智能仪器设计实例设计实例

合集下载

智能仪器仪表课程设计

智能仪器仪表课程设计

摘要随着时代的进步和发展,智能仪表已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术, 本文主要介绍了一个基于89C51单片机的温度报警系统,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也一一进行了介绍,该系统可以方便的实现实现温度采集和模数转换,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。

AT89C51与ADC0808结合实现最简温度报警系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。

关键词:温度报警;ADC0808;AT89C51目录1 智能仪器仪表的简介 (2)1.1智能仪器仪表简介 (2)1.2智能仪器仪表的作用 (2)1.3本课题的背景和意义 (3)2 系统设计简介 (4)2.1 芯片简介 (4)2.2 设计要求 (4)2.3 设计方案论证 (4)2.4 硬件设计电路 (5)3 系统硬件设计 (6)3.1控制模块 (6)3.2显示电路 (6)3.3转换模块 (7)3.4报警模块 (7)3.5系统总体电路图 (8)4 设计语言及软件介绍 (9)4.1 keil语言介绍 (9)4.2 Proteus软件介绍 (9)4.3 keil与proteus联调与仿真实现 (10)5 系统软件设计 (11)5.1 程序设计思路 (11)5.2源程序 (12)5.3 调试及仿真 (17)6 结论 (18)7 参考文献 (18)1 智能仪器仪表的简介1.1智能仪器仪表简介仪器仪表(英文:instrumentation)仪器仪表是用以检出、测量、观察、计算各种物理量、物质成分、物性参数等的器具或设备。

真空检漏仪、压力表、测长仪、显微镜、乘法器等均属于仪器仪表。

广义来说,仪器仪表也可具有自动控制、报警、信号传递和数据处理等功能,例如用于工业生产过程自动控制中的气动调节仪表,和电动调节仪表,以及集散型仪表控制系统也皆属于仪器仪表。

第7章 智能仪器的设计与调试

第7章  智能仪器的设计与调试
(4)成本低。仪器系统使用的功能模块,一般为批量 生产,成本低而且性能稳定,因此组合成的系统成本也较低。
第7章 智能仪器的设计与调试
7.1.2 设计一台智能仪器的一般过程如图7-1所示,主要分为
三个阶段。第一阶段,确定设计任务,并拟定设计方案;第 二阶段,硬件和软件设计;第三阶段,系统调试及性能测试。 下面简要介绍各阶段的工作内容和设计任务。
第7章 智能仪器的设计与调试
2.软件、硬件协调原则 智能仪器的某些功能(如逻辑运算、定时、滤波)既可通过硬 件实现,也可通过软件完成。硬件和软件各有特点,使用硬件可以 提高仪器的工作速度,减轻软件编程任务。但仪器成本增加,结构 较复杂,出现故障的机会增多。以往人们在智能仪器设计中,过多 地着眼于降低硬件成本,尽量“以软代硬”。随着LSI (LargeScaleIntegration)芯片功能增强、价格下降,这种情况正在 发生着变化。哪些设计子任务应该“以硬代软”,哪些应该“以软代 硬”,要根据系统的规模、功能、指标和成本等因素综合考虑。一 般的原则是,如果仪器的生产批量较大,应该尽可能压缩硬件投入, 用“以软代硬”的办法降低生产成本。此外,凡简单的硬件电路能 解决的问题不必用复杂的软件取代;反之,简单的软件能完成的任 务也不必去设计复杂的硬件。在具体的设计过程中,为了取得满意 的结果,硬件与软件的划分需要多次协调和仔细权衡。
第7章 智能仪器的设计与调试
当仪器总体方案和选用的微处理器种类确定之后,采用 “自顶向下”的设计原则,把仪器划分成若干个便于实现的 功能模块。仪器中有些功能模块既可以用硬件实现,也可以 用软件实现,设计者应该根据仪器的性能价格比、研制周期 等因素对硬件和软件的选择做出合理安排。在对仪器硬件和 软件协调之后,作出仪器总体硬件功能框图和软件功能框图。

基于STM32的通用智能仪表设计及实现

基于STM32的通用智能仪表设计及实现

1系统设计STM32微型处理器用的是Cortex-M3内核,外面的接口非常多,主频高达72MHz,它是一种能远程控制的仪器,CAN能被广泛应用到很多行业,优点很多。

如功能强大、可靠性高、技术先进且成本合理等。

CAN总线可以支持多主,通信率高达1Mbit/s(间离小于20m),用这种方式来布置线路,方便性和可靠性大幅度增强。

下图就是智能仪表的设计图。

2关键硬件设计STM32可以用在很多设备上,可以根据用途,选择合适的科学的硬件要求。

这种系统还有一个强大的功能是能裁剪,我们可以按照需求对硬件进行调整,找出适合我们,经济实惠的进行使用。

2.1核心处理器核心处理器使用STM32F103VC,内核是功能强大的32位RISC,工作频率为72MHz,内部安装高速的存储器,能够增强I/O的端口并能连接到两条APB的总线;有三个十二位的ADC,能够提供十五种采样通道或者多种模式;DMA控制器的通道很多,高达十二个,能持的外设种类更多;还包括四个十六位的定时器与两个PWM 定时器;通信标准接口很多,工业领域非常适合;带4个片选的灵活的静态存储器控制器,支持SD卡、SRAM、PSRAM、NOR和NAND存储器;提供并行LCD接口,兼容8080/6800模式;采用LQFP100封装,提供80个GPIO;除了模拟输入I/O,其他管脚可以承受5V信号输入;供电范围非常宽,两伏到三点六伏之间,还有能编程的电压检测器,让整个系统的工作更稳定,抗干扰能力更强,把温度传感器与内部ADC直接相连,能更简便的监测器件周围的环境;最适合的温度是四十到一百零五摄氏度,达到工业生产中的应用需求。

2.2抗干扰设计内部建设也重要。

每种电路里面含有两种类型的信号,一类是模拟信号,另一类是数字信号。

两类中抗干扰能力最强的是数字信号,但是噪音很大,它就成了模拟信号的主要噪声源,因此要重视两种信号的隔离与去耦。

用5V电源输入,要在输入端加入相应的去耦电容。

智能仪器课程设计报告

智能仪器课程设计报告

天津电子信息职业技术学院传感器技能实训课题名称智能温度测温系统姓名王先民学号20班级电信S10-1专业电子信息工程技术所在系电子技术系指导教师岑永祚完成日期2011年12月11日一、 主要内容温度传感器DS18B20采集环境模拟信号,其输出送入AT89C51,单片机在程序的控制下,将处理过的数据送到移位寄存器74LS164,经74LS164输出后驱动三位数码管显示。

当被测温度高于18℃时,单片机发出控制信号使降温电扇以自然风的形式旋转,温度越高转速越快,温度36℃以上时风扇全速工作,点亮此功能指示灯。

二、 基本要求(1)设计测量温度范围-55℃~+125℃的智能测温系统,要求数码管实时显示测量温度,单片机根据温度高低确定风扇转速 (2)画出程序框图(3)有完整的整机电路图(protel 绘制)(4)完成格式正确、内容完整的实验报告三、 参考文献王祁, 智能仪器设计基础.北京:机械工业出版社,2009目录一、前言 (4)二、系统组成 (4)1、设计思路 (5)2、系统的性能指标: (5)3、系统的主要功能: (5)三、电路组成及工作原理 (5)1、温度传感器功能模块 (6)2、AT89C51单片机 ........................................................................................................ 8 3、74LS164移位寄存器 .. (12)4、晶振电路 (12)5、复位电路 ................................................................................................................... 13 6、键盘电路 . (13)7、显示电路 (14)8、稳压电路 ................................................................................................................... 14 9、显示电路 . (15)10、风扇控制电路 (15)四、课程设计心得与体会 (16)五、参考文献 (16)六、整机电路图 (17)七.心得体会 (18)智能温度测量系统的设计一、前言温度是一种基本的环境参数,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量。

智能仪器课程设计

智能仪器课程设计

智能仪器课程设计课程设计名称3位半数字电压表学生姓名、学号谭彩铭(0501170118)指导教师牛国柱2009-1-16课程设计要求设计一3位半直流数字电压表,满足下列要求1、量程为20mV,200mV,2V,20V,200V,测量精度要求0.1%2、3位半数码显示3、工作状态显示4、开机自检5、配简单键盘,如量程切换6、配微型打印机接口由实际操作中遇到的问题找解决方案实际搭建的数字电压表的量程为20mV,200mV,2V和8V,能完成量程的自动切换,并有各种量程状态以及超、欠量程的指示灯显示。

原理图附录一所示。

对应的完整汇编程序见附录三。

1 原理图总体思路由于采用3位半AD转换器TC14433,提供的基准电压为2V,可测电压量程为2V,故大于2V的待测电压衰减后输入,小于2V的待测电压放大后输入。

衰减和放大由51单片机控制控制模拟开关4051,4052来完成。

调试当中,发现若输入电压为负时,比例放大就不准确了,且相差较大,故又用运放和模拟开关搭建了一反相控制电路。

原理图当中,U15为用OP07搭建的电压跟随器,用于增大输入阻抗,减小输出阻抗,以减少对待测电压的影响。

U16为用OP07搭建的一反相器。

U1用于若发现待测电压为负,让待测电压反相后进入后续电路。

U6作用同U15。

U1用于控制是否将待测电压衰减1/4后进入后续电路。

U4和U7用于控制是否对电压进行衰减以及衰减多少。

U17作用同U15。

U2为用MC1403搭建的2V电压源,用于输出较准确的电压源给TC14433作为基准电压。

2 AD转换部分TC14433中,EOC与DU端相连,选择连续工作方式。

EOC与51单片机的中端口0相连,由中断方式采集数据。

中断0采集数据服务子程序如图2所示。

3 升降量程及量程状态指示灯显示程序控制升降量程即控制模拟开关4051和4052,是否对待测电压进行放大或衰减。

如何有效的控制量程的自动转换是一较难点,尤其是保证程序的健壮性。

智能化仪器原理及应用(第三版)课件:智能型温度测量仪

智能化仪器原理及应用(第三版)课件:智能型温度测量仪

智能型温度测量仪
在RAM区中还开辟了4个通用工作寄存区, 共有32个通 用寄存器, 可以适用于多种中断或子程序嵌套的情况。 在MCS-51系列单片机内部, 还有1个由直接可寻址位组 成的布尔处理机, 即位处理机。 指令系统中的位处理指 令专用于对布尔处理机的各位进行布尔处理, 特别适用 于位线控制和解决各种逻辑问题。
智能型温度测量仪
MCS-51 简化结构框图与逻辑符号如图4-3所示。
XTAL1、 XTAL2: 内部振荡电路的输入/ RESET:
EA : 内外程序存储器选择端。 当 EA 为高电平时, 访问内部程序存储器; 当 EA 保持低电平时, 只访问外部 程序存储器, 不管是否有内部存储器。
智能型温度测量仪
P2.0相连。 存储器和8155的控制信号线分别与8031的相应端
相接, 从而可实现各种器件的读写操作。
智能型温度测量仪
4.2.2
温度是一个很重要的物理参数, 也是一个非电量, 自然界中任何物理化学过程都紧密地与温度相联系。 在 很多产品的生产过程中, 温度的测量与控制都直接和产 品质量、 生产效率、 节约能源以及安全生产等重要经济 技术指标相联系。 因此, 温度的测量是一个具有重要意 义的技术领域, 在国民经济各个领域中都受到相当的重 视。
智能型温度测量仪
与此同时, 将数据显示和打印出来; 也可将输出的开关 量经D/A 转换成模拟量输出, 或者利用串、 并行标准接 口实现数据通信。 整机工作过程是在系统软件控制下进 行的。 工作程序编制好后写入只读存储器中, 通过键盘 可将必要的参数和命令存入读/写存储器中。
智能型温度测量仪 图 4-2 智能型温度测量仪的工作流程
智能型温度测量仪
智能化仪器原理及应用

便携式智能伤口评估仪的设计

便携式智能伤口评估仪的设计

便携式智能伤口评估仪的设计摘要:随着我国对人工智能赋能医疗行业的大力推进,我国对“互联网+临床护理”的建设正在持续完善。

其中,针对慢性伤口的管理与评估在临床护理实践中尤为重要,而我国现行的慢性伤口管理与评估技术正处于发展阶段。

本文通过文献综述法对已有伤口评估研究成果进行分析和总结,运用用户调研法分析目标用户在进行慢性伤口处理时的行为和需求,并依据国家医疗器械相关管理条例,展开对伤口评估仪器的设计实践,并设计一款集便携性、精确性、远程会诊平台于一体的智能伤口评估仪方案。

该方案不仅有效解决慢性伤口评估和管理现存的问题,并且为临床医护人员提供了更加系统化和科学化的护理方案。

关键词:便携式;慢性伤口评估;智能化;远程会诊引言在当前人工智能、数字医疗和传感器等技术正在迅猛发展的时代,医疗体系和设备也正朝着智能化的方向迈进。

为了提高护理服务质量和管理效率,国家卫生健康委员会在2019年2月发布了《“互联网+护理服务”试点工作方案》[1]其中指出应积极应用移动互联网、物联网和大数据等先进技术,丰富护理专业内涵,加强护理信息化建设,创新护理服务模式。

当前,慢性伤口发病率不断上升,因此慢性伤口评估和管理成为了我国伤口护理领域的工作重点。

由此可窥,需要设计一款具有智能化、高效性、精确性和多功能性的伤口评估和管理系统以满足日益增长的慢性伤口患者数量和对于慢性伤口评估与管理的更高要求。

本论文旨在探究优化设计伤口评估设备及系统,以适应这一背景下的需求。

一、伤口评估与管理的概念界定与技术要求(一)概念界定伤口评估与管理是伤口管理的重要环节。

伤口评估是指通过对伤口的病理生理过程及其对患者生命体征和身心状态的影响进行全面、系统、科学的评估,为制定科学、合理、安全、全面的治疗方案和护理计划提供依据。

伤口管理是指对伤口进行规范的清创、覆盖、护理等操作,以达到促进伤口愈合、减轻疼痛、预防感染、降低并发症和提高患者生活质量等目的。

因此,伤口评估和管理是相互依存、相辅相成的。

智能仪器课程设计——基于单片机的风速风向检测系统设计

智能仪器课程设计——基于单片机的风速风向检测系统设计

Wind_Drct ^= Wind_Gray;
Wind_Drct=Wind_Tbl[Wind_Drct]; / / 查表求
通信与信息处理
《自动化技术与应用》2 0 1 0 年第 2 9 卷第 8 期
Communication and Information Processing
出风向值 Wind_Tbl 数组里面依次存储的是二进制码对应的
序如下:
Unsigned int Wind_Drct=0; // 风向终值
Unsigned int Wind_Gray=0; // 风向初值
(格雷码)
if(KBA1==1)
// 通过 7 位输
入引脚值计算格雷码
Wind_Gray+=0x0001;
if(KBA2==1)
关键词:风速;风向;单片机;检测 中图分类号:TP368.1 文献标识码:B 文章编号:1003-7241(2010)08-0070-04
The Design of Wind Speed and Direction Detection System Based on Microcontroller
图 4 风速测量子程序流程图
4.2 风向测量程序设计
风向测量先测得 7 位格雷码的输入, 通过 7 位输入 值计算出格雷码, 再通过格雷码换算成二进制码, 最后 通过查表法得出风向角度。
格雷码(Gray code),又叫循环二进制码或反射二进 制码。格雷码属于可靠性编码, 是一种错误最小化的编 码方式, 因为, 自然二进制码可以直接由数 / 模转换器 转换成模拟信号, 但某些情况, 例如从十进制的 3 转换 成 4 时二进制码的每一位都要变, 使数字电路产生很大

1 引言
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、地下管道漏水检测仪设计
1.设计原理
LOA (t V0 LAB ) / 2 LOB (LAB t V0 ) 2
f 1.84V f 1.841500 Hz 3000Hz 2a 2 3.14 0.15
漏水声音信号与传感器
3.相关测漏仪硬件设计
(1).24位A/D CS5360与DSP的接口

U01 = EΔR/R = KP
式中:K—重力到电压的转换系数;
P—电阻传感器所受到的重力;
U01—传感器桥路输出电压; E—电桥电源电压。
对应0-450克的重量范围,
本传感器的输出电压0-10mv。
2.信号放大电路
由于传感器输出信号较弱,为了进行有效放 大,提高抗干扰能力,信号放大电路中采用
了仪用放大器AD620。
二、硬件电路设计
密度仪组成框图
1、传感器设计
应变片压阻电桥
固体密度测量系统中传感器由四片性能完全相同的压阻式应变 片组成,通过压阻效应实现重力到电阻的转换,再由电桥将 电阻的变化转换为电压。其中,应变片R1、R3是受压电阻, 应变片R2、R4是受拉电阻。
若 R1 =R3 =R2 =R4=R;ΔR1=ΔR2=ΔR3=ΔR4=ΔR
第八章 智能仪器设计实例
第一节 智能仪器的设计原则及研制 第二节 固体密度测试仪的研制 第三节 基于DSP处理器的地下管道
漏水检测仪设计
实例1: 固体密度测试仪的研制
三种固体密度测试法 :有天平法、机械 法、电子自动法。
➢测量原理 ➢硬件电路设计 ➢软件设计 ➢测试结果分析
一、电子自动法测量原理
电子自动法是一种基于阿基米德浮力定 律实现对固体的密度测试的方法。
物理学中密度的定义为物体单位体积的 质量数。
在测量密度时,首先测量固体标本在空 气中的重量,再将固体标本浸没在装有 水的容器中,测量固体受水浮力后的重 量,根据阿基米德浮力定律可求出固体 的体积,计算密度值。
设固体标本的质量为M、体积为V,测量
1.简述智能仪器设计的基本要求。 2.智能仪器设计时一般应遵循的基 本原则。怎样理解“组合化与开放式 设计思想”。 3. 智能仪器中微机系统有哪几种构 成方式,分别适用于哪些场合? 4. 总结目前市场流行的单片机型号、 特点。
5.TMS320系列DSP中,有哪些芯片适合智能仪器, 概括其主要性能特点。 6.简述《仪器设计任务书》的主要内容、主要作用 和编写注意事项。 7.智能仪器设计时如何考虑硬件和软件之间的关系。 8.简述微处理器内嵌式智能仪器硬件设计时应注意 哪几方面的问题。 9.简述智能仪器软件调试、综合调试、整机性能测 试的一般方法。 10.画出相关处理的快速算法流程。概述相关检测 的主要应用。 11.自选仪器设计题目,能较充分体现你的设计能 力、综合所学知识、展示创新性构想,提出设计方 案,论证充分。
模数转换输出时序图
模数转换器与DSP连接原理图
(2).程序存储空间 DSP与FLASH的连接框图
ቤተ መጻሕፍቲ ባይዱ
(3).数据空间的扩展
DSP与SRAM的连接图
(4).通信模块
4.软件设计
数 据 处 理 软 件 流 程
B通道的信号波形
A通道的信号波形
B通道信号滤波前的功率谱
B通道信号滤波后的功率谱
思考题与习题
密度为σ,有:σ=M/V
V M 0 P1 P2
固体标本在空气中的重量为:P1=Mg 0 0 • g
在水中的重量为:P2=(M--M0)g,
则浸没在水中前后的重量差为:P1--P2M=M0g,
V
其中g表示重力加速度,M0表示与固体标本同 体积的水的质量。根据阿基米德浮力定律,
不规则固体的体积为:
3.数字信号处理电路
数字信号处理电路由AT89C51单片机及外围电
路组成
三、软件设计
软件主要包括上 电自检、逻辑判 断初始化、数据 存储、测试计算、 出错处理五大模 块。
四、测试结果
1.主要技术指标 测量密度范围:1—7.5g/cm3; 均方误差<0.01; 测量体积范围:(50—300)cm3; 体积分辨率:0.1cm3; 测量重量范围:<500g。
测试数据(g/cm3)
2.689 2.690 2.689 2.689 2.691 2.678 2.688 2.686 2.687 2.688
平均值(g/cm3) 2.687
均方差(g/cm3) 0.0035
实例2:基于DSP的地下管道漏 水检测仪设计
相关检测漏水原理
一、TMS320VC5402性能特点 及应用开发
V
M0
P1
P2
0 0 •g
则不规则固体的密度为:
P/g 1
P 1
(P P ) /( • g) 0 P P
1
2
0
1
2
式中σ0为水的密度,因为σ0=1g/cm3,于是 所测固体的密度为:
P1
P1 P2
可见,只要分别求出不规则固体在空气中的重
量P1和该固体在水中的重量P2,根据上式即可得 到被测固体的密度值。
相关文档
最新文档