隧道断面的测量方法

合集下载

隧道断面测量与设计断面录入方法

隧道断面测量与设计断面录入方法

隧道断面测量与设计断面录入方法隧道断面测量方法与数据格式实测隧道断面时,只需要采集到断面上各点的三维坐标即可,在开始采集数据时(第一个点)在点属性中写入特定的标记信息。

可按如下方法:(1) 在已知平面坐标和高程的测站上架设全站仪,设置仪器为地形点碎步测量的方式,记录格式为“点号,X,Y,Z,点属性”;(2) 输入已知坐标和量取的仪器高度设站,后视另一平面已知点定向,然后使仪器转到隧道横断面方向,任意测量一个点,在点属性中记入“CHA-里程值”。

如果里程值不准确,请在里程之前加一个“*”。

提示:最好在表示新断面开始的CHA-记录行中,测点的坐标中输入测站点的坐标。

(3) 以线路前进方向为准,顺时针方向采集断面点,直到本断面测量结束。

如果测量的顺序是逆时针方向,利用GS P软件可以将断面数据逆转过来。

提示:如果仪器面向线路的起始方向(小里程方向),则测量断面的顺序应为逆时针方向。

提示:如果实测断面点的顺序不对,会影响GSP计算超欠挖面积,对于超欠值的计算没有影响。

(4) 在一个测站上不能测量出该断面所有的断面点时,可以分多次测量,利用GSP软件的断面拼接功能拼接起来即可。

测量完成,下载记录的断面数据文件。

GSP处理的是从全站仪中记录的三维坐标数据。

一般的全站仪都有测量地形图的功能,记录地形点的坐标和点属性,文本格式为:点号,X,Y,Z,点属性如果您的记录格式不是这样的格式,请在全站仪中设置记录格式,或编辑转换成上述格式。

GSP要求在每一个新的断面开始时,在点属性中记录“CHA-0000”。

其中“CHA-”表示新的断面测量开始,“0000”表示断面的中线里程,如果您不知到该断面的里程,请用“*”代替,GSP自动计算。

这个点的坐标记录测站点的坐标。

对于点号,GSP忽略。

以下为例:0,2893106.665,472382.214,65.286,CHA-* 1,2893106.665,472382.214,65.2862,2893106.929,472382.455,66.3733,2893107.057,472382.572,68.4724,2893106.851,472382.384,69.9875,2893106.583,472382.139,70.9366,2893106.063,472381.665,72.0217,2893105.486,472381.138,72.9318,2893104.894,472380.598,73.5999,2893104.162,472379.93,74.20710,2893103.252,472379.1,74.7111,2893102.361,472378.286,74.96812,2893101.337,472377.352,75.04713,2893100.335,472376.437,74.83214,2893099.249,472375.446,74.27115,2893098.711,472374.956,73.82316,2893098.156,472374.449,73.18117,2893097.695,472374.029,72.4918,2893097.231,472373.605,71.6319,2893097.016,472373.409,71.11120,2893096.785,472373.198,70.34921,2893096.662,472373.086,69.72622,2893096.517,472372.954,68.83823,2893096.507,472372.944,67.57724,2893096.598,472373.027,66.64925,2893096.716,472373.136,65.9526,2893096.855,472373.262,65.290,2893113.711,472375.106,65.591,CHA-* 1,2893113.711,472375.106,65.5912,2893113.818,472375.203,66.5093,2893113.752,472375.143,68.5874,2893113.542,472374.952,70.0455,2893113.079,472374.529,71.5496,2893112.431,472373.938,72.6727,2893111.807,472373.369,73.5178,2893111.083,472372.708,74.2119,2893110.13,472371.838,74.74710,2893108.841,472370.662,75.04911,2893107.77,472369.685,74.94612,2893106.992,472368.975,74.68913,2893105.698,472367.793,73.90714,2893105.02,472367.175,73.22615,2893104.259,472366.481,72.11616,2893103.71,472365.98,70.84717,2893103.377,472365.676,69.54418,2893103.267,472365.576,68.18819,2893103.305,472365.61,67.4320,2893103.404,472365.7,66.63721,2893103.538,472365.822,65.93222,2893103.648,472365.924,65.35设计断面录入方法利用GSP录入隧道设计断面的步骤如下:1、打开设计断面图,标注出线路中线位置和设计标高位置;2、选择设计断面录入的起点,并计算出其断面坐标(距离线路中线和设计标高线的距离);如果是对称图形,建议选择在拱顶位置,然后输入右半断面图形数据;如下图所示的对称隧道断面,由几段相切的圆弧组成。

如何使用全站仪进行隧道工程测量与监测

如何使用全站仪进行隧道工程测量与监测

如何使用全站仪进行隧道工程测量与监测隧道工程是基础建设中重要的一部分,而测量与监测是隧道工程中不可或缺的环节。

全站仪作为一种高精度的测量仪器,在隧道工程中的应用日益广泛。

本文将介绍如何使用全站仪进行隧道工程测量与监测。

一、测量隧道的初始数据在进行隧道工程测量之前,我们需要获取一些初始数据。

首先,我们需要进行隧道的地质勘探,了解地下情况,包括岩层、土层等。

其次,要准确测量隧道的起点和终点,确定隧道的水平和垂直方向。

使用全站仪进行测量时,首先需要选定一个基准点,这个点通常是固定的测量标志物,例如标志桩或固定的建筑物。

然后,我们可以使用全站仪进行测量,通过测量测量点与基准点之间的水平和垂直方向的角度差,以及测量点与基准点之间的距离,来确定测量点的坐标。

二、测量隧道的断面和曲线隧道工程除了需要确定起点和终点的坐标外,还需要测量隧道的断面和曲线。

隧道的断面通常包括顶部、底部和两侧的几何形状和尺寸。

而曲线则是表征隧道在水平和垂直方向上的变化情况。

在使用全站仪进行断面和曲线测量时,我们可以选择在隧道内部设置一系列的控制点。

这些控制点通常由固定的标志物或设备组成,例如控制桩或反射器。

然后,我们可以使用全站仪测量这些控制点的坐标,并根据测量结果绘制隧道的断面和曲线。

三、监测隧道的变形和位移除了测量隧道的初始数据和几何形状外,隧道工程还需要进行监测,以及时发现和修正可能出现的变形和位移。

全站仪在隧道工程监测中起到了重要的作用。

对于隧道的变形和位移监测,我们通常会在隧道内部和周围设置一系列的测量点。

这些测量点通常由固定的控制桩或反射器组成。

然后,我们可以使用全站仪定期测量这些测量点的坐标,并与初始数据进行比较,以确定隧道的变形和位移情况。

四、使用全站仪的注意事项在使用全站仪进行隧道工程测量与监测时,我们需要注意以下几点。

首先,要选择合适的全站仪,根据工程的需求和精度要求选择合适的型号和规格。

其次,要保证全站仪的仪器精度和测量精度,对于关键测量点要进行反复测量,以提高测量的准确性。

铁路工程测量中的隧道断面测量方法

铁路工程测量中的隧道断面测量方法

铁路工程测量中的隧道断面测量方法隧道是铁路建设中不可或缺的部分,而测量则是保证隧道工程质量与安全的重要环节。

隧道断面测量方法作为隧道工程测量中的关键技术之一,对于确保隧道施工的准确性和有效性具有重要意义。

本文将介绍隧道断面测量方法的原理、应用以及相关技术的发展趋势。

一、隧道断面测量方法的原理隧道断面测量是指对隧道断面进行准确测量和记录的过程。

在隧道施工中,准确的断面测量可以为后续的爆破、支护、道床平整等工作提供可靠的依据。

常见的断面测量方法包括传统的平面测量方法和激光测量方法。

传统的平面测量方法通过使用光学仪器进行测量,包括全站仪、经纬仪、水平仪等。

这些仪器能够提供较高的测量精度,但需要较长的测量时间和复杂的数据处理,同时受到天气条件和人为因素的限制。

激光测量方法是近年来隧道工程中广泛应用的一种断面测量技术。

它利用激光束对隧道断面进行扫描,并通过接收器接收反射回来的激光信号,从而得到隧道断面的精确数据。

激光测量方法具有测量速度快、精度高、无人化操作等优势,极大地提高了测量效率和施工安全性。

二、隧道断面测量方法的应用隧道断面测量方法在隧道工程中有着广泛的应用。

首先,隧道断面测量能够为隧道施工的爆破作业提供准确的断面数据,从而有效控制爆破范围和保证爆破效果。

其次,隧道断面测量也对隧道支护具有重要意义。

测量结果可以为支护结构的设计和施工提供可靠的参数,确保支护结构的稳定性和安全性。

此外,隧道断面测量还可为隧道道床平整提供依据,确保列车运行的舒适性和安全性。

三、隧道断面测量方法的发展趋势随着科技的不断进步,隧道断面测量方法也在不断发展和优化中。

一方面,传统的平面测量方法正在向数字化、自动化发展。

通过使用高精度的全站仪和数据处理软件,可以提高测量的准确性和效率。

另一方面,激光测量方法也在不断改进。

近年来,无人机搭载激光测量仪器的应用越来越普遍。

无人机能够高效地对隧道断面进行测量,并通过远程控制和自动化算法进行数据处理,使得测量工作更加简便和快速。

全站仪隧道断面测量方法

全站仪隧道断面测量方法

全站仪隧道断面测量方法1. 引言大家好!今天咱们聊聊全站仪在隧道断面测量中的妙用。

说到隧道测量,可能有朋友会觉得这是个高大上的技术活,其实不然,它就像咱们平常量房子、划分空间一样简单。

只不过,这个空间得在地下,条件相对复杂点儿。

全站仪,顾名思义,就是个“全能型”的小帮手,不管是测距、测角,它都能搞定。

准备好了吗?咱们一起来看看这其中的奥妙吧!2. 全站仪的基本原理2.1 什么是全站仪?全站仪,简单来说,就是个集成了测距仪、经纬仪和数据处理系统的高科技玩意儿。

它的工作原理可不是天书,实际上就是通过发射激光束来测量目标距离,同时记录下相关的角度信息。

想象一下,像个超级精准的弹弓,不光能瞄准,还能告诉你距离和角度,这在隧道施工中可真是省时省力。

2.2 为啥选择全站仪?好吧,为什么偏偏选全站仪呢?这可得从它的“全能性”说起。

比如在狭小的隧道空间里,传统的方法可能得折腾老半天,才能搞清楚哪个地方有偏差,而全站仪就能一键搞定。

这就像你在家做饭,如果有个多功能的厨师机,岂不是省了不少事儿?更别提它的数据精确性,误差小到几毫米,简直是工程界的“神仙”。

3. 隧道断面测量的步骤3.1 预备工作首先,咱得做好准备。

选择好测量的隧道位置,清理现场障碍物,确保全站仪能顺利工作。

接下来,设定好基准点。

这就像在你的房间里确定好沙发和电视的位置,才能把家布置得舒适自在。

然后,设定好全站仪的高度和方位,确保仪器能对准正确的目标。

3.2 测量过程一切准备就绪,咱们就可以开始测量啦!这个过程可得讲究技巧。

首先,调整好全站仪的水平,确保它稳定不晃。

然后,瞄准目标,按下测量按钮,咔嚓一声,数据就出来了!哇,真是太简单了!接下来,把测得的断面数据记录下来,注意,这一步可不能马虎,记录得仔细些,免得后续出错。

4. 数据处理与分析4.1 数据整理测量结束后,咱们要对这些数据进行整理。

别小看这一步,正如烹饪后要洗碗一样,整理工作可得认真。

把每个断面的数据分类,检查是否有误差。

隧道断面仪测量原理

隧道断面仪测量原理

隧道断面仪测量原理隧道断面仪是一种用于测量隧道断面形状和尺寸的仪器。

它通过测量隧道内部的各个点的坐标,然后根据这些坐标计算出隧道的断面形状和尺寸。

隧道断面仪的测量原理主要包括测量原理和计算原理两个方面。

一、测量原理隧道断面仪的测量原理是基于三角测量原理和激光测距原理。

具体步骤如下:1. 安装:首先,将隧道断面仪安装在隧道内部的一个固定位置上,通常是在隧道的顶部或者底部。

安装时需要确保仪器的水平度和稳定性。

2. 激光测距:隧道断面仪通过发射激光束,然后接收激光束的反射信号来测量隧道内部各个点的距离。

激光测距原理是利用激光束的光速和反射信号的时间差来计算距离。

3. 角度测量:隧道断面仪还需要测量隧道内部各个点的水平角度和垂直角度。

这可以通过仪器内部的陀螺仪和加速度计来实现。

4. 坐标测量:通过激光测距和角度测量,隧道断面仪可以得到隧道内部各个点的坐标。

这些坐标可以表示为三维坐标系中的点,也可以表示为二维坐标系中的点。

二、计算原理隧道断面仪的计算原理是基于三角计算和数学模型。

具体步骤如下:1. 数据处理:首先,将测得的各个点的坐标数据进行处理,包括数据的滤波、平滑和校正等。

这些处理可以提高数据的精度和准确性。

2. 坐标计算:通过测得的各个点的坐标数据,可以计算出隧道的断面形状和尺寸。

这可以通过三角计算和插值计算来实现。

三角计算可以计算出隧道的各个点之间的距离和角度,插值计算可以计算出隧道的断面形状。

3. 数据输出:最后,将计算得到的隧道断面形状和尺寸数据输出到计算机或者显示屏上。

这样,用户就可以直观地了解到隧道的断面形状和尺寸。

总结起来,隧道断面仪的测量原理主要包括测量原理和计算原理两个方面。

测量原理是基于三角测量原理和激光测距原理,通过测量隧道内部各个点的坐标来计算隧道的断面形状和尺寸。

计算原理是基于三角计算和数学模型,通过处理测得的坐标数据和进行计算,最终得到隧道的断面形状和尺寸数据。

隧道断面仪的测量原理和计算原理的应用可以提高隧道工程的设计和施工的精度和效率。

隧道土建结构技术状况评分计算例题

隧道土建结构技术状况评分计算例题

隧道土建结构技术状况评分计算例题【原创版】目录一、引言二、隧道土建结构技术状况评分计算方法1.隧道断面测量方法2.瓦斯检测3.堰筑法公路隧道土建结构技术状况评定方法4.隧道衬砌结构健康诊断及技术状况评定研究三、案例分析四、结论正文一、引言随着我国公路隧道建设数量的增加,隧道的养护与管理工作日益显得重要。

对于隧道土建结构的技术状况评定,可以为隧道的养护提供科学依据。

本文将从隧道断面测量方法、瓦斯检测、堰筑法公路隧道土建结构技术状况评定方法和隧道衬砌结构健康诊断及技术状况评定研究等方面,介绍隧道土建结构技术状况评分计算的例题。

二、隧道土建结构技术状况评分计算方法1.隧道断面测量方法隧道断面测量方法是通过直接测量法、三维近景摄影、断面仪法和投影机法等方法,对隧道断面进行测量,从而获取隧道的技术参数。

其中,极坐标法是一种常用的测量方法。

2.瓦斯检测瓦斯检测是隧道环境监测的重要内容。

瓦斯的主要成分是甲烷(CH4)。

通过对隧道内的瓦斯浓度进行检测,可以有效预防隧道内的瓦斯事故。

3.堰筑法公路隧道土建结构技术状况评定方法堰筑法隧道技术状况评定方面的技术体系与现行规范无法有效匹配。

为全面评估堰筑法公路隧道的结构技术状况,采用结构解析理念建立由区段、部位、分项和构件等多层级组成的评定体系。

采用层次分析法确定隧道各区段结构分项指标权重,建立堰筑法公路隧道土建结构技术状况评定方法。

4.隧道衬砌结构健康诊断及技术状况评定研究隧道衬砌结构健康诊断及技术状况评定研究主要针对隧道衬砌结构病害主成因、运营隧道常见质量缺陷和常见病害的一般规律、衬砌背后空洞和衬砌裂缝对隧道结构安全性的影响规律以及隧道衬砌结构技术状况评定等几项内容进行深入研究。

通过理论分析、数值计算、室内相似模型试验和现场检测相结合的技术手段,为隧道衬砌结构的健康诊断和技术状况评定提供理论依据。

三、案例分析以某堰筑法公路隧道为例,采用上述隧道土建结构技术状况评分计算方法,对该隧道的土建结构进行评定。

隧道测量倒尺法-概述说明以及解释

隧道测量倒尺法-概述说明以及解释

隧道测量倒尺法-概述说明以及解释1.引言1.1 概述隧道测量是指对隧道进行精密测量和检测的过程,以获取隧道的地理位置、形状和尺寸等相关信息。

隧道测量的准确性对于工程项目的设计和施工都具有重要意义。

倒尺法作为一种常用的隧道测量方法,是通过倒尺的使用来测量隧道的水平和垂直尺寸的一种传统方法。

倒尺法利用倒尺的特殊结构和原理,可以实现对隧道断面的测量,从而得到隧道的尺寸数据。

倒尺法的原理是利用倒尺的伸缩功能和测量原理进行测量。

倒尺通常由多个铝制或者钢制的节段组成,通过伸缩装置来调节倒尺的长度。

倒尺上刻有刻度线,用于读取测量数值。

在隧道测量中,倒尺可以通过多个节段的伸缩和旋转来适应不同形状的隧道断面,从而实现尺寸的测量。

隧道测量中倒尺法的应用广泛。

倒尺法可以用于测量隧道的净空尺寸、地表高程、隧道断面的形状以及隧道的曲率等重要参数。

在隧道施工时,倒尺法也可以用于监测隧道的变形和沉降情况,以确保隧道施工的安全性和稳定性。

尽管倒尺法在隧道测量中具有一定的优势,但也存在一些局限性。

倒尺法在测量大尺寸和复杂形状的隧道时,操作较为繁琐,需要较长的时间和努力。

此外,倒尺法对测量人员的技术要求较高,需要具备一定的测量经验和技巧。

未来,随着测量技术的不断进步和创新,倒尺法在隧道测量中的应用也将不断发展。

倒尺法可以与其他测量方法相结合,如全站仪、激光扫描仪等,以提高测量的精度和效率。

同时,倒尺的结构和材料也可以进一步优化,以适应更为复杂和高精度的隧道测量需求。

综上所述,倒尺法作为一种常用的隧道测量方法,具有一定的优势和应用前景。

随着技术的不断进步和创新,倒尺法在隧道测量中的应用将得到进一步拓展和提升。

1.2 文章结构文章结构部分:本文主要包括三个部分:引言、正文和结论。

引言部分主要介绍了本文要讨论的主题——隧道测量倒尺法。

其中,1.1节对该方法进行了简要的概述,介绍了倒尺法的基本原理和特点。

1.2节则阐述了文章的整体结构,即各个小节的主要内容和组织方式。

隧道施工断面快速测量方法

隧道施工断面快速测量方法

隧道施工断面快速测量方法第一种方法是使用激光扫描仪进行断面测量。

激光扫描仪是一种高精度的测量设备,可以快速准确地获取隧道断面的三维坐标数据。

操作人员只需将激光扫描仪放置在施工断面的适当位置,并进行扫描,就可以获取到断面的真实形态和尺寸。

激光扫描仪具有测量速度快、测量精度高、操作简单等优点,广泛应用于隧道工程中。

第二种方法是使用全站仪进行断面测量。

全站仪是一种集光学、机械、电子技术于一体的高精度测量仪器,可以实现水平、垂直测量以及角度测量等功能。

在隧道施工中,可以使用全站仪进行断面的平面测量。

操作人员先将全站仪设置在适当位置,并对准隧道断面,然后通过测量仪器进行观测和记录,即可获取断面的尺寸和形态信息。

第三种方法是使用无人机进行断面测量。

无人机具有飞行稳定性好、操作简单等特点,可以利用其航拍功能进行隧道施工断面的测量。

操作人员只需将无人机携带相机装置,将其悬挂在适当高度,并进行飞行遥控,即可获取隧道断面的影像信息。

然后,通过影像处理的方式,可以获得断面的尺寸和形态数据。

第四种方法是使用测距仪进行断面测量。

测距仪可以通过发射激光束测量目标与仪器之间的距离,从而获取反射点的三维坐标数据。

在隧道施工中,可以使用测距仪进行断面的快速测量。

操作人员只需将测距仪对准施工断面,进行测距扫描,即可获取断面的尺寸和形态信息。

综上所述,隧道施工断面快速测量方法可以采用激光扫描仪、全站仪、无人机和测距仪等测量设备进行。

这些方法具有测量速度快、测量精度高、操作简单等特点,可以满足隧道施工中对断面测量的要求。

随着科技的不断进步,将来还会出现更多更先进的断面测量方法,为隧道施工提供更加便捷和高效的手段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

且洞内作业面狭小,如排风不畅,空气质量差,红外线测量仪器反射信
号太弱,往往无法进行测量工作。测量工作在隧道开挖施工中非常重
要,它控制着隧道开挖的平面、高程和断面几何尺寸,关系到隧道的贯
通。为满足测量工作需要,需选择关键工序工作面污染小的时间,停止
一些次要工序 , 提前加大排风来满足测量工作条件。若测量工作占用
时间过长,将直接影响工程进度和经济效益。如何及时、准确的提供测
量成果,使用的仪器和方法便成了重要因素。花几十万买一台隧道断面
仪,仅能用于隧道断面测量,投资太大,为节省投资可采用全站仪配隧
道断面测量软件来完成。用全站仪进行外业数据采集后,再对采集的数
据进行分析。数据分析可用台式、便携电脑,也可用可编程计算器进
程、线路中线至待测断面站点的距离等。
1.2.2 断面测量
仪器置于待测断面, ( 竖直度盘定天顶方向为 0 度,顺时针注记
) 望远镜瞄准另一导线点或中线点定向后,转仪器正镜瞄准线路边线法
线方向,也就是保证测量的竖直角读数,线路中线一侧为 270-360
度,线路边线一侧为 0-90 度。记录仪器高、观测的竖直角、斜距。根
行。现将三数据分析方法列于表 1, 从表 1 可以看出,采用可编程计
算器进行分析,内外业用时最少,测量工作对工程作业时间影响最小。
本文将对这种方便、快捷的测量和计算方法进行分析与介绍。
隧道断面单点测量耗时比较表 表 1
序号 仪器
配套设备
外业平均用时( 内业平均用时(
型号
min )
min )
1 天宝 笔记本电脑及隧道
量) C= √ ( ( B-15.11 ) ² + (H-O) ² )-R (1 — 3) 式中 C— 实测偏差(输出用 ‘ pc= ’表示) B— 实测横坐标 H— 实测纵坐标 O — 圆心处的设计纵坐标 R— 设计 半径 15.11--- 圆心处的设计横坐标 2. 三维坐标段落测量法 在隧道施工断面测量工作中,无论采用隧道断面仪,还是采用全站仪配 隧道断面测量软件来完成,一般用测量一个断面来代表一个段落,用一 个断面代表一个段落,有一定的片面性,在隧道开挖断面测量工作中, 其缺点极为明显。若采用三维坐标段落测量法进行隧道测量,可全面反 映整个段落任意桩号各个点的超欠挖情况。 2.1 数据采集 仪器置于任意点 ( 做自由设站 ) 或导线点上,有针对性的对一个段落 的特征点或任意点进行测量,记录 x 、 y 、 z 三维坐标。 2.2 确定测点对应的里程与距路线中线的距离 2.2.1 圆曲线 在圆曲线上选任意点 B ,为起算里程,坐标反算分别求得,测站 A , 起算点 B ,到圆心 O 的距离和方位角,两方位角之差( OA–OB = α)和半径计算曲线长 L , B 点里程加 L 等于 C 点里程,测站至圆 心的距离减半径等于测站至中线距离。测量参数见图 2 所示。 L 由公 式 2—1 求得。 L= π r α /180 (2-1) 式中 L— 弧长 r— 半径 α — 圆心夹角
式中
XH 子程序循环 LJYD :子程序路径引导 ( 子程序 另文专述 )
D E 测点大地坐标 B+10 测点横坐标
G 测点高程 Z+1.6 圆心 高程
R 隧道半径 C— 实测偏差(输出用 ‘ pc= ’表示)
三维坐标段落法
隧道断面测量表 3
隧道名称 检查项 初期支 圆心横坐 隧



不小于设计 8
7.133
要求
32
测站在中线以下不填
312-37-
9
7.213
28
测站平面坐标
300-58-
10
7.280
04
294-52-
X
56433.375 11
7.299
30
Y
494710.141 12 直墙 6.983
4.4 1.3 0.7 5.9 4.6 10.6 14.6 3.3
断面位角 101-34-33
隧道断面的测量方法
内容提要 : 隧道施工断面测量工作,不需专用软件,采用立面坐标法
也能及时为施工提供可靠测量数据,准确的指导施工。 三维坐标段落
法,只需测量任意位置的三维坐标即可计算其偏差。
关键词 : 隧道;断面;测量;立面坐标法 三维坐标段落法
隧道施工中各种工序衔接紧凑,平行作业、交叉施工的工程很多,
时,测站至隧道中线的距离尽可能大于一米) 角度输入,如 203 ° 23 ′ 12 ″输入 2032312 66 ° 03 ′ 18 ″输入 660318 0 ° 0 ′ 10 ″输入 10 即可。 其它输入单位均为 m ,输出单位为 cm 。 本程序仅适用于单心圆隧道断面测量,如遇多心圆隧道,可根据实测的 横坐标或纵坐标,用判断语句确定采用不同的半经和设计坐标,只需对 程序适作调整。 1.3.1 计算 轴交点 坐标 轴交点纵坐标 等于 测站地面高程加仪器高;轴交点横坐标 等于 10 加线路中心至测站的距离。 1.3.2 计算所测断面各点的实测坐标 实测纵坐标等于 轴交点纵坐标加 竖直角的余弦 乘 斜距。实测横坐标 等于 轴交点横坐标加 竖直角 的正弦 乘 斜距,用下式表示: H=G+Y+cosI×D ( 1--2 ) B= 10+ L+SinI×D ( 1--2 ) 式中 H— 实测纵坐标 G— 测站地面高程 Y—- 仪器高 I-- 观测的竖直角 J ,计算过程中,程序用 I 对 J 进行了替换 D— 斜距 B— 实测横坐标 L-- 线路中线至测站的距离 1.3.3 计算所测断面各点的实测偏差 实测偏差等于断面各点的实测坐标与圆心处的设计坐标,进行坐标反 算,求得测点至圆心的距离 -- 实际半径减设计半径。 ( 设计半径按 不同工序分别计算 , 如开挖、初期支护、台车、二衬等。并考虑预留
图2
图3
图4
2.2.2 缓和曲线
在缓和曲线上求任意点的法线方向十分简单,但要求测站要对应那个桩
号法线上的点,相当复杂。采用近似法,完全能满足测量精度要求。在
测站前后的线路上 , 各选一距离合适的点做为计算点,把两点当作直
线看,按直线计算即可。测点见图 3 所示。
2.2.3 直线
在直线段上选任意点 B 作为起算点,已知直线段方位角 BC ,用坐标
法反算求得 BA 方位角,通过两方位角之差α,和 BA 的距离解直角三
角形可得 BC 距离 L 和 AC 的距离 b 。 B 点的桩号加 L 等于测站点
对应的桩号。测量参数图4 。
b=AB×Sin α ( 2-2 )
L= AB×Cos α ( 2-2 )
2.3 数据分析
根据测点的桩号计算线路的设计高程,通过线路的设计高程和隧道
圆心的关系,计算隧道圆心的设计高程和 线路中线到 隧道圆心 的距
离。
经计算已知 隧道圆心的设计高程; 线路中线到 隧道圆心 的距离;
经测量已知测点 的实测高程; 测点至线路中线的距离。
按 (1--3) 式 计算即可。 无论是那一种线型,在 CASIO 系列可编程
计算器,如 FX—4500 的帮助下,都可以采用渐进法编程 ( 另文专述
比,加圆心至路面的高度。用公式( 1-1 )表示。
O=S-b×i+h =S- 4.11×0.02+1.69 ( 1--1 )
圆心横坐标等于10 m (假定线路中心横坐标为10米)。加线路中
心至隧道中心的距离。
1.2 数据采集 :
1.2.1 待测断面 站点放样
可放出路中线、隧中线或距路中线任意宽度的点位,记录其地面高
设计高程S 986.01 3 45-29-52 5.679 6.5
测站高程G 985.416 4 27-09-41 6.073 6.8
仪器高Y
1.488 5 12-12-05 6.373
半径R
5.95
357-49-
6
6.634
51
横断位置L 6.11
343-59-
7
6.870
17
允许偏差及
327-18-
1.3 测量数据处理 为了与 CASIO 系列可编程计算器编程使用附号一致,部分附号按汉语
拼音首位为代码,并启用“轴交点”一词 。 FX — 4500 断 面测量计 算程序如下: 程序名 : SDDM( 隧道断面 -1) L1 Lb1 0 L2 {J,D} L3 Norm:T=J/10000 L4 I=IntT+Int(fracT×100)/60+frac(fracT×100)/36 L5 H=G+Y+Rec(D,I) L6 B=10+L+N×W L7 O =S-4.11×0.02+1.69 L8 C=(poI(B-15.11,H- O )-R)×100:Fix1: “ Pc=” ◢ L9 Goto 0 G-- 测站地面高程 Y-- 仪器高 J-- 观测的竖直角 D-- 斜距 L-- 线路中线至测站的距离 S-- 线路中线设计高程 R-- 半径 H-- 实测纵坐标 B-- 实测横坐标 O-- 圆心处的设计纵坐标 C-- 实测偏差(输出用 ‘ pc= ’表示) I--T 为计算过程对 J 的替换 N-- 修正符 ( 当仪器不是置在中线上,且各种原因引起测量的竖直角 读数,线路中线一侧不是 270-360 度, 线路边线一侧不是 0-90 度时,计算结果偏差超常,无需重测,输“ -1 ” 修正即可。其它情况输入“ + 1 ”,测站不能设在隧道中线



桩 号 大地坐 大地坐 实测 高 圆心 高 实测横 实测偏差
标X 标Y


坐标
3 .结语
极坐标断面测量法在隧道施工断面测量中,不需要专用的软件,且
更为方便、快捷、准确、实用。如有可编程全站仪,测量结果可直接显
示偏差。是隧道断面测量工作可选用方法之一。比较适用于隧道的初期
相关文档
最新文档