失并不大,干净滤层压头损失一般为0.02~0. 03MPa ,该项指标也可通过加压室进行调节。

过滤流速:较低的过滤阻力,很高的过滤精度,使高效纤维过滤器的工作流速可达30 m/ h 以上。

纳米纤维薄膜的前沿应用新型电子材料在过滤器中的应用

纳米纤维薄膜的前沿应用新型电子材料在过滤器中的应用

纳米纤维薄膜的前沿应用新型电子材料在过滤器中的应用纳米纤维薄膜的前沿应用:新型电子材料在过滤器中的应用一、引言近年来,纳米科技的快速发展和应用推动了许多行业的革新,其中包括电子材料领域。

纳米纤维薄膜作为一种新型电子材料,在过滤器中的应用备受瞩目。

本文将探讨纳米纤维薄膜的前沿应用,重点关注其在过滤器领域的应用。

二、纳米纤维薄膜的制备技术纳米纤维薄膜是由纳米颗粒或纤维构成的二维薄膜结构。

目前,常用的纳米纤维薄膜制备技术包括电纺法、溶胶凝胶法、热喷雾法等。

这些技术能够实现纤维的纳米级别的布置,从而赋予薄膜一系列优异的性能。

三、纳米纤维薄膜在过滤器中的应用1. 空气过滤器纳米纤维薄膜具有高比表面积和尺寸选择性,可用于空气过滤器中。

通过调控纤维直径和布置形式,可以实现对不同颗粒物的高效过滤。

此外,纳米纤维薄膜还具有抗菌能力和低阻力特性,能够提供更洁净的空气环境。

2. 液体过滤器纳米纤维薄膜在液体过滤器中的应用也呈现出巨大潜力。

其超高的孔隙度和高比表面积,使得纳米纤维薄膜具有卓越的液体过滤性能。

同时,纳米纤维薄膜的可调控孔径大小和抗污染特性,进一步增强了其在液体过滤器领域的应用前景。

3. 环境污染治理纳米纤维薄膜在环境污染治理方面也发挥着重要作用。

通过将其应用于大气污染物过滤装置、水处理设备等领域,纳米纤维薄膜能够高效去除颗粒污染物、有机物和重金属离子,并显著改善环境质量。

四、纳米纤维薄膜在电子器件中的应用1. 柔性光电器件纳米纤维薄膜具有出色的柔性性能和透明度,是制备柔性光电器件的理想材料。

通过将其应用于柔性太阳能电池、柔性显示器等设备,能够实现器件的可弯曲性和轻量化,拓展了电子器件的应用范围。

2. 传感器由于纳米纤维薄膜具有高比表面积和敏感性,因此在传感器领域具有广阔的应用前景。

通过将纳米纤维薄膜应用于气敏传感器、湿敏传感器等设备中,可以实现对环境中目标物质的高灵敏度检测。

3. 能量存储器件纳米纤维薄膜在能量存储器件中的应用也备受关注。

2024年玻璃纤维滤纸市场发展现状

2024年玻璃纤维滤纸市场发展现状

2024年玻璃纤维滤纸市场发展现状简介玻璃纤维滤纸是一种高性能滤料,具有优异的过滤效果和耐高温、耐腐蚀等特点。

它广泛应用于空气和液体过滤领域,如医药、化工、环保等行业。

本文将对玻璃纤维滤纸市场的发展现状进行分析和探讨。

市场概况玻璃纤维滤纸市场在过去几年中呈现出稳步增长的趋势。

随着全球工业化程度的提高和环保意识的增强,对高效过滤材料的需求日益增长。

玻璃纤维滤纸凭借其独特的性能优势,逐渐成为各个行业中滤料的首选。

市场驱动因素1. 工业化进程随着全球工业化的加速推进,工业领域对过滤材料的需求不断增加。

玻璃纤维滤纸因其高过滤效率和优良的耐腐蚀性,能够满足工业生产对高效过滤的需求,因此受到广泛应用。

2. 环境保护意识提升近年来,全球对环境保护的意识不断提高,各国纷纷加强环保法规和政策的推进。

玻璃纤维滤纸作为一种环保材料,能够有效过滤空气和液体中的颗粒和污染物,因而在环保行业中得到广泛应用。

3. 新兴应用领域随着科技的进步和社会的发展,新兴领域对高效过滤材料的需求不断增长。

例如,电子行业对精细过滤材料的需求量较大,而玻璃纤维滤纸正是一种理想的选择。

市场挑战和机遇1. 市场竞争激烈玻璃纤维滤纸市场竞争激烈,不仅来自国内外众多生产商的竞争,还面临着其他材料滤纸的竞争。

在这种情况下,玻璃纤维滤纸生产商需要提高产品品质和技术水平,以获得更大的市场份额。

2. 产品技术升级随着科技的不断进步,滤料领域的技术也在不断升级和创新。

玻璃纤维滤纸生产商需要不断改进产品的过滤效率、耐高温性能等方面,以适应市场对高性能滤料的需求。

3. 市场多元化需求不同行业对滤料的需求存在差异,玻璃纤维滤纸生产商需要根据市场需求进行不同规格和型号的产品开发和生产,以满足不同客户的需求。

发展趋势1. 技术革新和升级玻璃纤维滤纸市场将会继续面临技术革新和升级的趋势。

生产商需要不断投入研发,提升产品的过滤效果、耐温性能和寿命,以满足不断升级的市场需求。

2024年纺织过滤材料市场发展现状

2024年纺织过滤材料市场发展现状

纺织过滤材料市场发展现状引言纺织过滤材料是一种广泛应用于工业领域的过滤材料,其主要作用是将固体颗粒、液体悬浮物、甚至气体颗粒等杂质从流体中分离出来。

纺织过滤材料具有密度高、孔隙结构稳定、过滤效果好等特点,被广泛应用于水处理、医药、食品饮料、化工、环保等行业。

本文将就纺织过滤材料市场的发展现状进行分析。

市场规模及增长趋势纺织过滤材料市场在过去几年持续快速增长。

随着全球工业化进程的加速,对清洁、纯净流体的需求不断增加,促使了纺织过滤材料市场的发展。

根据市场研究,2019年全球纺织过滤材料市场规模超过100亿美元,并预计在未来几年将保持稳定增长。

应用领域分析水处理行业水处理行业是纺织过滤材料的主要应用领域之一。

随着全球水资源短缺问题的日益突出,水处理市场需求不断增加。

纺织过滤材料在水处理中可以有效去除悬浮物、沉淀物、细菌等杂质,保证出水的清洁与安全。

医药行业在医药行业,纺织过滤材料被广泛应用于药液的过滤、无菌状况的保持等方面。

随着医疗技术的进步和人们对医疗卫生的要求提高,对纺织过滤材料的需求稳定增长。

化工行业纺织过滤材料在化工行业中广泛应用于液体过滤、颗粒分离等环节。

随着化工行业的不断发展和成熟,对纺织过滤材料的需求也在稳步增长。

其他行业纺织过滤材料还在食品饮料、环保等行业中得到广泛应用。

食品饮料行业要求对流体进行过滤,以保证产品质量和生产环境清洁。

环保行业需要纺织过滤材料对废水废气进行处理和净化。

市场竞争格局纺织过滤材料市场竞争激烈,主要的竞争者包括国内外知名企业和中小型企业。

在市场占有率方面,全球领先的纺织过滤材料制造商主要来自美国、德国、日本等发达国家。

技术发展趋势纺织过滤材料的技术发展主要体现在材料的改进和创新。

近年来,纺织过滤材料的新材料研发不断涌现,如纳米纤维过滤材料、功能化纺织过滤材料等。

这些新材料在提高过滤效果、延长使用寿命、降低维护成本等方面具有显著优势。

未来发展趋势纺织过滤材料市场未来的发展前景广阔。

纳米纤维材料在过滤技术中的应用

纳米纤维材料在过滤技术中的应用

纳米纤维材料在过滤技术中的应用纳米纤维材料是一种由纳米级纤维组成的材料,在过滤技术中具有广泛的应用。

它们的特殊结构和优异性能使得纳米纤维材料成为高效过滤的理想选择。

本文将探讨纳米纤维材料在空气过滤和水处理领域中的应用,并介绍其优势和未来发展方向。

一、纳米纤维材料在空气过滤中的应用纳米纤维材料在空气过滤中具有卓越的效果。

由于其纳米级纤维的高比表面积和细小的孔隙,纳米纤维材料可以高效地捕捉和去除空气中的细小颗粒物。

例如,在工业生产过程中产生的有害气体和粉尘可以通过纳米纤维过滤器有效地过滤掉,保护工作环境和工作人员的健康。

此外,纳米纤维材料还可以用于空气净化领域。

它们具有优异的吸附性能,可以吸附和去除空气中的有害气体和异味。

利用纳米纤维材料制成的空气净化器可以有效净化室内空气,改善人们的生活质量。

二、纳米纤维材料在水处理中的应用纳米纤维材料在水处理中也具有广泛的应用。

由于其纳米级纤维的高孔隙率和高比表面积,纳米纤维膜可以实现高效的分离和过滤,用于去除水中的悬浮物、沉积物和微生物等。

纳米纤维膜的应用可以解决传统水处理技术中存在的问题。

例如,传统的混凝沉淀方法在去除水中微小颗粒时效果有限,而纳米纤维膜可以有效地去除微小颗粒,提高水的净化效果。

此外,纳米纤维材料还具有良好的抗污染性能,可以降低膜的堵塞和污染,延长其使用寿命。

三、纳米纤维材料的优势和未来发展方向纳米纤维材料在过滤技术中的应用具有以下优势:首先,纳米纤维材料具有高比表面积和丰富的微观孔隙结构,这使得其具有出色的分离能力和过滤效率。

其次,纳米纤维材料制备工艺相对简单,可以通过电纺、溶胶凝胶等方法制备,具备可扩展性和可控性。

此外,纳米纤维材料还具有高强度、高柔软性和良好的机械性能,适用于不同的过滤环境和应用场景。

然而,纳米纤维材料在过滤技术中仍然存在一些挑战。

例如,纳米纤维的制备技术需要进一步改进,以提高材料的纯度和一致性。

此外,纳米纤维材料的成本也需要进一步降低,以促进其在工业生产中的广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论纤维过滤技术的新进展
摘要:论文介绍、分析了“自然堆积式”和“有序装填式”等纤维过滤技术的特点,阐述了结合两类滤床优势的柔性自反馈纤维过滤技术的原理。

该技术有效解决了纤维滤料过滤与清洗相矛盾的难题,其过滤精度高,运行成本低,滤料使用寿命长,设备结构简单、操作方便、基本免维护。

关键词:纤维束过滤柔性自反馈
中图分类号:x703 文献标识码:a 文章编号:
1672-3791(2011)12(c)-0000-00
纤维过滤技术从二十世纪八十年代在我国开始工业应用以来,以过滤精度高、滤速快、截污容量大等特点,成为石英砂等颗粒状滤料过滤器的替代产品,市场占有率不断扩大。

在实际的应用过程中,研究人员不断改进,从以纤维球[1]和彗星式[2]纤维滤料等为代表的“自然堆积式”和以胶囊挤压[3]和活动孔板[4]结构等为代表的“有序装填式”两个方向对纤维过滤技术进行了发展和探索。

特别是近年来,研究人员从理论上大胆创新,结合两类纤维过滤器的技术优势,从纤维本身的特性出发,通过深入的理论分析和试验研究,在选择最适宜用作滤料的纤维和最佳膨化工艺基础上,设计出过滤效果好,又有利于反洗的设备结构,在解决纤维滤料过滤精度高而清洗困难的技术难题的同时,实现纤维过滤装置的自反馈运行,同时达到了设备结构简单、操作方便、基本免维护的理想效果,形成了柔性自反馈纤维过滤技术。

1自然堆积式短纤维过滤器
所谓“自然堆积式”纤维过滤器,是指床型结构类同于颗粒床,仅是以纤维滤料代替了颗粒滤料。

目前,主要的自然堆积式纤维过滤器有:纤维球过滤器、彗星式纤维过滤器。

纤维球过滤器过滤精度高,截污量大:3~10kg/m3,过滤周期长,短路、偏流现象少。

纤维球滤料的不足之处在于:反冲洗时,滤芯密实处积泥难以冲洗掉,这部分残存积泥一方面使纤维球截污能力降低,另一方面在再次过滤时因滤料受压释放而影响出水水质,滤料使用寿命较短,造价较高。

彗星式纤维过滤器因过滤材料外形近似于“彗星”而得名,滤速最高可达50m/h,反冲洗性能得到较大的改善。

彗星式纤维滤料在使用过程中存在的主要问题有:反洗采用机械搅拌,容易使滤料破坏,如采取大强度气水合洗则滤料易流失。

2有序装填的长纤维过滤器
有序装填的长纤维滤料采用丙纶长丝作为滤料,设备内装有限制滤料位置的结构。

由于大幅提高了反洗气、水对纤维滤料的作用力,所以反洗效果好。

比较典型的有:胶囊挤压式纤维过滤器、活动孔板式纤维过滤器等。

胶囊挤压式纤维过滤器是较早成功地用于我国工程界的一种纤
维束过滤器。

因滤速快、反洗彻底、精度可调,在上世纪九十年代得到广泛推广。

该型过滤器在长期应用中显露出胶囊易疲劳损坏,检修量大,操作较复杂,胶囊充填在滤层中降低了滤床的有效过滤
面积等不足之处。

活动孔板式纤维过滤器取消了胶囊,增大了截污能力,操作简单,滤速高。

该型过滤器的主要不足有:带逆止阀和导柱的滑动孔板易出现卡塞现象,影响稳定运行。

如采用单层不锈钢孔板,由于孔板有一定重量,采用下进水方式过滤时,滤液流经滑动孔板时的水头损失对滑板的推力较小,因此对纤维层的压缩作用是有限的;如采用上进水方式过滤,反洗时,活动孔板的位移幅度又不足以充分拉伸纤维束,难以达到最佳的清洗效果。

3柔性自反馈纤维过滤器理论依据、结构特点与性能优势
通过对上述纤维过滤技术的理论分析和大量试验,研究人员大胆创新,开发出了独特的柔性自反馈纤维过滤技术。

(1)依据纤维深层过滤理论,结合“自然堆积式”和“有序装填式”两类纤维过滤设备各自优势,柔性自反馈纤维过滤器选用丙纶长丝作为滤料,采用上端自由的结构及独特的纤维束安装方式,使过滤时纤维滤床处于接近短纤维自然堆积床层的状态,清洗时又呈现“有序装填式”状态,有效解决了纤维滤料过滤效果好而清洗困难的矛盾,既保证了过滤效果和出水水质,又使反洗效果大为提高。

(2)滤料为丙纶长丝,密度小,底端固定,上端自由,纤维密度随水流压差大小变化而变化,,形成柔性自反馈的过滤机制,过滤精度高,并避免了短路、偏流现象。

(3)柔性自反馈纤维过滤技术过滤精度高:水中悬浮物的去除率
可接近100%,经良好混凝处理的原水浊度≤20ftu时,过滤后出水浊度始终≤2ftu。

并对细菌、病毒、大分子有机物等杂质有显著的去除作用;过滤速度快:为30m/h-50m/h,是传统过滤器过滤速度的3-5倍;截污容量大:为5-10kg/m3(滤料),是传统过滤器截污容量的2-4倍;占地面积小:相同的制水量,占地仅为传统过滤器的1/3-1/2;自用水耗低:仅为周期制水量的1-3%;一般情况下可用原水进行反洗;滤元连续使用寿命不少于10年,不存在跑料、板结等现象。

柔性自反馈纤维过滤技术设备结构简单、操作方便、基本免维护。

在设备的自用水率、运行成本、基建投资等各方面指标均处于国内领先水平。

该技术可在电力、石化等工业领域的供水、循环水净化处理,市政供水的过滤处理,污水深度处理等方面替代传统的石英砂过滤,并可方便地对原有的砂滤器、纤维过滤器进行技术改造。

参考文献
[1] 金实.纤维球过滤材料「p].中国实用新型,(zl852000391)
[2] 李振瑜.彗星式纤维过滤体「p].中国实用新型,
( zl982492987)
[3] 刘凡清.介质过滤方法及设备[p]. 中国专利,(zl87100467)
[4] 承慰才.纤维过滤装置[p]. 中国专利,(zl98246416.9)。

相关文档
最新文档