用样本的频率分布表和频率分布图估计总体分布
用样本的频率分布估计总体分布(VI)

收集样本数据
按照抽样计划进行数据收集,确保数据的真 实性和完整性。
数据整理
对收集到的数据进行整理,包括核对、筛选、 分类等,确保数据的质量。
数据的分组与频数统计
数据分组
根据研究目的和数据的特征,将数据分成若干组,以 便进行频数统计。
频数统计
对每组数据进行频数统计,计算每个组内的数据个数。
绘制频数分布表
03
估计总体分布
估计总体均值
计算样本均值
根据样本数据,计算所有数值的平均值,得到样本均值。
估计总体均值
将样本均值作为总体均值的估计值,即用样本均值来估计总体均 值。
误差分析
分析样本均值与总体均值的误差大小,了解估计的准确性和可靠 性。
估计总体方差
计算样本方差
根据样本数据,计算所有数值的方差,得到样 本方差。
根据每个组的频率,可以作出频率分布直方图。
实例结论总结
通过以上实例分析,我们可以看到, 通过将数据分组并计算每个组的频率, 可以大致估计出总体的分布情况。这 种方法适用于大样本数据,当样本量 足够大时,频率分布可以近似地代表 总体分布。
VS
பைடு நூலகம்
在实际应用中,可以根据需要选择合 适的分组方式和组距,以便更好地估 计总体分布。同时,需要注意样本的 代表性和数据的可靠性,以保证估计 结果的准确性。
估计总体方差
将样本方差作为总体方差的估计值,即用样本 方差来估计总体方差。
误差分析
分析样本方差与总体方差的误差大小,了解估计的准确性和可靠性。
估计总体分布形状
观察样本频率分布
01
根据样本数据,绘制频率分布直方图或曲线图,观察分布形状。
估计总体分布形状
用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布频率分布是一种用于描述数据集中频次分布情况的统计工具,它描述了每个数值或数值范围出现的频率。
在样本中,我们可以利用频率分布来估计总体的频率分布,从而了解总体的特征。
为了确切估计总体的频率分布,我们需要采取一定的统计方法,下面将介绍一种常用的方法,直方图。
一、直方图的构建构建频率分布的首要任务是将数据分为不同的组或区间。
一般来说,我们会根据数据的特点选择合适的组距,然后根据不同的组距将数据分组。
例如,假设我们有一组数据代表了一些班级学生的测试成绩,我们选择了组距为10,那么我们可以将数据分为以下几个组:然后,我们统计每个组内数据出现的次数,即频次,得到每个组的频次数。
二、计算频率频率是频次的一个重要衍生指标,它反映的是不同数据值或数据范围在总体中的比例。
频率的计算公式为:频率=频次/总样本量在直方图中,我们通常将频率表示为每个组的相对频率。
这样可以更好地反映出组与组之间的差异。
三、绘制直方图绘制直方图是一种直观地表现频率分布的方法。
在直方图上,x轴表示不同的组或区间,y轴表示频率。
我们可以用矩形的高度来表示每个组的频率,矩形的宽度表示组距。
通过绘制多个矩形,可以将频率分布更直观地展示出来。
在绘制直方图时,需要注意以下几点:1.组距应该选择合适,既不过小也不过大,以保证直方图的直观性和准确性。
2.直方图的高度应该符合频率的大小,即高度越高表示频率越大。
3.直方图的矩形之间应该没有间隙,以保证数据的完整性。
四、利用样本频率分布估计总体频率分布样本的频率分布可以提供总体频率分布的一种估计方法。
我们可以基于样本数据构建直方图,并计算每个组的频率。
然后,我们可以将样本频率分布与总体的频率分布进行比较。
如果两个分布形状相似并且没有明显的偏差,那么我们可以认为样本的频率分布可以很好地估计总体的频率分布。
当然,在使用样本频率分布进行总体频率分布估计时,还需要注意以下几点:1.样本的选取应该具有代表性,以避免样本偏差对估计结果的影响。
用样本估计总体

用样本估计总体一、用样本的频率分布估计总体分布(1)频数、频率将一批数据按要求分为若干个组,各组内数据的个数,叫做该组的频数。
每组数除以全体数据的个数的商叫做该组的频率。
频率反映数据在每组中所占比例的大小。
(2)样本的频率分布根据随机所抽样本的大小,分别计算某一事件出现的频率,这些频率的分布规律(取值状况),就叫做样本的频率分布。
为了能直观地显示样本的频率分布情况,通常我们会将样本的容量、样本中出现该事件的频数以及计算所得的频率列在一张表中,叫做样本频率分布表。
(3)用样本频率分布估计总体的分布从一个总体得到一个包含大量数据的样本时,我们很难从一个个数字中直接看出样本所含的信息。
如果把这些数据形成频数分布或频率分布,就可以比较清楚地看出样本数据的特征,从而估计总体的分布情况。
用样本估计总体,是研究统计问题的一个基本思想方法,而对于总体分布,我们总是用样本的频率分布对它进行估计。
(4)频率分布直方图的特点从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容,所以,把数据表示成直方图后,原有的具体数据信息就被抹掉了。
(5)频率分布折线图把频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,如图所示。
为了方便看图,一般习惯于把频率分布折线图画成与横轴相连,所以横轴上的左右两端点没有实际意义。
(6)总体密度曲线①如果样本容量越大,所分组数越多,频率分布直方图中表示的频率分布就越接近于总体在各个小组内所取值的个数与总数比值的大小。
设想如果样本容量不断增大,分组的组距不断缩小,则频率分布直方图实际上是越来越接近于总体的分布,它可以用一条光滑曲线来描绘,这条光滑曲线就叫做总体密度曲线。
y f x()②总体密度曲线精确地反映了一个总体在各个区域内取值的百分比。
a b内的百分比就是图中带斜线部分的面积。
对本例来说,总体密度曲线呈产品尺寸落在(,)中间高两边低的“钟”形分布,总体的数据大致呈对称分布,并且大部分数据都集中在靠近中间的区间内。
用样本的频率分布估计总体的频率分布

通过抽样,我们获得了100位居民某年的月平均用水量 (单位:t) ,如下表:
条形图
饼状图
频数分布直方图
具体步骤: 1、求极差 即一组数据中最大值与最小值的差 2、决定组距与组数 组数:将数据分组 组距:指每个小组的两个端点的距离 3、 决定分点 分组时应保证将样本数据落在每一组的内部
具体步骤: 1、求极差 即一组数据中最大值与最小值的差 2、决定组距与组数 组数:将数据分组 组距:指每个小组的两个端点的距离 3、 决定分点 分组时应保证将样本数据落在每一组的内部
小结
画频率分布直方图的骤:
一、求极差:即数据中最大值与最小值的差 二、决定组距与组数 :组距=极差/组数 三、决定分点: 分组,通常对组内数值所在区间,
取左闭右开区间 , 最后一组取闭区间 四、列频率分布表
五、画出频率分布直方图(纵轴表示频率/组距)
作业: 请大家抽查我们年级同学每天数学作业的 用时,作出频率分布直方图,并对数据进 行分析,结合实际情况,向我们年级数学 备课组提出合理化建议。 要求:1、可以按班级小组进行合作调查 2、结果以电子文档形式呈现 3、下周三完成。谢谢
用样本的频曹付生
我国是世界上严重缺水的国家之一,城市缺 水问题较为突出,某市政府为了节约生活 用水,计划在本市试行居民生活用水定额 管理,即确定一个居民月用水量标准a,用 水量不超过a的部分按平价收费,超出a的 部分按议价收费。 (1)如果希望大部分居民的日常生活不受影 响,那么标准a定为多少比较合理呢 ? (2)你认为,为了较为合理地确定出这个标 准,需要做哪些工作?
4、 列频率分布表
100位居民月平均用水量的频数分布直方图
5、画频率分布直方图
频率/组距 0.50 0.40 0.30 0.20 0.10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量/t
用样本频率分布估计总体分布

实验结果 频数
频率
正面向上 36 124 0.501 1
反面向上 35 964
频率分布条形图
0.498 9
结论:当试验次数
无限增大时 结果的频率大致相等。
0.6
“反面向上”记为1
0.5
注意:
0.4
① 各长方形长条的宽度要相同。
0.3
②相邻长条的间距要适当。
0.2
频率 组距 0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
频率 组距 0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
(1)居民月均用水量的分布是“山峰”状的,而 且是“单峰”的;
3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.6 3.4 2.6 2.2 2.2 1.5 1.2 0.2 0.4 0.3 0.4 3.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.8 3.3 2.8 2.3 2.2 1.7 1.3 3.6 1.7 0.6 4.1 3.2 2.9 2.4 2.3 1.8 1.4 3.5 1.9 0.8 4.3 3.0 2.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.0 2.5 2.8 2.3 2.3 1.8 1.3 1.3 1.6 0.9 2.3 2.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.4 2.5 2.6 2.3 2.1 1.6 1.0 1.0 1.7 0.8 2.4 2.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2
课件6:2.2.1 用样本的频率分布估计总体的分布

[思路探索] 根据画频率分布直方图的步骤先画频率分布直方图,再 画折线图.
解 (1)频率分布表如下:
分组
频数 频率
[10.75,10.85)
3Байду номын сангаас
0.03
[10.85,10.95)
9
0.09
[10.95,11.05) [11.05,11.15) [11.15,11.25) [11.25,11.35) [11.35,11.45) [11.45,11.55) [11.55,11.65]
题型二 频率的分布直方图的应用 例2.(1)为了帮助班上的两名贫困生解决经济困难,班上的20名同学捐出 了自己的零花钱,他们捐款数(单位:元)如下:19,20,25,30,24, 23,25,29,27,27,28,28,26,27,21,30,20,19,22,20.班主 任老师准备将这组数据制成频率分布直方图,以表彰他们的爱心.制图 时先计算最大值与最小值的差是________.若取组距为2,则应分成 ________组;若第一组的起点定为18.5,则在[26.5,28.5)内的频数为 ________. (2)将容量为100的某个样本数据拆分为10组,若前七组的频率之和为0.79, 而剩下的三组中频率依次相差0.05,则剩下的三组中频率最大的一组的 频率为________.
(4)数据小于11.20的可能性即数据小于11.20的频率,设为x, 则(x-0.41)÷(11.20-11.15) =(0.67-0.41)÷(11.25-11.15), 所以x-0.41=0.13,即x=0.54, 从而估计数据小于11.20的可能性是54%.
变式3.美国历届总统中,就任时年纪最小的是罗斯福,他于1901年 就任,当时年仅42岁;就任时年纪最大的是里根,他于1981年就 任,当时69岁.下面按时间顺序(从1789年的华盛顿到2009年的奥 巴马,共44任)给出了历届美国总统就任时的年龄: 57,61,57,57,58,57,61,54,68,51,49,64,50,48, 65,52,56,46,54,49,51,47,55,55,54,42,51,56, 55,51,54,51,60,62,43,55,56,61,52,69,64,46, 54,48 (1)将数据进行适当的分组,并画出相应的频率分布直方图和频率 分布折线图. (2)用自己的语言描述一下历届美国总统就任时年龄的分布情况.
用样本估计总体

月收入(元)
1000 1500 2000 2500 3000 3500 4000
练习1、如图是150辆汽车通过某路段 时速度的频率分布直方图,则速度在[60, 60 辆. 70)的汽车大约有______
在频率分布直方图中,依次连接各小长 方形上端的中点,就得到一条折线,这条 折线称为频率分布折线图.
练习3、以往招生Biblioteka 计显示,某所大学录 取的新生高考总分的中位数基本稳定在550 分,若某同学今年高考得了520分,他想报 考这所大学还需收集哪些信息?
要点: (1)查往年录取的新生的平均分数.若平均数 小于中位数很多,说明最低录取线较低,可以 报考; (2)查往年录取的新生高考总分的标准差.若 标准差较大,说明新生的录取分数较分散,最 低录取线可能较低,可以考虑报考.
标准差的取值范围是什么?标准差为0 的样本数据有何特点? s≥0,标准差为0的样本数据都相等. 方差的意义: 方差(或标准差)越大离散程度越大,数 据较分散; 方差(或标准差)越小离散程度越小,数 据较集中在平均数周围.
例 2 、有两个班级,每班各自按学号随 机选出 5 名学生,测验铅球成绩,以考察 体育达标程度,测验成绩如下:单位(米) 甲 9.1 7.8 8.5 6.9 5.2 乙 8.8 7.2 7.3 7.5 6.7 两个班相比较,哪个班整体实力强一些 ?
制作频率分布直方图的方法: (1)求极差(即一组数据中最大值与最小 值的差); (2)决定组距与组数;(样本容量不超过
100时,组数常分成5~12组)
(3)将数据分组; (4)列频率分布表; (5)画频率分布直方图.
注:频率分布直方图中
2020版数学人教B版必修3学案:第二章 2.2.1 用样本的频率分布估计总体的分布(一) Word版含解析

2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布(一)学习目标 1.体会分布的意义和作用.2.学会用频率分布表,画频率分布直方图表示样本数据.3.能通过频率分布表或频率分布直方图对数据做出总体统计.知识点一 用样本估计总体 思考 还记得我们抽样的初衷吗?答案 用样本去估计总体,为决策提供依据. 梳理 用样本的频率分布估计总体的分布. 知识点二 频率分布表与频率分布直方图思考1 要做频率分布表,需要对原始数据做哪些工作? 答案 分组,频数累计,计算频数和频率. 思考2 如何决定组数与组距? 答案 若极差组距为整数,则极差组距=组数.若极差组距不为整数,则⎣⎢⎡⎦⎥⎤极差组距+1=组数. 注意:[x]表示不大于x 的最大整数.思考3 同样一组数据,如果组距不同,得到的频率分布直方图也会不同吗?答案 不同.对于同一组数据分析时,要选好组距和组数,不同的组距与组数对结果有一定的影响.梳理 一般地,频数指某组中包含的个体数,各组频数和=样本容量;频率=频数样本容量,各组频率和等于1.在频率分布直方图中,纵轴表示频率组距,数据落在各小组内的频率用小长方形的面积来表示,各小长方形的面积的总和等于1.1.频率分布直方图中小长方形的高表示该组上的个体在样本中出现的频率与组距的比值.( √ )2.频率分布直方图中小长方形的面积表示该组的个体数.( × ) 3.频率分布直方图中所有小长方形面积之和为1.( √ )题型一 频率分布的理解例1 关于频率分布直方图,下列说法正确的是( ) A .直方图中小长方形的高表示取某数的频率B .直方图中小长方形的高表示该组上的个体在样本中出现的频率C .直方图中小长方形的高表示该组上的个体在样本中出现的频数与组距的比值D .直方图中小长方形的高表示该组上的个体在样本中出现的频率与组距的比值 答案 D解析 注意频率分布直方图和条形图的区别,在直方图中,纵轴(小长方形的高)表示频率与组距的比值,其相应组距上的频率等于该组距上的小长方形的面积.反思与感悟 由频率的定义不难得出,各组数据的频率之和为1,因为各组数据的个数之和为样本容量.在列频率分布表时,可以利用这种方法检查是否有数据的丢失. 跟踪训练1 一个容量为20的样本数据,将其分组如下表:则样本在区间(-∞,50)上的频率为( ) A .0.5 B .0.25 C .0.6 D .0.7 答案 D解析 样本在区间(-∞,50)上的频率为2+3+4+520=1420=0.7.题型二 频率分布直方图的绘制例2 某中学从高一年级随机抽取50名学生进行智力测验,其得分如下(单位:分): 48 64 52 86 71 48 64 41 86 79 71 68 82 84 68 64 62 68 81 57 90 52 74 73 56 78 47 66 55 64 56 88 69 40 73 97 68 56 67 59 70 52 79 44 55 69 62 58 32 58 根据上面的数据,回答下列问题:(1) 这次测验成绩的最高分和最低分分别是多少?(2)将区间[30,100]平均分成7个小区间,试列出这50名学生智力测验成绩的频率分布表,进而画出频率分布直方图;(3)分析频率分布直方图,你能得出什么结论?解(1)这次测验成绩的最低分是32分,最高分是97分.(2)根据题意,列出样本的频率分布表如下:频率分布直方图如图所示.(3)从频率分布直方图可以看出,这50名学生的智力测验成绩大体上呈两头小、中间大,左右基本对称的状态,说明这50名学生中智力特别好或特别差的占极少数,而智力一般的占多数,这是一种最常见的分布.反思与感悟组距和组数的确定没有固定的标准,将数据分组时,组数应力求合适,以使数据的分布规律能较清楚地呈现出来.组数太多或太少,都会影响我们了解数据的分布情况.数据分组的组数与样本容量有关,一般样本容量越大,所分组数越多.当样本容量不超过100时,按照数据的多少,常分成5至12组.跟踪训练2一个农技站为了考察某种麦穗生长的分布情况,在一块试验田里抽取了100株麦穗,量得长度如下(单位:cm):6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.65.8 5.5 6.0 6.5 5.1 6.5 5.3 5.9 5.5 5.86.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.56.8 6.0 6.3 5.5 5.0 6.3 5.2 6.07.0 6.46.4 5.8 5.9 5.7 6.8 6.6 6.0 6.4 5.77.46.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.6 5.3 6.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.0 5.6 6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.7 5.8 5.3 7.0 6.0 6.0 5.9 5.4 6.0 5.2 6.0 6.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3根据上面的数据列出频率分布表、绘制出频率分布直方图,并估计在这块试验田里长度在5.75~6.35 cm 之间的麦穗所占的百分比. 解 (1)计算极差:7.4-4.0=3.4; (2)决定组距与组数:若取组距为0.3,因为3.40.3≈11.3,需分为12组,组数合适,所以取组距为0.3,组数为12;(3)决定分点:使分点比数据多一位小数,并且把第1小组的起点稍微减小一点,那么所分的12个小组可以是3.95~4.25,4.25~4.55,4.55~4.85,…,7.25~7.55; (4)列频率分布表:(5)绘制频率分布直方图如图.从表中看到,样本数据落在5.75~6.35之间的频率是0.28+0.13=0.41,于是可以估计,在这块试验田里长度在5.75~6.35 cm 之间的麦穗约占41%. 题型三 频率分布表及频率分布直方图的应用例3 从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论).解 (1)根据频数分布表知,100名学生中一周课外阅读时间不少于12小时的学生共有6+2+2=10(名),所以样本中的学生一周课外阅读时间少于12小时的频率是1-10100=0.9.故从该校随机选取一名学生,估计其该周课外阅读时间少于12小时的概率为0.9.(2)课外阅读时间落在[4,6)组内的有17人,频率为0.17,所以a =频率组距=0.172=0.085.课外阅读时间落在[8,10)组内的有25人,频率为0.25,所以b =频率组距=0.252=0.125.(3)样本中的100名学生该周课外阅读时间的平均数在第4组.反思与感悟 在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1.跟踪训练3 为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小矩形的面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率约是多少? 解 (1)频率分布直方图是以面积的形式来反映数据落在各小组内的频率大小的, 因此第二小组的频率为42+4+17+15+9+3=0.08.因为第二小组的频率=第二小组的频数样本容量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由直方图可估计该校全体高一年级学生的达标率约为17+15+9+32+4+17+15+9+3×100%=88%.1.如图所示是一容量为100的样本的频率分布直方图,则由图中的数据可知,样本落在[15,20]内的频数为( )A .20B .30C .40D .50 答案 B解析 样本数据落在[15,20]内的频数为100×[1-5×(0.04+0.1)]=30.2.已知样本数据:10,8,6,10,13,8,10,12,11,7,8,9,11,9,12,9,10,11,12,11.那么频率为0.2的是() A.[5.5,7.5) B.[7.5,9.5)C.[9.5,11.5) D.[11.5,13.5]答案 D解析列出频率分布表,依次对照就可以找到答案,频率分布表如下:从表中可以看出频率为0.2的是[11.5,13.5],故选D.3.如图是将高三某班60名学生参加某次数学模拟考试所得的成绩(成绩均为整数)整理后画出的频率分布直方图,则此班的优秀(120分及以上为优秀)率为________.答案30%解析优秀率为10×(0.022 5+0.005+0.002 5)=0.3=30%.4.一个频数分布表(样本容量为50)不小心被损坏了一部分,只记得样本中数据在[20,60)内的频率为0.6,则估计样本在[40,50),[50,60)内的数据个数之和是________.答案21解析根据题意,设分布在[40,50),[50,60)内的数据个数分别为x,y.∵样本中数据在[20,60)内的频率为0.6,样本容量为50,∴4+5+x+y50=0.6,解得x+y=21.即样本在[40,50),[50,60)内的数据个数之和为21.5.暑假期间某班为了增强学生的社会实践能力,把该班学生分成四个小组到一果园帮果农测量果树的产量,某小组来到一片种植苹果的山地,他们随机选取20株作为样本测量每一株的果实产量(单位:kg),获得的数据按照区间[40,45),[45,50),[50,55),[55,60]进行分组,得到如下频率分布表:已知样本中产量在区间[45,50)内的株数是产量在区间[50,60]内的株数的43倍.(1)分别求出a ,b ,c 的值; (2)作出频率分布直方图. 解 (1)易得c =1.0.由题意得⎩⎪⎨⎪⎧a =43(0.1+b ),0.3+a +0.1+b =1.0,∴a =0.4,b =0.2.(2)根据频率分布表画出频率分布直方图,如图所示.1.频率分布是指一个样本数据在各个小范围内所占比例的大小,总体分布是指总体取值的频率分布规律,我们通常用样本的频率分布表或频率分布直方图去估计总体的分布. 2.频率分布表和频率分布直方图,是对相同数据的两种不同表达方式,用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.3.样本数据的频率分布表和频率分布直方图,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚地看到整个样本数据的频率分布情况,并由此估计总体的分布情况.一、选择题1.观察新生婴儿的体重(单位:g),其频率分布直方图如图所示,则新生婴儿的体重在[2 700,3 000)内的频率为( )A .0.001B .0.01C .0.003D .0.3答案 D解析 频率=频率组距×组距,组距=3 000-2 700=300,频率组距=0.001, ∴频率=0.001×300=0.3.2.容量为100的样本数据,按从小到大的顺序分为8组,如下表:第三组的频数和频率分别是( ) A .14和0.14 B .0.14和14 C.114和0.14 D.13和114答案 A解析 x =100-(10+13+14+15+13+12+9)=100-86=14,第三组的频率为14100=0.14.3.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .6B .8C .12D .18 答案 C解析 志愿者的总人数为20(0.16+0.24)×1=50,所以第三组人数为50×0.36×1=18, 有疗效的人数为18-6=12.4.某校为了解高三学生的身体情况,抽取了100名女生的体重.将所得的数据整理后,画出了如图所示的频率分布直方图,则所抽取的女生中体重在[40,45) kg 的人数是( )A .10B .2C .5D .15 答案 A解析 由图可知频率=频率组距×组距,频率=0.02×5=0.1,∴女生体重在[40,45) kg 的人数为0.1×100=10.5.为了了解某幼儿园儿童的身高情况,抽查该园120名儿童的身高绘制成如图所示的频率分布直方图,则抽查的120名儿童身高大于或等于98 cm 且小于104 cm 的有( )A .90名B .75名C .65名D .40名 答案 A解析 由图可知身高大于或等于98 cm 且小于104 cm 的儿童的频率为(0.1+0.15+0.125)×2=0.75,抽查的120名儿童有120×0.75=90(名)儿童的身高大于或等于98 cm 且小于104 cm. 6.将容量为n 的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n 的值为( ) A .20 B .27 C .6 D .60答案 D解析 ∵n ·2+3+42+3+4+6+4+1=27,∴n =60.7.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .120 答案 B解析 ∵少于60分的学生人数为600×(0.05+0.15)=120, ∴不少于60分的学生人数为600-120=480.8.对某种电子元件使用寿命进行跟踪调查,所得样本频率分布直方图如图.由图可知,这一批电子元件中寿命在100~300 h 的电子元件的数量与寿命在300~600 h 的电子元件的数量的比是( )A .1∶2B .1∶3C .1∶4D .1∶6 答案 C解析 由题意,寿命在100~300 h 的电子元件的频率为100×⎝⎛⎭⎫12 000+32 000=0.2,寿命在300~600 h 的电子元件的频率为100×⎝⎛⎭⎫1400+1250+3 2 000=0.8,则寿命在100~300 h 的电子元件的数量与寿命在300~600 h 的电子元件的数量比大约是0.2∶0.8=1∶4. 二、填空题9.将一个容量为n 的样本分成若干组,已知甲组的频数和频率分别为36和14,则容量n =________,频率为16的乙组的频数是________.答案 144 24解析 14=36n ,所以n =36×4=144,同理16=x144,x =24.10.某大学对1 000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图(如图所示),现规定不低于70分为合格,则合格人数是________.答案 600解析 由频率分布直方图知合格的频率为(0.035+0.015+0.01)×10=0.6, 故合格人数为1 000×0.6=600.11.下列命题正确的是________.(填序号)①频率分布直方图中每个小矩形的面积等于相应组的频数; ②频率分布直方图中各小矩形面积之和等于1;③频率分布直方图中各小矩形的高(平行于纵轴的边)表示频率与组距的比. 答案 ②③解析 在频率分布直方图中,横轴表示样本数据,纵轴表示频率组距.由于小矩形的面积=组距×频率组距=频率,所以各小矩形的面积等于相应各组的频率,因此各小矩形面积之和等于1.综上可知②③正确.12.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.答案 9解析 最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9.13.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.则频率分布直方图中x 的值为 __________.答案 0.004 4解析 ∵(0.002 4+0.003 6+0.006 0+x +0.002 4+0.001 2)×50=1,∴x =0.004 4. 三、解答题14.为加强中学生实践创新能力和团队精神的培养,促进教育教学改革,某市教育局将举办全市中学生创新知识竞赛.某校举行选拔赛,共有200名学生参加,为了了解成绩情况,从中抽取50名学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表解答问题:(1)求a ,b ,c ,d ,e 的值; (2)作出频率分布直方图.解 (1)根据题意,得分在[60.5,70.5)内的频数是a =50×0.26=13,在[90.5,100.5]内的频数是b =50-13-15-18=4,在[70.5,80.5)内的频率是c =1550=0.30,在[90.5,100.5]内的频率是d =450=0.08,频率和e =1. (2)根据频率分布表作出频率分布直方图,如图所示.四、探究与拓展15.某市共有5 000名高三学生参加联考,为了了解这些学生对数学知识的掌握情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:根据上面的频率分布表,可知①处的数值为________,②处的数值为__________. 答案 3 0.025解析 由位于[110,120)的频数为 36,频率=36n =0.300,得样本容量n =120,所以[130,140)的频率=12120=0.1,②处的数值=1-0.050-0.200-0.300-0.275-0.1-0.050=0.025;①处的数值为0.025×120=3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这组数据的平均数是
x (1.5 2 1.6 3 1.85 1.9) 1.69
答:17名运动员成绩的众数、中位数、平均数 依次是1.75(米)、1.70(米)、1.69(米).
练1: 2.3, 2.4, 2.5, 2.6, 2.7中的中位数 为 2.5 . 2: 2.3, 2.4, 2.5, 2.6, 2.7, 2.8 中的
练习:对于样本数据:3.1,2.5,2.0,0.8,1.5, 1.0,4.3,2.7,3.1,3.5,用茎叶图如何表示?
茎叶 08 10 5 2057 3115 43
用样本的数字特征 估计总体的数字特征
➢怎样将各个样本数据汇 总为一个数值,并使它成 为样本数据的中心点?
➢能否用一个数值来描写 样本数据的离散程度?
频率分布直方图有哪几个步骤
• 第一步: 求极差: • 第二步: 决定组距与组数: • 第三步: 将数据分组 • 第四步: 列频率分布表. • 第五步: 画频率分布直方图
频率分布直方图
(1)含义:表示样本数据分布规律的图 形.
(2)作法: 第一步,画平面直角坐标系. 第二步,在横轴上均匀标出各组分点, 在纵轴上标出单位长度. 第三步,以组距为宽,各组的频率与组 距的商为高,分别画出各组对应的小长 方形.
• 一般地,样本容量越大,这种估计就越精 确。总体估计要掌握:(1)“表”(频率分布 表);(2)“图”(频率分布直方图)。提醒: 直方图的纵轴(小矩形的高)一般是频率除以 组距的商(而不是频率),横轴一般是数据的 大小,小矩形的面积表示频率。
课本例1和题组集训1
(一)频率分布折线图:
画好频率分布直方图后,我们把频率分布直方 图中各小长方形上端连接起来,得到的图形。.
用样本的频率分布估计总体分布 (一)
1.不易知一个总体的分布情况时,往往从总体中 抽取一个样本,用样本的频率分布去估计总体的 频率分布,样本容量越大,估计就越精确. 2. 目前有:频率分布表、直方图、茎叶图. 3.当总体中的个体取值很少时,用茎叶图估计总 体的分布;当总体中的个体取值较多时,将样本 数据恰当分组,用各组的频率分布描述总体的分 布,方法是用频率分布表或频率分布直方图。
成绩 (单位:米)
1.50
1.60 1.65 1.70
1.75
1.80 1.85 1.90
人数 2
3
2
3
4
1
1
1
分别求这些运动员成绩的众数,中位数与
平均数 解:在17个数据中,1.75出现了4次,出现的 次数最多,即这组数据的众数是1.75.
上面表里的17个数据可看成是按从小到大 的顺序排列的,其中第9个数据1.70是最中间 的一个数据,即这组数据的中位数是1.70;
. 中位数为 2.55
分析: [(2.5+ 2.6) ÷2]=2.55
3:一组数据1, 2, 8, 4, 3, 9, 5, 4, 5, 4. 那么( A )
A.这组数据的众数是4; B.这组数据的中位数是3; C.这组数据的平均数是4;
两组并列
的情况下,两 组数都是众数.
D.以这组数为一个样本,样本容量为9.
中,从这些样本数
据的频率分布直方
0.5
图可以看出,月均
0.4
用所示:
0.2
0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5
月平均用水量(t)
频率/组距 (取组距中点, 并连线 )
0.6
0.5
0.5
0.44
0.4
0.3
0.3
0.28
0.2
0.16
0.1 0.08
0.12 0.08 0.04
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
总体密度曲线:
在样本频率分布直方图中,当样本容量增加,作图 时所分的组数增加,组距减少,相应的频率折线图会越 来越接近于一条光滑曲线,统计中称这条光滑曲线为总 体密度曲线. 它能够精确地反映了总体在各个范围内取 值的百分比,它能给我们提供更加精细的信息.
甲
8 4, 6, 3 3, 6, 8 3, 8, 9
1
叶
乙
0
1
2, 5
2
5, 4
3
1, 6, 1, 6, 7, 9
4
4, 9
5
0
茎
叶
画茎叶图的步骤:
1.将每个数据分为茎(高位)和叶(低位)两部分,在此例中,茎 为十位上的数字,叶为个位上的数字; 2.将最小茎和最大茎之间的数按大小次序排成一列,写在 左(右)侧; 3.将各个数据的叶按大小次序写在其茎右(左)侧.
2.初中学过的众数、中位数、平均
数,其定义分别是 (1)在一组数据出中现次数最多 的数
据叫做这组数据的众数.
最(中2)间将位一置组数据按大小顺序依次排列,
把处在
的一个数据(或最中
间两个数据的平均数)叫做这组数据的中
位数.
例: 在一次中学生田径运动会上,参加男
子跳高的17名运动员的成绩如下表所示:
茎叶图的特征:
(1)用茎叶图表示数据有两个优点:一没有原始数据信 息的损失,所有数据信息都可以从茎叶图中得到;二数据 可以随时记录,随时添加,方便记录与表示。 (2)茎叶图只便于表示两位有效数字的数据,而且茎叶 图只方便记录两组的数据,两个以上的数据虽然能够记录, 但是没有表示两个记录那么直观,清晰。
频率 组距
0
ab
月均用水量/t
(二)茎叶图(一种被用来表示数据的图)
当数据是两位有效数字时,用中间的数字 表示十位数,即第一个有效数字,两边的数字 表示个位数,即第二个有效数字,它的中间部 分像植物的茎,两边部分像植物茎上长出来的 叶子,因此通常把这样的图叫做茎叶图 。
例: 某赛季甲乙两名篮球运动员比赛得分记录如下: 甲:13, 51, 23, 8, 26, 38, 16, 33, 14, 28, 39 乙:49, 24, 12, 31, 50, 31, 44, 36, 15, 37, 25, 36, 39 用茎叶图表示两人成绩,说明哪一个成绩好.
从居民月均用水量样本数据可知,该样本的众数是2.3, 中位数是2.0,平均数是1.973
思考:
如何从频率分布直方图中读取众数,中位数,平均数?
一、在频率分布直方图中读取众数,中位数,平均数
1、众数在样本数据的频率分布直方图中,就是最高
矩形的中点的横坐标.
频率 组距
例如,在上一节调 查的100位居民的 月均用水量的问题