线性规划的几种类型与基本不等式

合集下载

第十章 线性规划与基本不等式

第十章  线性规划与基本不等式

第十章 线性规划与基本不等式1.利用线性规划求目标函数的最值【背一背基础知识】1. 二元一次不等式(组)表示的平面区域不等式 表示区域Ax +By +C >0 直线Ax +By +C =0某一侧的所有点组成的平面区域不包括边界直线 Ax +By +C≥0 包括边界直线不等式组各个不等式所表示平面区域的公共部分2. 二元一次不等式表示的平面区域的确定:对于二元一次不等式所表示的平面区域的确定,一般来说方法:是取不在直线上的点(x 0,y 0)作为测试点来进行判定,满足不等式的,则平面区域在测试点所在的直线的一侧,反之在直线的另一侧.(直线定界,点定区域)3. 线性规划中的基本概念名称 意义约束条件 由变量x ,y 组成的不等式(组)线性约束条件 由x ,y 的一次不等式(或方程)组成的不等式(组) 目标函数 关于x ,y 的函数解析式,如z =2x +3y 等 线性目标函数 关于x ,y 的一次解析式 可行解 满足线性约束条件的解(x ,y ) 可行域 所有可行解组成的集合最优解 使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题4.求目标函数的最值步骤:(1).作图—画出约束条件表示的平面区域;(2). 平移—利用线性平移的方法找点使目标函数取得最值;(3).求值—求出目标函数的最值. 【讲一讲基本技能】求目标函数最值对目标函数的处理主要有三种方法:(1)截距型by ax z +=:先令0=z ,作出0=+by ax 直线,在平面可行域中平移扫描。

(2)斜率型ax by z --=:用直尺以),(b a 为固定点,在可行域中旋转扫描。

(3)距离型c by y ax x z +-+-=2222:以),(b a 为固定点,像水波纹的形式四处扩散。

【典型例题】例1变量,x y 满足约束条件02200x y x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩,若2zx y =-的最大值为2,则实数m 等于( )A .2-B .1-C .1D .2例2若变量x y ,满足约束条件111x y y x x +≥⎧⎪-≤⎨⎪≤⎩则2z x y =-的最小值为( )A 、1- B 、0 C 、1 D 、2 【练一练趁热打铁】1. 若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .2 2. 已 x ,y 满足约束条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则y x z+-=2的最大值是( )(A )-1 (B )-2 (C )-5 (D )12.基本不等式【背一背基础知识】1. 基本不等式ab ≤a +b2①基本不等式成立的条件:a>0,b>0.②等号成立的条件:当且仅当a =b 时取等号.2. 几个重要的不等式①.ab b a 222≥+(a ,b ∈R );b a +a b ≥2(a ,b 同号).②.),(2)2(222R b a b a b a ab ∈+≤+≤ 3. 算术平均数与几何平均数设a>0,b>0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4. 利用基本不等式求最值问题 :已知x>0,y>0,则: (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小). (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是42p .(简记:和定积最大) 【讲一讲基本技能】1.在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.2.对于公式a +b≥2ab ,ab ≤2)(2b a +,要弄清它们的作用和使用条件及内在联系,两个公式也体现了ab 和a +b 的转化关系.3.运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2a b 逆用就是ab ≤222b a +;a +b2≥ab (a ,b>0)逆用就是ab ≤2)(2b a +(a ,b>0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 【典型例题】例1. 若实数,a b 满足12ab a b +=,则ab 的最小值为( )A 、2 B 、2 C 、22 D 、4例2若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( )A .2B .3C .4D .5例3.若正数y x ,满足xy y x 53=+,则y x 43+的最小值是( )A .524 B .528 C .5 D .6【练一练趁热打铁】1. 设函数)0(112)(<-+=x xx x f 则)(x f ( ) A .有最大值 B .有最小值 C .是增函数 D .是减函数 2.若2x >,则12x x +-的最小值为_______ .3.已知a >0,b >0,且a +2b =1.则1a +1b 的最小值为________.【测一测,彰显自我】1. 已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( )A .(-24,7) B .(-7,24) C .),(),(∞+∞247-- D .),(),(∞+∞742-- 2.设变量xy ,满足约束条件: ,则32z x y =-+的最小值为( ) A .-2 B .-4 C .-6 D .-83.若实数b a ,满足22=+b a 则b a 39+的最小值是( ) A .18 B .6 C .23 D .2434.若变量,x y 满足约束条件3,212,21200x y x y x y x y -≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩,则34z x y =+的最大值是( ) A 、12 B 、26 C 、28 D 、335. 若x,y 满足约束条件:x 2y 22x y 44x y 1+≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数z=3x y -的取值范围是( ) A 263⎡⎤-⎢⎥⎣⎦ , B 213⎡⎤--⎢⎥⎣⎦ , C []16- , D 362⎡⎤-⎢⎥⎣⎦ , 13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩6. 若变量x ,y 满足约束条件1211x y x y y +≥-⎧⎪-≤⎨⎪≤⎩,则3zx y =-的最小值为( )A.-7B.-1C.1D.27. 若,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩;则x y -的最小值是( )3.A B. 0C. 32 D.38.已知0<x ,函数4y x x=+的最大值是 ( )A.22 B.4 C.-4 D.-22 9. 函数)1(122>-+=x x x y 的最小值是( )A .232+ B .232-C .32 D .2 10.若直线2y x =上存在点(x ,y )满足约束条件30 230x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为( ) A .-1 B .1 C.32 D .211. 已知0a >,,x y 满足约束条件 ,若2z x y =+的最小值为1,则a =( ) 12. A .41 B .21C .1D .2 12.已知O 是坐标原点,点A (-1,1).若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y≥2,x≤1,y≤2上的一个动点,则OA ·OM的取值范围是 ( )A .]0,1[- B .]1,0[ C .]2,0[ D .]2,1[-13. 不等式224x x-<的解集为________.14. 若,x y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则yx的最大值为 ______. 15. 已知0,0,8,a b ab >>= 则当a 的值为______ 时()22log log 2a b ⋅取得最大值. 16. 若,x y 满足约束条件13,1y x x y y -≤⎧⎪+≤⎨⎪≥⎩则3z x y =+的最大值为 ______.222y xx y x ⎧⎪+⎨⎪-⎩≥≤≥。

1.线性规划

1.线性规划
其特征是: 1.解决问题的目标函数是多个决策变量的线性函数,
通常是求最大值或 最小值;
2.解决问题的约束条件是一组多个决策变量的线性不
等式或等式。
【例1.2】某商场决定:营业员每周连续工作5天后连续休息2天, 轮流休息。根据统计,商场每天至少需要的营业员如表1.2所示。
表1.2 营业员需要量统计表
min f (x), s.t. x∈.
约束条件
可行解域
线性规划(Linear Programming,缩写为LP) 是运筹学的重要分支之一,在实际中应用得较广 泛,其方法也较成熟,借助计算机,使得计算更方便, 应用领域更广泛和深入。 线性规划通常研究资源的最优利用、设备最佳运 行等问题。例如,当任务或目标确定后,如何统筹兼 顾,合理安排,用最少的资源(如资金、设备、原标 材料、人工、时间等)去完成确定的任务或目标;企 业在一定的资源条件限制下,如何组织安排生产获得 最好的经济效益(如产品量最多 、利润最大)。
运筹学的主要内容
数 学 规 划 组 合 优 化 随 机 优 化
线性规划 非线性规划 整数规划 动态规划 多目标规划 双层规划 最优计数问题 网络优化 排序问题 统筹图 对策论 排队论 库存论 决策分析 可靠性分析
学 科


许多生产计划与管理问题都可以归纳为最优 化问题, 最优化模型是数学建模中应用最广泛的 模型之一,其内容包括线性规划、整数线性规划、 非线性规划、动态规划、变分法、最优控制等. 近几年来的全国大学生数学建模竞赛中,几 乎每次都有一道题要用到此方法. 此类问题的一般形式为: 目标函数
星 期 需要 人数 星 期 需要 人数

二 三 四
300
300 350 400

2 线性规划

2 线性规划

第一节 线性规划问题及其数学模型
可加性假定:每个决策变量对目标函数和约
束方程的影响是独立于其他变量的,目标函 数值是每个决策变量对目标函数贡献的总和 连续性假定:线性规划问题中的决策变量应 取连续值。 确定性假定:线性规划问题中的所有参数都 是确定的参数。线性规划问题不包含随机因 素。
约 束 方 程
约束条件
变量约束
第一节 线性规划问题及其数学模型
线性规划问题隐含的假定: 比例性假定 可加性假定 连续性假定 确定性假定
比例性假定:决策变量变化引起的目标函数
的改变量和决策变量的改变量成比例,同样, 每个决策变量的变化引起约束方程左端值的 改变量和该变量的改变量成比例
≥0
=
≥0
第一节 线性规划问题及其数学模型
标准型的简缩形式
max Z
c x
j j 1
n
j
s .t
n aij x j bi , i 1,2 , , m j 1 x j 0 , i 1,2 , , m

第一节 线性规划问题及其数学模型

松弛变量
a i 1 x 1 a i 2 x 2 a in x n bi
a i 1 x1 a i 2 x 2 a in x n x p bi , x p 0
剩余变量
练习
例:将下列线性规划问题划为标准形式: min Z = x1+3x2
s.t.
6x1+7x28 -x1+3x2-6 x1-x2=3 x10
可行域无界
x1+2x2 10 x2 0 x1
可行域无界
x2
x1 0

7.2 线性规划

7.2 线性规划

7.2.1 线性规划简介
1. 基本概念
未知数 x j 称为决策变量; 目标函数经常记为 z 或 w,称为目标变量; 目标函数的变量系数 c j 称为价值系数; 约束条件的变量系数 aij 称为工艺系数; 约束条件右端的常数 bi 称为资源限量; 约束条件前的记号 “s.t.” “subject to” 是 的缩写, 意即“受约束于”.
7.2.1 线性规划简介
1. 基本概念
没有可行解的线性规划模型称为不可行 (infeasible). 不可行的线性规划模型没有最优解. 如果最大(小)化线性规划模型的目标函数可以 在可行域取得任意大(小)的值,则称为无界 (unbounded). 无界的线性规划模型也没有最优解. 由于严格不等式约束有可能导致线性规划模型 虽然具有非空的可行域,但是目标函数却不存在最大 (小)值(例如 max z=x, s.t. x<1) ,所以不考虑严格 不等式约束.
x1 2 x2 6 之间,最优解就保持在点 C(但是最优值
会有所改变).
7
6 6x 1+4x 2=24 5 5x 1+4x 2=21 4 4x 1+5x 2=19.5 3
x2
2
E
D C
最 优 解 : x 1=3, x 2=1.5 x 1+2x 2=6 B
1
F A 0
0
1
2
3 x1
4
5
6
7
图7.5 例7.2.1的价值系数的灵敏度分析
7.2.1 线性规划简介
3. 灵敏度分析
在线性规划模型(7.2.1)中,可以考虑以下的灵敏 度分析问题: (1)价值系数 c j 的变化对最优解的影响. 事实 上,价值系数能够在一定的范围内变化而不引起最优 解的改变(但最优值会变化).

线性规划常见题型及解法 均值不等式(含答案)

线性规划常见题型及解法 均值不等式(含答案)

线性规划常见题型及解法一.基础知识:(一)二元一次不等式表示的区域二元一次不等式0>++C By Ax 表示直线0=++C By Ax 某一侧的所有点组成的区域,把直线画成虚线表示不包括边界, 0≥++C By Ax 所表示的区域应包括边界,故边界要画成实线.由于在直线0=++C By Ax 同一侧的所有点(x,y ),把它的坐标(x,y )代入C By Ax ++,所得的符号相同,所以只需在此直线的某一侧取一个特殊点(0,0y x ),从C By Ax ++00的正负即可判断0≥++C By Ax 表示直线哪一侧的平面区域。

通常代特殊点(0,0)。

(二)线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =A x +B y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =A x +B y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(4)用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. (5) 利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解. 最后,还要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.线性规划是新教材中新增的内容之一,由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下常见题型。

第一章_线性规划

第一章_线性规划

第 一 节 线性规划问题及其数学模型
一、线性规划问题的数学模型
线性规划问题主要解决以下两类问题: 1、任务确定后,如何统筹安排,做到应用尽量少的人 力和物力资源来完成任务; 2、在一定量的人力、物力资源的条件下,如何安排、 使用他们,使完成的任务最多。
在生产管理和经济活动中,经常会遇到线性规划问 题,如何利用线性规划的方法来进行分析,下面举例 来加以说明。
表1-2
成分
产品来源
分析:很明显,该厂可以有多种不同的方案从A,B 两处采购原油,但最优方案应是使购买成本最小的一 个,即在满足供应合同单位的前提下,使成本最小的 一个采购方案。
解:设分别表示从A,B两处采购的原油量(单位:万 吨),建立的数学模型为:
m in S 200 x1 290 x2
3. 若存在无非负要求的变量。即有某一个变 量 xj 取正值或负值都可以。这时为了满足标准型 对变量的非负要求,可令 xj = xjˊ- xj〞, 其中: xjˊ、 xj〞 0 ,由于xjˊ可能大于也可能小于xj〞,故 xj 可以为正也可以为负。
上述的标准型具有如下特点: (1)目标函数求最大值; (2)所求的变量都要求是非负的; (3)所有的约束条件都是等式; (4)常数项非负。 综合以上的讨论可以说明任何形式的线
max Z x1 2x2 3x4 3x5 0x6 0x7
x1 x2 x4 x5 x6 7
x13x1x2
x4 x2
x5 2x4
x7 2 2x5 5
x1, x2, x4, , x7 0
第二节 线性规划问题的图解法及几何意义
例1-1:(计划安排问题)某工厂在计划期内安排 生产Ⅰ、Ⅱ两种产品,已知生产单位产品所占用的 设备A、B的台时、原材料的消耗及两种产品每件 可获利润见表所示:

线性规划知识点

线性规划知识点

线性规划知识点线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

它可以帮助我们在资源有限的情况下,找到最佳的解决方案。

本文将详细介绍线性规划的基本概念、模型构建、求解方法以及应用领域。

一、基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,该函数被称为目标函数。

例如,最大化利润或最小化成本。

2. 约束条件:线性规划问题通常有一系列线性约束条件,用于限制变量的取值范围。

例如,生产数量不能超过资源限制。

3. 变量:线性规划问题中的变量是我们要优化的决策变量。

例如,生产的数量或分配的资源。

4. 非负约束:线性规划的变量通常需要满足非负约束,即变量的取值必须大于等于零。

二、模型构建线性规划问题的模型构建包括确定目标函数、约束条件和变量的定义。

下面以一个简单的生产问题为例进行说明。

假设某工厂生产两种产品A和B,每单位产品A的利润为10元,产品B的利润为15元。

工厂拥有两台机器,每台机器每天的工作时间为8小时。

生产一单位产品A需要2小时,生产一单位产品B需要3小时。

工厂希望确定每种产品的生产数量,以最大化总利润。

目标函数:最大化总利润,即10A + 15B。

约束条件:工作时间约束,即2A + 3B ≤ 16。

非负约束:A ≥ 0,B ≥ 0。

三、求解方法线性规划问题可以使用多种方法求解,其中最常用的方法是单纯形法。

单纯形法通过迭代的方式逐步接近最优解,直到找到最优解为止。

单纯形法的基本步骤如下:1. 将线性规划问题转化为标准形式,即将不等式约束转化为等式约束。

2. 选择一个初始可行解,通常为原点(0,0)。

3. 计算目标函数的值,并确定是否达到最优解。

4. 如果未达到最优解,则选择一个进入变量和一个离开变量,通过调整这两个变量的值来改善目标函数的值。

5. 重复步骤3和步骤4,直到达到最优解。

四、应用领域线性规划在各个领域都有广泛的应用,以下是一些常见的应用领域:1. 生产计划:线性规划可以帮助企业确定最佳的生产计划,以最大化利润或最小化成本。

线性规划知识点总结

线性规划知识点总结

线性规划知识点总结一、引言线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

它在各个领域中都有广泛的应用,如生产计划、资源分配、物流管理等。

本文将对线性规划的基本概念、模型建立、求解方法和应用进行总结。

二、基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。

目标函数的系数称为目标系数,代表了各个决策变量对目标的影响程度。

2. 约束条件:线性规划的决策变量需要满足一系列线性约束条件,通常表示为等式或者不等式。

3. 可行解:满足所有约束条件的解称为可行解。

4. 最优解:在所有可行解中,使目标函数取得最大(最小)值的解称为最优解。

三、模型建立1. 决策变量:线性规划中,需要确定一组决策变量,代表问题中的可调整参数。

决策变量通常用符号x1, x2, ..., xn表示。

2. 目标函数:根据问题的具体要求,建立目标函数。

例如,最大化利润、最小化成本等。

3. 约束条件:根据问题中的限制条件,建立线性约束条件。

约束条件通常表示为等式或者不等式。

4. 非负约束:决策变量通常需要满足非负约束条件,即x1, x2, ..., xn≥0。

四、求解方法1. 图解法:对于二维线性规划问题,可以使用图解法进行求解。

首先绘制约束条件的直线,然后确定可行解区域,最后在可行解区域中找到最优解。

2. 单纯形法:单纯形法是一种常用的求解线性规划问题的方法。

通过不断迭代,找到使目标函数取得最大(最小)值的最优解。

3. 整数规划:当决策变量需要取整数值时,可以使用整数规划方法进行求解。

整数规划通常比线性规划更复杂,求解时间更长。

4. 网络流算法:对于某些特殊的线性规划问题,可以使用网络流算法进行求解。

网络流算法利用图论的方法,将问题转化为网络流问题进行求解。

五、应用领域1. 生产计划:线性规划可以用于确定最佳生产计划,使得生产成本最小化或者利润最大化。

2. 资源分配:线性规划可以用于确定资源的最佳分配方案,如人力资源、物资资源等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划与基本不等式
一、线性规划
例1:设变量,x y 满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≤-⎩
,则目标函数2z x y =+的最小值为
A. 2
B. 4
C. 5
D. 7
例2:已知实数,x y 满足20006x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩
,若目标函数z x y =+的最大值为m ,最小值为n ,则m+n 为
A. 1
B. 6
C. 10
D. 12
例3:已知,x y 满足约束条件0101/2x y x y y -≥⎧⎪+≤⎨⎪≤≤⎩
,若目标函数z ax y =+(a 为常数)仅在点11(,)22取得最大值,则实数a 的取值范围是
A. (-2,2)
B. (0,1)
C. (-1,1)
D. (-1,0)
例4:在平面直角坐标系中,不等式组040x y x y x a +≥⎧⎪-+≥⎨⎪≤⎩
(a 是常数)所表示的区域的面积是9,那么实数a 的值为
A. 2
B. 2-
C. -5
D. 1
例5:已知变量,x y 满足的不等式组0210x y x kx y ≥⎧⎪≥⎨⎪-+≥⎩
表示的是一个直角三角形围成的平面区域,则实数k= A. 12-
B. 12
C. 0
D. 102
-或 例6:设,x y 满足约束条件3602000x y x y x y --≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩
,若目标函数,(0,0)z ax by a b =+>>的最大值为6,则46a b +的最小值为 A.
256 B. 253 C. 506 D. 503
例7:已知实数,x y 满足00220y x y x y ≥⎧⎪-≥⎨⎪--≤⎩,记11y t x -=+的最大值为m ,最小值为n ,则m-n= A.
43 B. 34 C. 43- D. 34
-
例8:已知变量,x y 满足约束条件111x y x y ≤⎧⎪≤⎨⎪+≥⎩,则x y z x y -=+的取值范围 A. (1,1)- B. (1,1]- C. [1,1)- D. [1,1]-
例9:当实数,x y 满足不等式组0022x y x y ≥⎧⎪≥⎨⎪+≤⎩
时,恒有3ax y +≤成立,则a 的取值范围
A. (,0]-∞
B. [0,)+∞
C. [0,2]
D. (,3]-∞
例10:已知点(,)P x y 坐标满足条件41x y y x x +≤⎧⎪≥⎨⎪≥⎩
,则22x y +最大值为
A. 2
B. 6
C. 10
D. 12
例11:定义在R 上的函数()f x 是减函数,且对任意的a R ∈,都有()()0f a f a -+=。

若,x y 满足不等式22(2)(2)0f x x f y y -+-≤,则当14x ≤≤时,2x y -的最大值为
A. 1
B. 10
C. 5
D. 8
例12:已知实数,x y 满足约束条件37011x y x y +-≤⎧⎪≥⎨⎪≥⎩
,则||y x -的最大值为
A. 3
B. 4
C. 2
D.
二、基本不等式
例1:若实数满足2=+b a ,则b a 33+的最小值是 .
例2:变式:若44log log 2x y +=,求11x y
+的最小值.并求x,y 的值
例3已知54x <,求函数14245
y x x =-+-的最大值。

例4:求2710(1)
1x x y x x ++=>-+的值域。

例5:求函数2y =的值域
例6:已知0,0x y >>,且191x y
+=,求x y +的最小值。

变式: (1)若+
∈R y x ,且12=+y x ,求y x 11+的最小值
(2)已知+∈R y x b a ,,,且1=+y
b x a ,求y x +的最小值
例7已知x ,y 为正实数,且x 2+y 22 =1,求x 1+y 2 的最大值.
例8.(1)已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。

2.若直角三角形周长为1,求它的面积最大值。

例9、已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值.
作业:
1、已知,x y R +∈,且满足134
x
y +=,则xy 的最大值为 ________ 2、若正实数x ,y 满足26xy x y =++ ,则xy 的最小值是 。

(变式:求2x +y 的最小值为______)
3、已知2lg 8lg 2lg ,0,0=+>>y x y x ,则y
x 311+的最小值是 .A 2 .B 22 .C 4
.D 32 4、函数log (3)1a y x =+-(0a >,1a ≠)的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n
+的最小值为 5、设0a b >>,则()
211a ab a a b ++-的最小值是( ) (A )1 (B )2 (C )3 (D )4
6、若,,0a b c >且2
22412a ab ac bc +++=,则a b c ++的最小值是 .
A .
B 3 .
C 2 .
D 7、设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩
,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为
8、若,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩
;则x y -的取值范围为_____ 9、若直线x y 2=上存在点),(y x 满足约束条件⎪⎩
⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( )
A .
21 B .1 C .2
3 D .2 10、已知变量,x y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )
()A 12 ()B 11 ()C 3 ()D -1。

相关文档
最新文档