(word完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

合集下载

高考立体几何大题及答案(理)

高考立体几何大题及答案(理)

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高考立体几何大题及答案(理)地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容1.如图,四棱锥中,底面为矩形,底面,,,点在侧棱上,。

(I)证明:是侧棱的中点;求二面角的大小。

2.如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1(Ⅰ)证明:AB=AC (Ⅱ)设二面角A-BACBA1B1C1DED-C为60°,求B1C与平面BCD所成的角的大小3.如图,平面,,,,分别为的中点.(I)证明:平面;(II)求与平面所成角的正弦值.4.如图,四棱锥的底面是正方形,,点E在棱PB上.(Ⅰ)求证:平面;(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.5.如图,在四棱锥中,底面是矩形,平面,,.以的中点为球心、为直径的球面交于点.(1)求证:平面⊥平面;(2)求直线与平面所成的角;(3)求点到平面的距离.6.如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,(I)求证:;(II)设线段、的中点分别为、,求证:∥(III)求二面角的大小。

7.如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD =AD=a,点E是SD上的点,且DE=a(0<≦1). (Ⅰ)求证:对任意的(0、1),都有AC⊥BE:(Ⅱ)若二面角C-AE-D的大小为600C,求的值。

8.如图3,在正三棱柱中,AB=4, ,点D是BC的中点,点E 在AC上,且DEE.(Ⅰ)证明:平面平面; (Ⅱ)求直线AD 和平面所成角的正弦值。

9.如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,(I)求证:;(II)设线段、的中点分别为、,求证:∥(III)求二面角的大小。

2020年高考数学(理)二轮专项复习专题07 立体几何

2020年高考数学(理)二轮专项复习专题07 立体几何

a⊥c,b∥c,
a⊥α

a⊥b
a⊥b
(1)证明线面垂直:
a⊥m,a⊥n
a∥b,b⊥α α∥β,a⊥β
α⊥β,α∩β=l
m,n α,m∩n=A
a β,a⊥l
a⊥α
a⊥α
a⊥α
a⊥α
(1)证明面面垂直:
a⊥β,a α
α⊥β
例 5 如图,在斜三棱柱 ABC-A1B1C1 中,侧面 A1ABB1 是菱形,且垂直于底面 ABC,
证:
(Ⅰ)直线 EF∥面 ACD; (Ⅱ)平面 EFC⊥平面 BCD.
11.如图,平面 ABEF⊥平面 ABCD,四边形 ABEF 与 ABCD 都是直角梯形,∠BAD=∠FAB
=90°,BC∥AD,BC 1 AD, BE // AF , BE 1 AF ,G,H 分别为 FA,FD 的中点.
①m⊥n ②⊥ ③n⊥ ④m⊥
以其中三个论断作为条件,余下的一个论断作为结论,写出正确的一个命题______.
8.已知平面⊥平面,∩=l,点 A∈,Al,直线 AB∥l,直线 AC⊥l,直线 m∥, m∥,给出下列四种位置:①AB∥m;②AC⊥m;③AB∥;④AC⊥,
上述四种位置关系中,不一定成立的结论的序号是______.
站 载

【评述】关于直线和平面平行的问题,可归纳如下方法:
费 免
(1)证明线线平行:
《 号

a∥c,b∥c,
a∥α,a β
α∥β
公 公
a⊥α,b⊥α
α∩β=b
∩α=a,∩β=b
信 微
a∥b
a∥b
a∥b
a∥b
(2)证明线面平行:
a∩α=

(完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

(完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

2020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明例1如图,高为1的等腰梯形ABCD 中,AM =CD =AB =1.现将△AMD 沿MD 折起,使平面AMD ⊥13平面MBCD ,连接AB ,AC .试判断:在AB 边上是否存在点P ,使AD ∥平面MPC ?并说明理由【答案】当AP =AB 时,有AD ∥平面MPC .13理由如下:连接BD 交MC 于点N ,连接NP .在梯形MBCD 中,DC ∥MB ,==,DNNB DCMB 12在△ADB 中,=,∴AD ∥PN .APPB 12∵AD ⊄平面MPC ,PN ⊂平面MPC ,∴AD ∥平面MPC .【解析】线面平行,可以线线平行或者面面平行推出。

此类题的难点就是如何构造辅助线。

构造完辅助线,证明过程只须注意规范的符号语言描述即可。

本题用到的是线线平行推出面面平行。

【易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。

【思维点拨】此类题有两大类方法:1.构造线线平行,然后推出线面平行。

此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。

在此,我们需要借助倒推法进行分析。

首先,此类型题目大部分为证明题,结论必定是正确的,我们以此为前提可以得到线面平行。

再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。

从这个角度上看我们可以看出线线平行推线面平行的本质就是过已知直线做一个平面与已知平面相交即可。

如本题中即是过AD 做了一个平面ADB 与平面MPC 相交于线PN 。

最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。

即先证AD 平行于PN ,最后得到结论。

构造交线的方法我们可总结为如下三个图形。

一一一一一一一一一2.构造面面平行,然后推出线面平行。

此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。

(完整版)高考立体几何大题及答案(理)

(完整版)高考立体几何大题及答案(理)
由 得2AD= ,解得AD= 。
故AD=AF。又AD⊥AF,所以四边形ADEF为正方形。
因为BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF。
连接AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD。
连接CH,则∠ECH为 与平面BCD所成的角。
因ADEF为正方形,AD= ,故EH=1,又EC= =2,
(II)设线段 、 的中点分别为 、 ,
求证: ∥
(III)求二面角 的大小。
10.如题(18)图,在五面体 中, ∥ , , ,四边形 为平行四边形, 平面 , .求:
(Ⅰ)直线 到平面 的距离;
(Ⅱ)二面角 的平面角的正切值.
11.如图,四棱锥PABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅱ)设平面BCD的法向量 则
又 =(-1,1,0),
=(-1,0,c),故
令x=1,则y=1,z= , =(1,1, ).
又平面 的法向量 =(0,1,0)
由二面角 为60°知, =60°,
故 °,求得
于是 ,

°
所以 与平面 所成的角为30°
3、(Ⅰ)证明:连接 ,在 中, 分别是 的中点,所以 ,又 ,所以 ,又 平面ACD,DC 平面ACD,所以 平面ACD
(1)证明:PA⊥BD;
(2)设PD=AD,求二面角A-PB-C的余弦值.
12(本小题满分12分)
如图,已知四棱锥P-ABCD的底面为等腰梯形,AB CD,AC BD,垂足为H,
PH是四棱锥的高,E为AD中点
(1)证明:PE BC
(2)若 APB= ADB=60°,求直线PA与平面PEH所成角的正弦值

(word完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

(word完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

2020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明1例1如图,高为1的等腰梯形 ABCD 中,AM = CD = 3AB = 1•现将△AMD 沿MD 折起,使平面 AMD 丄 平面 MBCD ,连接 AB , AC.试判断:在AB 边上是否存在点【解析】线面平行,可以线线平行或者面面平行推出。

此类题的难点就是如何构造辅助线。

构造完辅助线,证明过程只须注意规范的符号语言描述即可。

本题用到的是线线平行推出面面平行。

【易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。

【思维点拨】此类题有两大类方法: 1.构造线线平行,然后推出线面平行。

此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。

在此,我们需要借助倒推法进行分析。

首先,此类型题目大部分为证明题,结论必定是正确的,我们以此 为前提可以得到线面平行。

再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。

从这个角度上看我们可以看出线线平行推线面 平行的本质就是过已知直线做一个平面与已知平面相交即可。

如本题中即是过AD 做了一个平面ADB与平面MPC 相交于线PN 。

最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。

即先证1【答案】当AP = 3AB 时,有AD //平面MPC. 理由如下:连接BD 交MC 于点N ,连接NP. 在梯形 MBCD 中,DC // MB ,DN NB DC MB 1 2,Ap 1在△ADB 中,pp 二」AD 〃 PN . •/ AD?平面 MPC , PN?平面 MPC , ••• AD //平面 MPC.P ,使AD //平面 MPC?并说明理由AD平行于PN,最后得到结论。

构造交线的方法我们可总结为如下三个图形。

P2.构造面面平行,然后推出线面平行。

此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。

2020高考数学(理)大一轮复习考点与题型全归纳:第八章 立体几何

2020高考数学(理)大一轮复习考点与题型全归纳:第八章 立体几何

第八章 立体几何第一节 空间几何体的结构特征、三视图和直观图一、基础知识1.简单几何体(1)多面体的结构特征①特殊的四棱柱 四棱柱――――→底面为平行四边形平行六面体――――→侧棱垂直于底面直平行六面体――→底面为矩形长方体――――→底面边长相等正四棱柱――――→侧棱与底面边长相等正方体 上述四棱柱有以下集合关系:{正方体}{正四棱柱}{长方体}{直平行六面体}{平行六面体}{四棱柱}.②多面体的关系:棱柱――→一个底面退化为一个点棱锥――→平行于底面的平面截得棱台(2)旋转体的结构特征▲球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d 与球的半径R 及截面的半径r 的关系为r =R 2-d 2. 2.直观图(1)画法:常用斜二测画法. (2)规则:①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.3.三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.二、常用结论1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)底面与水平面平行放置的圆锥的正视图和侧视图为全等的等腰三角形. (3)底面与水平面平行放置的圆台的正视图和侧视图为全等的等腰梯形. (4)底面与水平面平行放置的圆柱的正视图和侧视图为全等的矩形. 2.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x 轴和z 轴平行的线段的长度不改变,相对位置不改变.考点一空间几何体的结构特征[典例]下列结论正确的是()A.侧面都是等腰三角形的三棱锥是正三棱锥B.六条棱长均相等的四面体是正四面体C.有两个侧面是矩形的棱柱是直棱柱D.用一个平面去截圆锥,底面与截面之间的部分叫圆台[解析]底面是等边三角形,且各侧面三角形全等,这样的三棱锥才是正三棱锥,所以A错;斜四棱柱也有可能两个侧面是矩形,所以C错;截面平行于底面时,底面与截面之间的部分才叫圆台,所以D错.[答案] B[题组训练]1.下列结论中错误的是()A.由五个面围成的多面体只能是三棱柱B.正棱台的对角面一定是等腰梯形C.圆柱侧面上的直线段都是圆柱的母线D.各个面都是正方形的四棱柱一定是正方体解析:选A由五个面围成的多面体也可以是四棱锥,所以A选项错误.B、C、D说法均正确.2.下列命题正确的是()A.两个面平行,其余各面都是梯形的多面体是棱台B.两个面平行且相似,其余各面都是梯形的多面体是棱台C.直角梯形以一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台D.用平面截圆柱得到的截面只能是圆和矩形解析:选C如图所示,可排除A、B选项.只要有截面与圆柱的母线平行或垂直,截得的截面才为矩形或圆,否则为椭圆或椭圆的一部分.考点二空间几何体的直观图[典例]已知等腰梯形ABCD,CD=1,AD=CB=2,AB=3,以AB所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.[解析]法一:如图,取AB的中点O为坐标原点,建立平面直角坐标系,y轴交DC 于点E,O,E在斜二测画法中的对应点为O′,E′,过E′作E′F′⊥x′轴,垂足为F′,因为OE =(2)2-12=1, 所以O ′E ′=12,E ′F ′=24.所以直观图A ′B ′C ′D ′的面积为 S ′=12×(1+3)×24=22.法二:由题中数据得等腰梯形ABCD 的面积S =12×(1+3)×1=2.由S 直观图=24S 原图形的关系,得S 直观图=24×2=22. [答案] 22[题组训练]1.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:选A 由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y 轴上的对角线长为2 2.故选A.2.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________.解析:如图,图①、图②分别表示△ABC 的实际图形和直观图. 从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32,C ′D ′=O ′C ′sin 45°=32×22=64.所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64.答案:64考点三 空间几何体的三视图考法(一) 由几何体识别三视图[典例] (2019·长沙模拟)如图是一个正方体,A ,B ,C 为三个顶点,D 是棱的中点,则三棱锥A -BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )[解析] 正视图和俯视图中棱AD 和BD 均看不见,故为虚线,易知选A. [答案] A考法(二) 由三视图判断几何体特征[典例] (1)(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D .2(2)(2019·武汉调研)已知某四棱锥的三视图如图所示,则该四棱锥的四个侧面中最小的面积为________.[解析] (1)先画出圆柱的直观图,根据题图的三视图可知点M ,N 的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN ,则图中MN 即为M 到N 的最短路径.ON =14×16=4,OM =2,∴MN =OM 2+ON 2=22+42=2 5.(2)由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA 1D 1-BB 1C 1和一个三棱锥C -BC 1D 后剩下的几何体,即如图所示的四棱锥D -ABC 1D 1,其中侧面ADD 1的面积最小,其值为12.[答案] (1)B (2)12考法(三) 由三视图中的部分视图确定剩余视图[典例] (2018·唐山五校联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )[解析] 由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A ,故选A.[答案] A[题组训练]1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体,其中DD 1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是()解析:选C根据该几何体的直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B、D;而在三视图中看不见的棱用虚线表示,故排除A.故选C.2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12C.14 D.16解析:选B由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12,故选B.[课时跟踪检测]1.对于用“斜二测画法”画平面图形的直观图,下列说法正确的是()A.等腰三角形的直观图仍为等腰三角形B.梯形的直观图可能不是梯形C.正方形的直观图为平行四边形D.正三角形的直观图一定为等腰三角形解析:选C根据“斜二测画法”的定义可得正方形的直观图为平行四边形.2.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() A.球B.三棱锥C.正方体D.圆柱解析:选D球、正方体的三视图的形状都相同,大小都相等,首先排除选项A和C.对于三棱锥,考虑特殊情况,如三棱锥C-OAB,当三条棱OA,OB,OC两两垂直,且OA =OB=OC时,正视图方向为AO方向,其三视图的形状都相同,大小都相等,故排除选项B.选项D,不论圆柱如何放置,其三视图的形状都不可能完全相同.3.(2019·福州模拟)一水平放置的平面图形,用斜二测画法画出它的直观图如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为()A.2 3 B.2 2C.4 3 D.8 2解析:选D由斜二测画法可知,原平面图形是一个平行四边形,且平行四边形的一组对边长为2,在斜二测画法画出的直观图中,∠B′O′A′=45°且O′B′=22,那么在原图形中,∠BOA=90°且OB=4 2.因此,原平面图形的面积为2×42=82,故选D.4.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1C.2 D.3解析:选B①错误,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.5.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析:选D由三视图知该几何体的上半部分是一个三棱柱,下半部分是一个四棱柱.故选D.6.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是()A .8B .7C .6D .5解析:选C 画出直观图可知,共需要6块.7.(2018·南宁二中、柳州高中联考)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )解析:选C 若俯视图为选项C 中的图形,则该几何体为正方体截去一部分后的四棱锥P -ABCD ,如图所示,该四棱锥的体积V =13×(2×2)×2=83,符合题意.若俯视图为其他选项中的图形,则根据三视图易判断对应的几何体不存在,故选C.8.如图,在底面边长为1,高为2的正四棱柱ABCD -A1B 1C 1D 1(底面ABCD 是正方形,侧棱AA 1⊥底面ABCD )中,点P 是正方形A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与俯视图的面积之和的最小值为( )A.32 B .1 C .2D.54解析:选A 由题图易知,三棱锥P -BCD 的正视图面积为12×1×2=1.当顶点P 的投影在△BCD 内部或其边上时,俯视图的面积最小,为S △BCD =12×1×1=12.所以三棱锥P -BCD的正视图与俯视图的面积之和的最小值为1+12=32.故选A.9.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点. 其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④10.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12(cm),BC =8-3=5 (cm). ∴AB =122+52=13(cm). 答案:1311.已知某几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图是正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何体的形状给出下列命题:①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③两个面都是等腰直角三角形的四面体.其中正确命题的序号是________.解析:由三视图可知,该几何体是正四棱柱,作出其直观图为如图所示的四棱柱ABCD -A 1B 1C 1D 1,当选择的4个点是B 1,B ,C ,C 1时,可知①正确;当选择的4个点是B ,A ,B 1,C 时,可知②正确;易知③不正确.答案:①②12.如图,三棱锥A -BCD 中,AB ⊥平面BCD ,BC ⊥CD ,若AB =BC=CD =2,则该三棱锥的侧视图(投影线平行于BD )的面积为________.解析:因为AB ⊥平面BCD ,投影线平行于BD ,所以三棱锥A -BCD 的侧视图是一个以△BCD 的BD 边上的高为底,棱锥的高为高的三角形,因为BC ⊥CD ,AB =BC =CD =2, 所以△BCD 中BD 边上的高为2,故该三棱锥的侧视图的面积S =12×2×2= 2.答案: 2第二节空间几何体的表面积与体积一、基础知识1.圆柱、圆锥、圆台的侧面展开图及侧面积公式①几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和.②圆台、圆柱、圆锥的转化当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:2.空间几何体的表面积与体积公式二、常用结论几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=3a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1. 考点一 空间几何体的表面积[典例] (1)(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π(2)(2019·沈阳质检)某四棱锥的三视图如图所示,则该四棱锥的侧面积是( )A .4+4 2B .42+2C .8+4 2D.83[解析] (1)设圆柱的轴截面的边长为x , 则x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×2 2 =12π.故选B.(2)由三视图可知该几何体是一个四棱锥,记为四棱锥P -ABCD ,如图所示,其中P A ⊥底面ABCD ,四边形ABCD 是正方形,且P A =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×⎝⎛⎭⎫12×2×2+12×2×22=4+42,故选A. [答案] (1)B (2)A [题组训练]1.(2019·武汉部分学校调研)一个几何体的三视图如图所示,则它的表面积为( )A .28B .24+2 5C .20+4 5D .20+2 5解析:选B 如图,三视图所对应的几何体是长、宽、高分别为2,2,3的长方体去掉一个三棱柱后的棱柱ABIE -DCMH ,则该几何体的表面积S =(2×2)×5+⎝⎛⎭⎫12×1×2×2+2×1+2×5=24+2 5.故选B.2.(2018·郑州第二次质量预测)某几何体的三视图如图所示,则该几何体的表面积是( )A .20+2πB .24+(2-1)πC .24+(2-2)πD .20+(2+1)π解析:选B 由三视图知,该几何体是由一个棱长为2的正方体挖去一个底面半径为1、高为1的圆锥后所剩余的部分,所以该几何体的表面积S =6×22-π×12+π×1×2=24+(2-1)π,故选B. 考点二 空间几何体的体积[典例] (1)(2019·开封高三定位考试)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .4πB .2π C.4π3D .π(2)(2018·天津高考)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,则四棱锥A 1-BB 1D 1D 的体积为________.[解析] (1)直接法由题意知该几何体的直观图如图所示,该几何体为圆柱的一部分,设底面扇形的圆心角为α,由tan α=31=3,得α=π3,故底面面积为12×π3×22=2π3,则该几何体的体积为2π3×3=2π.(2)法一:直接法连接A 1C 1交B 1D 1于点E ,则A 1E ⊥B 1D 1,A 1E ⊥BB 1,则A 1E ⊥平面BB 1D 1D ,所以A 1E 为四棱锥A 1-BB 1D 1D 的高,且A 1E =22, 矩形BB 1D 1D 的长和宽分别为2,1, 故V A 1-BB 1D 1D =13×(1×2)×22=13. 法二:割补法连接BD1,则四棱锥A 1-BB 1D 1D 分成两个三棱锥B -A 1DD 1与B -A 1B 1D 1,所以V A 1-BB 1D 1D =V B -A 1DD 1+V B -A 1B 1D 1=13×12×1×1×1+13×12×1×1×1=13. [答案] (1)B (2)13[题组训练]1.(等体积法)如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为( )A.312B.34C.612D.64解析:选A 三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. 2.(割补法)某几何体的三视图如图所示,则这个几何体的体积是( )A .13B .14C .15D .16解析:选C 所求几何体可看作是将长方体截去两个三棱柱得到的几何体,在长方体中还原该几何体,如图中ABCD -A ′B ′C ′D ′所示,长方体的长、宽、高分别为4,2,3,两个三棱柱的高为2,底面是两直角边长分别为3和1.5的直角三角形,故该几何体的体积V =4×2×3-2×12×3×32×2=15,故选C.3.(直接法)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π. 考点三 与球有关的切、接问题考法(一) 球与柱体的切、接问题[典例] (2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.[解析] 设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.[答案] 32考法(二) 球与锥体的切、接问题[典例] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .123B .18 3C .24 3D .54 3[解析] 由等边△ABC 的面积为93,可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.[答案] B[题组训练]1.(2018·福建第一学期高三期末考试)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4π B.163πC.323π D .16π解析:选D 如图,由题意知圆柱的中心O 为这个球的球心, 于是,球的半径r =OB =OA 2+AB 2= 12+(3)2=2. 故这个球的表面积S =4πr 2=16π.故选D.2.三棱锥P -ABC 中,AB =BC =15,AC =6,PC ⊥平面ABC ,PC =2,则该三棱锥的外接球表面积为________.解析:由题可知,△ABC 中AC 边上的高为15-32=6,球心O 在底面ABC 的投影即为△ABC 的外心D ,设DA =DB =DC =x ,所以x 2=32+(6-x )2,解得x =564,所以R 2=x 2+⎝⎛⎭⎫PC 22=758+1=838(其中R 为三棱锥外接球的半径),所以外接球的表面积S =4πR 2=832π. 答案:832π[课时跟踪检测]1.(2019·深圳摸底)过半径为2的球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的体积的比值为( )A.932 B.916 C.38D.316解析:选A 由题意知所得截面为圆,设该圆的半径为r ,则22=12+r 2,所以r 2=3,所以所得截面的面积与球的体积的比值为π×343π×23=932,故选A.2.如图是某一几何体的三视图,则这个几何体的体积为( )A .4B .8C .16D .20解析:选B 由三视图知,此几何体是一个三棱锥,底面为一边长为6,高为2的三角形,三棱锥的高为4,所以体积为V =13×12×6×2×4=8.故选B.3.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π×r 2×5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛). 4.(2018·贵阳摸底考试)某实心几何体是用棱长为1 cm 的正方体无缝粘合而成的,其三视图如图所示,则该几何体的体积为( )A .35 cm 3B .40 cm 3C .70 cm 3D .75 cm 3解析:选A 结合题中三视图可得,该几何体是个组合体,该组合体从下到上依次为长、宽、高分别为5 cm,5 cm,1 cm 的长方体,长、宽、高分别为3 cm,3 cm,1 cm 的长方体,棱长为1 cm 的正方体,故该组合体的体积V =5×5×1+3×3×1+1×1×1=35(cm 3).故选A.5.(2019·安徽知名示范高中联考)某几何体的三视图如图所示,则该几何体的体积为( )A .1 B.12 C.13D.14解析:选C 法一:该几何体的直观图为四棱锥S -ABCD ,如图,SD ⊥平面ABCD ,且SD =1,四边形ABCD 是平行四边形,且AB =DC =1,连接BD ,由题意知BD ⊥DC ,BD ⊥AB ,且BD =1,所以S 四边形ABCD =1,所以V S -ABCD =13S 四边形ABCD·SD =13,故选C.法二:由三视图易知该几何体为锥体,所以V =13Sh ,其中S 指的是锥体的底面积,即俯视图中四边形的面积,易知S =1,h 指的是锥体的高,从正视图和侧视图易知h =1,所以V =13Sh =13,故选C.6.(2019·重庆调研)某简单组合体的三视图如图所示,则该组合体的体积为( )A.83π3+833B.43π3+833C.43π3+433D.83π3+433解析:选B 由三视图知,该组合体是由一个半圆锥与一个三棱锥组合而成的,其中圆锥的底面半径为2、高为42-22=23,三棱锥的底面是斜边为4、高为2的等腰直角三角形,三棱锥的高为23,所以该组合体的体积V =12×13π×22×23+13×12×4×2×23=43π3+833,故选B. 7.(2019·湖北八校联考)已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为( )A .16+12πB .32+12πC .24+12πD .32+20π解析:选A 由三视图知,该几何体是一个正四棱柱与半球的组合体,且正四棱柱的高为2,底面对角线长为4,球的半径为2,所以该正四棱柱的底面正方形的边长为22,该几何体的表面积S =12×4π×22+π×22+22×2×4=12π+16,故选A.8.(2019·福州质检)已知正三棱柱ABC -A 1B 1C 1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC -A 1B 1C 1外接球的表面积为( )A .4πB .8πC .16πD .32π解析:选C 如图所示,设底面边长为a ,则底面面积为34a 2=334,所以a = 3.又一个侧面的周长为63,所以AA 1=2 3.设E ,D 分别为上、下底面的中心,连接DE ,设DE 的中点为O ,则点O 即为正三棱柱ABC -A 1B 1C 1的外接球的球心,连接OA 1,A 1E ,则OE =3,A 1E =3×32×23=1.在直角三角形OEA 1中,OA 1=12+(3)2=2,即外接球的半径R =2,所以外接球的表面积S =4πR 2=16π,故选C.9.(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析:由正方体的表面积为18,得正方体的棱长为 3. 设该正方体外接球的半径为R ,则2R =3,R =32,所以这个球的体积为43πR 3=4π3×278=9π2.答案:9π210.某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析:由题意知该四棱柱为直四棱柱,其高为1,底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V =(1+2)×12×1=32.答案:3211.一个圆锥的表面积为π,它的侧面展开图是圆心角为2π3的扇形,则该圆锥的高为________.解析:设圆锥底面半径是r ,母线长为l ,所以πr 2+πrl =π,即r 2+rl =1,根据圆心角公式2π3=2πr l ,即l =3r ,所以解得r =12,l =32,那么高h =l 2-r 2= 2.答案: 212.(2017·全国卷Ⅰ)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB ,∵SC 为球O 的直径, ∴点O 为SC 的中点, ∵SA =AC ,SB =BC , ∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC , ∴AO ⊥平面SCB , 设球O 的半径为R , 则OA =OB =R ,SC =2R . ∴V S -ABC =V A -SBC =13×S △SBC ×AO =13×⎝⎛⎭⎫12×SC ×OB ×AO ,即9=13×⎝⎛⎭⎫12×2R ×R ×R ,解得 R =3, ∴球O 的表面积S =4πR 2=4π×32=36π. 答案:36π13.如图是一个以A 1B 1C 1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=2,∠A 1B 1C 1=90°,AA 1=4,BB 1=3,CC 1=2,求:(1)该几何体的体积; (2)截面ABC 的面积.解:(1)过C 作平行于A 1B 1C 1的截面A 2B 2C ,交AA 1,BB 1分别于点A 2,B 2.由直三棱柱性质及∠A 1B 1C 1=90°可知B 2C ⊥平面ABB 2A 2,则该几何体的体积V =VA 1B 1C 1-A 2B 2C +VC -ABB 2A 2=12×2×2×2+13×12×(1+2)×2×2=6. (2)在△ABC 中,AB =22+(4-3)2=5, BC =22+(3-2)2=5, AC =(22)2+(4-2)2=2 3.则S △ABC =12×23×(5)2-(3)2= 6.14.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积63,求该三棱锥E -ACD 的侧面积.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,AC ⊂平面ABCD , 所以BE ⊥AC .因为BD ∩BE =B ,BD ⊂平面BED ,BE ⊂平面BED , 所以AC ⊥平面BED . 又AC ⊂平面AEC , 所以平面AEC ⊥平面BED .(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt△AEC中,可得EG=3 2x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=2 2x.由已知得,三棱锥E-ACD的体积V三棱锥E-ACD=13·12AC·GD·BE=624x3=63,故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5. 故三棱锥E-ACD的侧面积为3+2 5.第三节 空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. (2)公理2:过不在一条直线上的三点, 有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系 (1)空间中两直线的位置关系⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线, 经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的 锐角(或直角)叫做异面直线a 与b 所成 的角(或夹角). ②范围:⎝⎛⎦⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l 和平面α相交、直线l 和平面α平行统称为直线l 在平面α外,记作l ⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用[典例]如图所示,在正方体ABCD-AB1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD,A1B.1∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.。

2020—2021年高考总复习数学《立体几何》高考考点专项复习及参考答案(精品试题).docx

2020—2021年高考总复习数学《立体几何》高考考点专项复习及参考答案(精品试题).docx

届高三第二次模拟数学理试题分类汇编:立体几何一、填空、选择题1、(崇明县2016届高三二模)已知圆锥的母线长为5cm ,侧面积为15πcm2,则此圆锥的体积为cm 2.2、(奉贤区2016届高三二模)在棱长为1的正方体ABCD A B C D ''''-中,若点P 是棱上一点,则满足2PA PC '+=的点P 的个数_______.3、(虹口区2016届高三二模)已知A 、B 是球O 的球面上两点,90AOB ∠=o ,C 为该球面上的动点,若三棱锥ABC O -体积的最大值为323,则球O 的表面积为__________4、(黄浦区2016届高三二模)已知一个凸多边形的平面展开图由两个正六边形和六个正方形构成,如右上图所示,若该凸多面体所有棱长均为1,则其体积V =5、(静安区2016届高三二模)如图,正四棱锥P ABCD -的底面边长为23cm ,侧面积为 283cm ,则它的体积为.6、(闵行区2016届高三二模)若一个圆锥的母线长是底面半径的3倍,则该圆锥的侧面积是底面积的 倍.7、(浦东新区2016届高三二模)已知四面体ABCD 中,2==CD AB ,E ,F分别为BC ,AD 的中点,且异面直线AB 与CD 所成的角为3π,则EF =________.8、(普陀区2016届高三二模)若a 、b 表示两条直线,α表示平面,下列命题中的真命题为( )(A )若α⊥a ,b a ⊥,则α//b (B )若α//a ,b a ⊥,则α⊥b (C )若α⊥a ,α⊆b ,则b a ⊥ (D )若α//a ,α//b ,则b a // 9、(徐汇、金山、松江区2016届高三二模).如图,圆锥形容器的高为,h 圆锥内水面的高为1,h 且11,3h h =若将圆锥倒置,水面高为2,h 则2h 等于------------------------------------------------( )(A )23h (B )1927h (C )363h (D )3193h10、(杨浦区2016届高三二模)已知命题:“若a,b 为异面直线,平面α过直线a 且与直线b 平行,则直线b 与平面α的距离等于异面直线a,b 之间的距离”为真命题.根据上述命题,若a,b 为异面直线,且它们之间的距离为d ,则空间中与a,b 均异面且距离也均为d 的直线c 的条数为( )A0条 B.1条 C.多于1条,但为有限条 D.无数多条11、(闸北区2016届高三二模)已知,,,S A B C 是球O 表面上的点,SA ⊥平面ABC ,AB BC ⊥,1SA AB == 2BC =,则球O 的表面积等于( )A .π4 B .π3 C .π2 D .π12、(长宁、青浦、宝山、嘉定四区2016届高三二模)下列命题正确的是( ).(A )若直线1l ∥平面α,直线2l ∥平面α,则1l ∥2l ; (B )若直线l 上有两个点到平面α的距离相等,则l ∥α;(C )直线l 与平面α所成角的取值范围是⎪⎭⎫⎝⎛2,0π;(D )若直线1l ⊥平面α,直线2l ⊥平面α,则1l ∥2l .13、(闵行区2016届高三二模)如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点,P 为底面ABCD 内一动点,设1PD PE 、与底面ABCD 所成的角分别为12θθ、(12θθ、均不为0).若12θθ=,则动点P 的轨迹为哪种曲线的一部分( ).(A)直线 (B)圆 (C) 椭圆 (D) 抛物线14、(浦东新区2016届高三二模)给出下列命题,其中正确的命题为( )(A )若直线a 和b 共面,直线b 和c 共面,则a 和c 共面;(B )直线a 与平面α不垂直,则a 与平面α内的所有直线都不垂直; (C )直线a 与平面α不平行,则a 与平面α内的所有直线都不平行; (D )异面直线a 、b 不垂直,则过a 的任何平面与b 都不垂直. 二、解答题1、(崇明县2016届高三二模)如图,在棱长为1的正方体1111ABCD A B C D -中,点E 是棱BC 的中点,点F 是棱CD 的中点. (1)求证:11EF B D ∥; (2)求二面角1C EF A --的大小(结果用反三角函数值表示).AC BC 1A 1B 1(第19题图)D 1D FE2、(奉贤区2016届高三二模)面ABC 外的一点P ,,,AP AB AC 两两互相垂直,过AC 的中点D 作ED ⊥面ABC ,且1ED =,2PA =,2AC =,连,BP BE ,多面体B PADE -的体积是33. (1)画出面PBE 与面ABC 的交线,说明理由; (2)求面PBE 与面ABC 所成的锐二面角的大小.ADBCPEQ A DCBP (第20题图)3、(虹口区2016届高三二模)如图,在四棱锥ABCD P -中,已知⊥PA 平面ABCD ,且四边形ABCD 为直角梯形,90ABC BAD ∠=∠=︒,2AB AD AP ===,1BC =.(1) 求点A 到平面PCD 的距离; (2) 若点Q 为线段BP 的中点,求直线CQ 与平面ADQ 所成角的大小.4、(黄浦区2016届高三二模)如图,小凳的凳面为圆形,凳脚为三根细钢管,考虑到钢管的受力等因素,设计的小凳应满足:三根细钢管相交处的节点P 与凳面圆形的圆心O 的连线垂直于凳面和地面,且P 分两钢管上下两段的比值为0.618,三只凳脚与地面所成的角均为60°,若A 、B 、C 是凳面圆周的三等分点,18AB =厘米,求凳面的高度h 及三根细钢管的总长度(精确到0.01);5、(静安区2016届高三二模)设点,E F 分别是棱长为2的正方体1111ABCD A B C D -的棱1,AB AA 的中点.如图,以C 为坐标原点,射线CD 、CB 、1CC 分别是x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系.(1)求向量1D E u u u u r与1C F u u u u r 的数量积;(2)若点,M N 分别是线段1D E 与线段1C F 上的点,问是否存在直线MN ,MN ⊥平面ABCD ?若存在,求点,M N 的坐标;若不存在,请说明理由E FB 1A 1C 1D 1BC DA6、(闵行区2016届高三二模)如图,在直角梯形PBCD中,//PB DC,DC BC⊥,22PB BC CD===,点A是PB的中点,现沿AD将平面PAD折起,设PABθ∠=.(1)当θ为直角时,求异面直线PC与BD所成角的大小;(2)当θ为多少时,三棱锥P ABD-的体积为26.7、(浦东新区2016届高三二模)如图,在圆锥SO中,AB为底面圆O 的直径,点C为»AB的中点,SO AB=.(1)证明:AB⊥平面SOC;(2)若点D为母线SC的中点,求AD与平面SOC所成的角.(结果用反三角函数表示)8、(普陀区2016届高三二模)在正四棱柱1111D C B A ABCD -中,底面边长为1,B C 1与底面ABCD 所成的角的大小为2arctan ,如果平面11C BD 与底面ABCD 所成的二面角是锐角,求出此二面角的大小(结果用反三角函数值)9、(徐汇、金山、松江区2016届高三二模)在直三棱柱111C B A ABC -中,1==AC AB ,90=∠BAC ,且异面直线BA 1与11CB 所成的角等于060,设a AA =1. (1)求a 的值;(2)求三棱锥BC A B 11-的体积.1A 1B 1CA BCD.A 1CEA BCDB 110、(杨浦区2016届高三二模)如图,底面是直角三角形的直三棱柱111ABC A B C -中,1112AC BC AA ===,D 是棱1AA 上的动点.(1)证明:1DC BC ⊥; (2)求三棱锥1C BDC -的体积.11、(闸北区2016届高三二模)在长方体1111ABCD A B C D -中,2AB =,1AD =,11AA =,点E 在棱AB 上移动.(1)探求AE 多长时,直线1D E 与平面11AA D D成45o 角;(2)点E 移动为棱AB 中点时,求点E 到平面11A DC 的距离.12、(长宁、青浦、宝山、嘉定四区2016届高三二模)如图,在直三棱柱111C B A ABC -中,底面△ABC 是等腰直角三角形,21===AA BC AC ,D 为侧棱1AA 的中点.(1)求证:⊥BC 平面11A ACC ;(2)求二面角11C CD B --的大小(结果用反三角函数值表示). 参考答案一、填空、选择题ABCA 1B 1C 1D1、12π2、23、64π4、3325、4106、37、1 或3 8、C 9、D 10、D 11、A 12、D13、B 14、D二、解答题1、可得有关点的坐标为11111(0,0,1),(1,1,1),(,1,0),(0,,0),(0,1,1)22D BEF C 11(,,0)22EF =--u u u r ,11(1,1,0)B D =--u u u u r (4)分所以112B D EF =u u u u r u u u r...............................5分所以11EF B D ∥...............................6分(2)设1(,,)n u v w =u r是平面1C EF 的一个法向量.因为111,n EF n FC ⊥⊥u r u u u u r u r u u u u r所以1111110,0222n EF u v n FC v w ⋅=--=⋅=+=u r u u u ru r u u u u r解得,2u v v w =-=- .取1w = ,得1(2,2,1)n =-u r.............................9分因为1DD ABCD ⊥平面,所以平面ABCD 的一个法向量是2(0,0,1)n =u u r (10)分设1n u r 与2n u u r 的夹角为α ,则12121cos 3||||n n n n α⋅==⋅u r u u ru r uu r .......................11分结合图形,可判别得二面角1C EF A --是钝角,其大小为1arccos 3π- (12)分2、(1)根据条件知:PE 与AD 交点恰好是C 1分ACBC 1A 1B 1(第19题图)D 1 D FE x yz,C PE C ∈∴∈面PBE ,,C AC C ∈∴∈面ABC 2分B ∈面PBE ,B ∈面ABC3分 面PBE与面ABC的交线BC5分 (2)(理) ,,AP AB AC 两两互相垂直,BA ⊥面EDAP 7分多面体B PADE -的体积是()113323PA DE AD BA ⨯+⨯⨯=9分233BA ∴=10分建立空间直角坐标系,设平面的法向量是()1,,n x y z u r23,0,03B ⎛⎫ ⎪ ⎪⎝⎭,()0,2,0C ()0,1,0D ()0,1,1E ()0,0,2P23,0,23BP ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,23,1,13BE ⎛⎫=- ⎪ ⎪⎝⎭u u u r123203n BP x z ⋅=-+=u r u u u r12303n BE x y z ⋅=-++=u r u u u r()13,1,1n ∴=u r11分面ABC 的法向量()20,0,1n =u u rADBC PE zxyQA D CBP(第20题解答图)z yx 1212cos n nn n θ⋅==⋅u r u u ru r u u r 1555= 12分所以面PBE 与面ABC 所成的锐二面角大小5arccos 513分注:若作出二面角得2分,计算再3分 (2)(文),,AP AB AC 两两互相垂直,BA ⊥面EDAP7分多面体B PADE -的体积是()113323PA DE AD BA ⨯+⨯⨯=9分233BA ∴=10分 连接AEAE 是BE 在面EDAP 的射影BEA ∠是BE 与面PADE 所成的线面角. 11分 计算2AE =,2363tan 32BAE ∠==12分BEA ∠是BE 与面PADE 所成的线面角6arctan 3. 13分3、 (理)解:(1)以},,{AP AD AB 为正交基底建立空间直角坐标系xyz A -,则相关点的坐标为B (2,0,0),(2,1,0),(0,2,0),(0,0,2).C D P ……2分设平面PCD 的法向量为(,,),n x y z =r由(2,1,0),DC =-uuu r (0,2,2),DP =-u u u r (0,2,0).DA =-u u u r则ADBCPE202,2.220n DC x y y x z x n DPy z r u u u r r u u u r ìïì?-==ïïïÞ眄镲=?-+=ïîïî 令1x =,则(1,2,2)n =r.……5分所以点A 到平面PCD 的距离为:(0,2,0)(1,2,2)4.(1,2,2)3DA n d nu u u r r r×-?=== ……7分(2) 由条件,得(1,0,1),Q =(0,2,0),(1,0,1),AD AQ ==u u u r u u u r 且(1,1,1).CQ u u u r=--设平面ADQ 的法向量为0000(,,),n x y z =r 则00000000200,.0n AD y y z x n AQx z r u u u r r u u u r ìïì?==ïï镲Þ眄镲=-?+=ïïîî令01x =,则0(1,0,1)n =-r.……10分设直线CQ 与平面ADQ 所成角为,θ则00026sin cos ,.332CQ n CQ n CQ n θ⋅=<>===⋅u u u r u u r u u u r u u ru u u r u u r故直线CQ 与平面ADQ 所成角的大小为6sin.3arc ……14分注:第(1)小题也可用等积法来做.4、[解] 联结PO ,AO ,由题意,PO ⊥平面ABC ,因为凳面与地面平行, 所以PAO ∠就是PA 与平面ABC 所成的角,即60PAO ∠=︒.(2分) 在等边三角形ABC 中,18AB =,得63AO =,(4分)在直角三角形PAO 中,318OP AO ==,(6分)由0.618OPh OP=-,解得47.13h ≈厘米.(9分)三根细钢管的总长度3163.25sin 60h≈︒厘米.(12分)5、(1)在给定空间直角坐标系中,相关点及向量坐标为11(2,0,2),(1,2,0),(1,2,2)D E D E =--u u u u r (2)分PA BCD xy z PA BCD 11(0,0,2),(2,2,1),(2,2,1)C F C F =-u u u u r (4)分所以111222(2)(1)4D E C F ⋅=-⨯+⨯+-⨯-=u u u u r u u u u r。

2020年普通高等学校招生全国统一考试数学试题汇编 立体几何(理科)部分

2020年普通高等学校招生全国统一考试数学试题汇编 立体几何(理科)部分

2020年普通高等学校招生全国统一考试数学试题汇编 立体几何(理科)部分立体几何(理科)部分1. (广东5)给定以下四个命题:①假设一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②假设一个平面通过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④假设两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是A.①和② B.②和③ C..③和④ D.②和④ D2.〔宁夏海南11〕一个棱锥的三视图如图,那么该棱锥的全面积 〔单位:c 2m 〕为〔A 〕48+122 〔B 〕48+242 〔C 〕36+122 〔D 〕36+242 解析:选A.3. (宁夏海南8) 如图,正方体1111ABCD A B C D -的棱线长为1,线段11B D 上有两个动点E ,F ,且22EF =,那么以下结论中错误的选项是 〔A 〕AC BE ⊥ 〔B 〕//EF ABCD 平面〔C 〕三棱锥A BEF -的体积为定值 〔D 〕异面直线,AE BF 所成的角为定值解析:A 正确,易证11;AC D DBB AC BE ⊥⊥平面,从而B 明显正确,//,//EF BD EF ABCD ∴平面易证;C 正确,可用等积法求得;D 错误。

选D.4.(山东4) 一空间几何体的三视图如下图,那么该几何体的体积为( ). A.223π+ B. 423π+ C. 2323π+ D. 2343π+【解析】:该空间几何体为一圆柱和一四棱锥组成的, 圆柱的底面半径为1,高为2,体积为2π,四棱锥的底面 边长为2,高为3,因此体积为()2123233⨯⨯=因此该几何体的体积为2323π+.答案:C【命题立意】:此题考查了立体几何中的空间想象能力, 由三视图能够想象得到空间的立体图,并能准确地 运算出.几何体的体积.5.(辽宁11)正六棱锥P-ABCDEF 中,G 为PB 的中点,那么三棱锥D-GAC 与三棱锥P-GAC 体积之比为〔A 〕1:1 〔B 〕1:2 〔C 〕2:1 〔D 〕3:2 答案:C 解析:连接FC 、AD 、BE ,设正六边形 的中心为O ,连接AC 与OB 相交点H ,那么GH∥PO,故GH⊥平面ABCDEF , ∴平面GAC⊥平面ABCDEF 又DC⊥AC,BH⊥AC, ∴DC⊥平面GAC ,BH⊥平面GAC , 且DC=2BH ,故三棱锥D-GAC 与三棱锥P-GAC 体积之比为2:1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明1例1如图,高为1的等腰梯形ABCD中,AM=CD=3AB=1.现将△AMD 沿MD 折起,使平面AMD⊥平面MBCD ,连接AB,AC.试判断:在AB边上是否存在点解析】线面平行,可以线线平行或者面面平行推出。

此类题的难点就是如何构造辅助线。

构造完辅助线,证明过程只须注意规范的符号语言描述即可。

本题用到的是线线平行推出面面平行。

易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。

思维点拨】此类题有两大类方法:1. 构造线线平行,然后推出线面平行。

此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。

在此,我们需要借助倒推法进行分析。

首先,此类型题目大部分为证明题,结论必定是正确的,我们以此为前提可以得到线面平行。

再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。

从这个角度上看我们可以看出线线平行推线面平行的本质就是过已知直线做一个平面与已知平面相交即可。

如本题中即是过AD 做了一个平面ADB 与平面MPC 相交于线PN。

最后我们只须严格使用正确的符号语言将证明过程反向1【答案】当AP=3AB 时,有AD ∥平面MPC.理由如下:连接BD 交MC 于点N,连接NP.在梯形MBCD 中,DC∥MB,DNNBDCMB1,2,AP 1在△ADB 中,P AP B=12,∴AD∥PN.∵AD? 平面MPC ,PN ? 平面MPC ,∴ AD∥平面MPC.P,使AD ∥平面MPC ?并说明理由写一遍即可。

即先证AD 平行于PN,最后得到结论。

构造交线的方法我们可总结为如下三个图形。

2. 构造面面平行,然后推出线面平行。

此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。

辅助线的构造理论同上。

我们只须过已知直线上任意一点做一条与已知平面平行的直线即可。

可总结为下图方法一例2如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB⊥平面BEC,BE⊥EC,AB =BE=EC=2,G,F 分别是线段BE ,DC 的中点.求证:GF ∥平面ADE ;【答案】解法一:(1)证明:如图,取AE 的中点H,连接HG ,HD,1又G 是BE 的中点,所以GH∥AB ,且GH=2AB.1又 F 是CD 的中点,所以DF =12CD.由四边形ABCD 是矩形得,PP方法二方法三AB(1) 求证: PA ⊥ BD ;(2) 求证:平面 BDE ⊥平面 PAC【答案】 (1)证明:因为 PA ⊥AB ,PA ⊥BC ,AB ∩BC =B ,所以 PA ⊥平面 ABC.又因为BD? 平面 ABC , 所以 PA ⊥BD.(2) 证明:因为 AB = BC ,D 为 AC 的中点,所以 BD ⊥AC.由(1)知, PA ⊥BD ,又 AC ∩PA =A ,所以 BD ⊥平面 PAC.因为 BD? 平面 BDE ,所以平面 BDE ⊥平面 PAC.【解析】 (一 )找突破口 第(1)问:欲证线线垂直,应转化到证线面垂直,再得线线垂直;第(2) 问:欲证面面垂直, 应转化到证线面垂直, 进而转化到先证线线垂直, 借助 (1)的结论和已知条件可证; (二)寻关键点有什么想到什么 注意什么信息①: PA ⊥ AB ,PA ⊥ BC 线面垂直的判定定理,可证(1)证明线面平行的条件:一AB ∥CD ,AB = CD ,所以 GH ∥ DF ,且 GH =DF , 从而四边形 HGFD 是平行四边形,所以 GF ∥ DH. 又 DH?平面 ADE ,GF? 平面 ADE ,所以 GF ∥平面 ADE. 解法 2:(1)证明:如下图,取 AB 中点 M ,连接 MG ,MF. 又 G 是 BE 的中点,可知 GM ∥ AE. 又 AE? 平面 ADE , GM ? 平面 ADE ,所以 GM ∥平面 ADE. 在矩形 ABCD 中,由 M ,F 分别是 AB ,CD 的中点得 MF ∥AD.又 AD ? 平面 ADE ,MF? 平面 ADE , 所以 MF ∥平面 ADE.又因为 GM ∩MF =M ,GM?平面 GMF ,MF?平面 GMF , 所以平面 GMF ∥平面 ADE.因为 GF? 平面 GMF ,所以 GF ∥平面 ADE.【解析】 解法一为构造线线平行,解法二为构造面面平行。

【易错点】 线段比例关系 【思维点拨】 同例一题型二 线线垂直、面面垂直的证明例 1如图,在三棱锥 P-ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB=BC=2,D 为线段 AC 的中点, E 为 线段 PC 上一点.【易错点】规范的符号语言描述,正确的逻辑推理过程。

【思维点拨】(1) 正确并熟练掌握空间中平行与垂直的判定定理与性质定理,是进行判断和证明的基础;在证明线面关系时,应注意几何体的结构特征的应用,尤其是一些线面平行与垂直关系,这些都可以作为条件直接应用.(2)证明面面平行依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证明面面平行转化为证明线面平行,再转化为证明线线平行.(3) 证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中线、高线或添加辅助线解决.(4) 证明的核心是转化,空间向平面的转化,面面? 线面? 线线.题型三空间向量例 1 如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,ABD CBD ,AB=BD .(1) 证明:平面ACD⊥平面ABC;(2) 过AC 的平面交BD 于点E,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D-AE-C 的余弦值.答案】 (1)证明:由题设可得, △ABD ≌△ CBD ,从而 AD =DC.又△ACD 是直角三角形,所以∠ ADC =90°.取 AC 的中点 O ,连接 DO ,BO ,则 DO⊥AC ,DO =AO.又因为 △ABC 是正三角形,所以 BO ⊥AC. 所以∠ DOB 为二面角 D-AC-B 的平面角. 在 Rt △AOB 中, BO 2+AO 2=AB 2. 又 AB = BD ,所以 BO 2+DO 2=BO 2+AO 2= AB 2= BD 2, 故∠ DOB = 90°.所以平面 ACD ⊥平面 ABC.―→ ―→ (2)由题设及 (1)知, OA , OB , OD 两两垂直.以 O 为坐标原点, ―O →A 的方向为 x 轴正方向, |―O →A |为单 位长度,建立如图所示的空间直角坐标系 O-xyz ,则 A (1,0,0),B (0, 3,0),C (-1,0,0),D (0,0,1).1由题设知, 四面体 ABCE 的体积为四面体 ABCD 的体积的 2,从而 E 到平面 ABC 的距离为 D 到平面 ABC 的 距离的 12,即 E 为 DB 的中点,得 E 0, 23,12 .故―AD →=(-1,0,1),―A →C =(-2,0,0),―A →E = -1,23, 12 . 设 n = (x 1, y 1, z 1)是平面 DAE 的法向量,可取 m =(0,- 1, 3)由图知二面角 D-AE-C 为锐角, 所以二面角 D-AE-C 的余弦值为 77. 解析】 (一 )找突破口n ·AD = 0, 设 m = (x 2, y 2,z 2)是平面 AEC 的法向量,则 m ·AC = 0, - x 1+ z 1=0 ,n ·AE = 0,1-2x 2=0,m ·AE = 0,第(1)问:欲证面面垂直,应转化去证线面垂直或证其二面角为直角,即找出二面角的平面角,并求其大小为90°;第(2)问:欲求二面角的余弦值,应转化去求两平面所对应法向量的夹角的余弦值,即通过建系,求所对应法向量来解决问题.(二)寻关键点【易错点】正确建立空间直角坐标系,确定点的坐标,平面法向量的计算。

【思维点拨】1.利用空间向量求空间角的一般步骤(1)建立恰当的空间直角坐标系;(2)求出相关点的坐标,写出相关向量的坐标;(3) 结合公式进行论证、计算;(4) 转化为几何结论.2.求空间角应注意的 3 个问题(1)两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos =α|cos β|.(2)直线与平面所成的角的正弦值等于平面的法向量与直线的方向向量夹角的余弦值的绝对值,注意函数名称的变化.(3)两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.【巩固训练】题型一线面平行的证明1.如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G 分别是BC、DC、SC的中点,求证:(1) 直线EG∥平面BDD1B1;(2) 平面EFG ∥平面BDD1B1.【答案】详见解析【解析】(1)如图,连接SB,∵E、G 分别是BC 、SC的中点,∴ EG∥SB.(2)连接SD,∵F、G 分别是DC、SC的中点,∴ FG∥SD.又∵ SD? 平面BDD 1B1,FG?平面BDD 1B 1,∴ FG∥平面BDD 1B 1,又EG? 平面EFG,FG? 平面EFG,EG∩FG =G,∴平面EFG∥平面BDD1B1.2.如图,四棱锥P-ABCD 的底面是边长为1的正方形,侧棱PA⊥底面ABCD ,且PA=2,E 是侧棱PA 上的中点.求证:PC∥平面BDE ;【答案】详见解析【解析】证明:连接AC 交BD 于点O ,连接OE ,如图:∵四边形ABCD 是正方形,∴O 是AC 的中点.又∵ SB? 平面BDD 1B1,EG? 平面又 E 是PA 的中点,∴ PC∥ OE. ∵PC?平面BDE ,OE? 平面BDE,∴PC ∥平面BDE.ABCD-A1B1C1D1 中,底面ABCD 是等腰梯形,∠ DAB=60°,AB=2CD=2,M 是线段AB 的中点.BC,E 是PC 的中点.(1)证明:CD⊥AE;(2)证明:PD⊥平面ABE;【答案】详见解析解析】(1)在四棱锥P-ABCD 中,因为PA⊥底面ABCD ,CD ?平面ABCD ,故PA⊥CD,∵AC⊥CD,PA∩AC=A,3.如图,在四棱柱求证:C1M∥平面A1ADD 1;【答案】详见解析【解析】证明:因为四边形ABCD 是等腰梯形,且AB=2CD ,所以AB∥ DC .又由M 是AB 的中点,因此CD ∥MA 且CD =MA .连接AD1,在四棱柱ABCD-A1B1C1D1 中,因为CD ∥C1D1,CD =C1D1,可得C1D1∥MA,C1D1=MA,所以四边形AMC1D1 为平行四边形.因此C1M∥D1A,又C1M? 平面A1ADD 1,D 1A?平面A1ADD1 ,所以C1M∥平面A1ADD 1.题型二线线垂直、面面垂直的证明1.如图,在四棱锥P-ABCD 中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ ABC=60°,PA=AB=∴ CD⊥平面PAC,而AE? 平面PAC,∴CD⊥AE,(2)由PA=AB=BC,∠ ABC=60°,可得AC=PA,∵E是PC的中点,∴ AE⊥PC,由(1)知,AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD,而PD? 平面PCD,∴AE⊥PD,∵PA⊥底面ABCD ,PD 在底面ABCD 内的射影是AD,AB⊥AD,∴ AB⊥ PD,又∵ AB∩AE =A,综上可得PD ⊥平面ABE.2.如图,在三棱锥P-ABC 中,PA=PB=PC=AC=4,AB=BC= 2 2.求证:平面ABC ⊥平面APC;答案】详见解析【解析】(1)证明:如图所示,取AC 中点O,连接OP,OB.∵PA=PC=AC=4,∴OP⊥AC,且PO=4sin60 °=2 3. ∵BA=BC=2 2,∴BA2+BC2=16=AC2,且BO⊥AC,∴BO=AB2-AO2= 2.∵PB=4,∴OP2+OB2=12+4=16=PB2,∴OP⊥OB. ∵AC∩OB=O,∴OP⊥平面ABC.∵OP?平面PAC,∴平面ABC ⊥平面APC.证明:平面PBC ⊥平面PBD ;3.如图所示,四棱锥【答案】 详见解析【解析】 (1)证明:Q CB 1,CD 2,BD 3,∴CD 2=BC 2+BD 2,∴ BC ⊥BD. 又∵ PD ⊥底面 ABCD ,∴ PD ⊥BC.又∵PD ∩BD =D ,∴BC ⊥平面 PBD. 而 BC? 平面 PBC ,∴平面 PBC ⊥平面 PBD.题型三空间向量1.已知直三棱柱 ABC -A 1B 1C 1 中,∠ ACB = 90°,AC = BC =2,AA 1= 4,D 是棱 AA 1 的中点.如图所示.(1)求证: DC 1⊥平面 BCD ;(2)求二面角 A -BD - C 的大小.答案】 详见解析解析】 (1)证明:按如图所示建立空间直角坐标系.由题意, 可得点 C(0,0,0),A(2,0,0),B(0,2,0),D(2,0,2),A 1(2,0,4),C 1(0,0,4). uuuur uuur uuur于是, DC 1 = (-2,0,2), DC =(-2,0,-2),DB =(-2,2,-2). uuuur uuur uuuur uuur可算得 DC 1 DC =0, DC 1 DB =0.因此, DC 1⊥DC ,DC 1⊥DB.又 DC ∩DB =D ,所以 DC 1⊥平面 BDC.(2)设 n =(x ,y , z)是平面 ABD 的法向量,uuur uuur又 AB =(-2,2,0), AD = (0,0,2) ,x =1, 取 y = 1,可得 y = 1,z =0,即平面 ABD 的一个法向量是 n = (1,1,0).uuuur 由(1)知, DC 1 是平面 DBC 的一个法向量,记 1 2 π则 cos θ=- 2, θ= 3 .结合三棱柱可知,二面角 A -BD -C 是锐角, 故所求二面角 A-BD -C 的大小是 3π.32.如图 1,在 Rt △ABC 中,∠ ACB =30°,∠ ABC =90°, D 为 AC 中点, 点F ,将△ABD 沿 BD 折起,使平面 ABD ⊥平面 BCD ,如图 2所示.所以 -2x + 2y =0,2z =0. AE ⊥ BD 于点 E ,延长 AE 交 BC 于 uuuurn 与 DC 1的夹角为 θ,uuur 由于 AF = 3, 3,0 ,- 3 , uuuur uuur 所以 AM =λAF =λ,0,- 3 ,其中 λ∈[0,1] .(1)求证: AE ⊥平面 BCD ;(2)求二面角 A -DC -B 的余弦值;(3) 在线段 AF 上是否存在点 M 使得 EM ∥平面 ADC ?若存在,请指明点 M 的位置;若不存在,请说明理由.答案】 详见解析【解析】(1)证明:因为平面 ABD ⊥平面 BCD ,交线为 BD , 又在△ABD 中, AE ⊥ BD 于点 E ,AE?平面 ABD , 所以 AE ⊥平面 BCD.(2)由(1)中AE ⊥平面 BCD 可得 AE ⊥EF. 由题意可知 EF ⊥BD ,又 AE ⊥BD , 如图,以 E 为坐标原点, 分别以 EF ,ED ,EA 所在直线为 x 轴、 y 轴、 z 轴,建立空间直角坐标系 E - xyz ,不妨设 AB = BD =DC =AD =2,则 BE =ED =1.AE = 3,BC = 2 3,BF = 2 3 ,则 E(0,0,0),D (0,1,0),B (0, 33 uuur uuurF 33,0,0 ,C ( 3,2,0), DC =( 3,1,0), AD = (0,1,- 3).由 AE ⊥平面 BCD 可知平面 DCB 的法 3 uuur uuur 向量为 EA , EA = (0,0, 3), 设平面 ADC 的法向量为 n = (x , y , z),3x + y =0, y - 3z = 0.令 z =1,则 y = 3,x =- 1,所以 n =(-1, 3,1). uuur 因为平面 DCB 的法向量为 EA ,5 所以二面角 A -DC -B 的余弦值为 5.5 uuuur uuur(3)设 AM =λAF ,其中 λ∈[0,1] . uuur所以 cos 〈n ,EA 〉 5. 5. 由图 1 条件计算得 -1,0),A(0,0, 3),uuuur uuur uuuur 所以 EM EA AM = uuuur 3 3由EM ·n = 0,即- 3 λ+(1-λ) 3=0,解得λ=4∈[0,1].所以在线段 AF 上存在点 M 使EM ∥平面 ADC , 34(1)证明: BC ⊥ AB 1;(2)若 OC = OA ,求直线 C 1D 与平面 ABC 所成角的正弦值. 答案】 详见解析 解析】 (1)证明:由题意 tan ∠ ABD = AD = 2,tan ∠AB 1B = AB = 2,AB 2 BB 1 2π 注意到 0<∠ABD ,∠ AB 1B<2, 所以∠ ABD =∠ AB 1B.π所以∠ ABD +∠ BAB 1=∠AB 1B +∠ BAB 1=2.所以 AB 1⊥BD. 又 CO ⊥侧面 ABB 1A 1,所以 AB 1⊥CO. 又 BD 与 CO 交于点 O ,所以 AB 1⊥面 CBD. 又因为 BC? 面 CBD ,所以 BC ⊥AB 1.(2)如图,分别以 OD ,OB 1,OC 所在的直线为 x 轴、y 轴、z 轴, O为原点,建立空间直角坐标系 O - xyz , 则A 0,- 33, ,B - 36 ,0, 0 , C 0, 0, 33 , 以 所 以3 3→→ 为 CC 1 = 2 AD , D 66 , uuur AB = B 1 0,233,0 C 1 36,233, 33 .所以 设平面 ABC 的法向量为 uuur uuur 则根据 AB ·n = 0, AC 0,0 6, 3, n = (x ,y , n =0 可得 3 55ABC 所成角为 α.则 sin α= 55 . .又 3, 3, z), n =(1, u A u C ur = 0,33, 2,- 2) 是平面 ABC 的一个法向量,设直线 C 1D 与平面3 33 ,0,(1 )3AM= AF = 3. 4.,D 为 AA 1 的中点, BD 与 AB 1交3.在三棱柱 ABC -A 1B 1C 1 中,于点 O ,CO ⊥侧面 ABB 1A 1.。

相关文档
最新文档