初中数学解题方法:中国古代解题中的的数学思想

合集下载

解读古代典籍中的数学思想

解读古代典籍中的数学思想

解读古代典籍中的数学思想数学作为一门古老而又深奥的学科,其思想和方法在古代典籍中得以广泛体现。

从《周易》到《九章算术》,从《孙子算经》到《数书九章》,古代典籍中的数学思想无疑是我们了解古代社会智慧和文化的重要窗口。

本文将从几个典籍中选取一些典型的数学思想进行解读,以期能够更好地理解古代数学的发展和演变。

一、《周易》中的数学思想《周易》是中国古代经典之一,也是一部包含了丰富数学思想的著作。

在《周易》中,我们可以看到许多关于数学的概念和原理。

其中最为著名的就是“易有太极,是生两仪,两仪生四象,四象生八卦”的说法。

这句话所表达的思想实际上是一种数学的排列组合思想。

太极可以看作是一种二进制的表示方式,它由两个元素组成,即阴和阳。

而两仪则是由两个太极组成,四象由两仪组成,八卦由四象组成。

这种排列组合的思想在古代数学中有着重要的地位,不仅仅体现了古代人对于数学的认识,更是对于宇宙万物的一种理解。

二、《九章算术》中的数学思想《九章算术》是中国古代数学的重要著作,它收录了古代数学中的许多重要概念和方法。

其中最为著名的就是“方程”的概念。

在《九章算术》中,方程被称为“术”,它是通过一系列运算和变换来求解未知数的方法。

这种方法的提出和应用,为古代人解决实际问题提供了重要的工具。

《九章算术》中还包含了诸如分数、比例、等差数列等概念,这些数学思想对于古代社会的经济、军事等领域的发展起到了重要的推动作用。

三、《孙子算经》中的数学思想《孙子算经》是中国古代军事著作之一,其中也包含了一些重要的数学思想。

在《孙子算经》中,我们可以看到一些与数学有关的概念和方法。

其中最为著名的就是“乘法”的概念。

在《孙子算经》中,乘法被用来计算兵力的增减和战斗力的变化,这种思想实际上是一种数学模型的运用。

通过乘法的运算,可以更好地理解和分析战争中的各种变化和规律。

此外,《孙子算经》中还包含了一些与几何有关的概念,如地势的测量和地图的制作等,这些数学思想对于古代军事的发展起到了重要的推动作用。

巧解民间数学趣题注释中国古代名题

巧解民间数学趣题注释中国古代名题

巧解民间数学趣题注释我国古代名题我国古代的数学发展源远流长,古代的数学家们在没有现代科学技术的条件下,通过丰富的数学想象力和智慧,创造了许多深奥的数学问题和趣题。

这些数学趣题不仅在当时引起了广泛的兴趣,也成为了后人学习数学的重要教材和实践工具。

通过巧解这些民间数学趣题,我们可以更加深入地了解我国古代数学的独特魅力,以及古代数学家们的智慧和成就。

1. 历史悠久的民间数学趣题我国古代的民间数学趣题源远流长,从《周髀算经》中的古代数学题,到后来的《孙子算经》、《张丘建算经》等著名数学著作,古代数学趣题一直以其丰富多样、富有创意的特点吸引着学者和爱好者的兴趣。

这些数学趣题往往以平实的语言和直观的例子,引导人们去思考数学问题,培养了人们的逻辑思维和数学素养。

2. 我国古代名题的特点与魅力我国古代名题以其深刻的数学内涵和独特的解题思路而著称,例如《海岛数目问题》、《走马问题》等。

这些名题在解题过程中需要深入分析,运用数学方法和技巧,展现了古代数学家们的智慧和创造力。

通过巧解这些名题,我们可以感受到其中蕴含的数学之美,体验古人对数学的热爱和探索精神。

3. 从民间数学趣题到古代名题的延伸与升华民间数学趣题往往源自于人们日常生活和实际需求,通过民间的智慧和创造,衍生出了许多有趣的数学问题。

这些民间数学趣题后来被古代数学家们加以提炼和升华,成为了著名的古代数学名题。

这种民间数学趣题到名题的延伸与升华,不仅丰富了古代数学的理论体系,也深化了人们对数学的理解和研究。

4. 个人观点与理解在我看来,巧解民间数学趣题注释我国古代名题不仅是一种学习和研究数学的方式,更是一种感受和体验我国古代数学文化的良好途径。

通过巧解这些趣题和名题,我们能够更好地理解古代数学家们的智慧和贡献,感受数学之美,激发学习数学的兴趣和热情。

总结与回顾通过巧解民间数学趣题注释我国古代名题,我们不仅可以体验数学的乐趣,也可以感受古代数学的独特魅力。

这种方式不仅可以提高我们的数学水平,也可以让我们更加全面、深刻和灵活地理解古代数学文化的内涵与精髓。

初中数学解题方法:中国古代解题中的的数学思想

初中数学解题方法:中国古代解题中的的数学思想

初中数学解题方法:中国古代解题中的的数学思想初中数学解题方法:中国古代解题中的的数学思想1. 早在甲骨文中出现的十进位制记数方法,就是早期的数学计算思想;商代的骨尺和牙尺上也有寸和分的刻度,主要的意义在便于计算。

《九章算术》中开放紧纳性的表述系统,是按个别到一般的方法建立起来的,是由一个或几个问题归纳出基本规律和一般解法,再把各种算法进行综合,得到解决某领域中各种问题的方法,再把各领域的方法形成一章,汇成《九章算术》,形成抽象化的数学计算思想2. 《周易》中的六十四别卦,其核心是八经卦,它的符号表示实际上是一种特殊的数表,是由一堆数字组合而成,有限的符号在不同的位置上相互配置,组合生成无穷多的意义,形成早期的组合的数学思想,是离散数学的基础。

3. 《礼记》中指出初等教育要有数的教育,《周礼》中提到数的教育要有日常生活中的计算。

成为早期的培养人才的“经世致用” 的数学实用思想。

《周髀算经》中系统的把数学应用在天文地理中,突出了数学的实用思想。

4. 三国时代的魏人刘徽为《九章算术》作注解 10 卷时提出的“出入相补原理”成为我国最早的数形结合思想,尤其重要的是他所创造的“割圆术”使极限思想在世界上开了先例。

5. 庄子天下篇中有一句话是“一日之锤,日取其半,万世不竭”首次提出了“无限的思想”进而出现了无限向有限转化的辩证思想。

概括中国古代数学思想有如下的特点:经世致用的实用思想;算法化、模型化、数值化、离散化的计算思想;朴素的辩证思想;极限思想;数形结合思想等。

成为数学问题解决的常用的思想方法。

(二)中学数学解题中的的基本思想:中学数学中常见的数学思想有:函数与方程、数形结合、分类讨论、转化与化归的思想。

这典型的四类数学思想对初中数学问题的解决有着重要的思维指导作用。

1. 函数与方程的思想:函数与方程的思想是中学数学最基本的思想。

所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。

古典数学思想在初中学数学中的渗透

古典数学思想在初中学数学中的渗透

古典数学思想在初中学数学中的渗透【摘要】古典数学思想的内涵,古典数学思想在初中数学的渗透。

【关键词】古典数学思想内涵,渗透长期以来,初中数学教育强调数学知识的传授、记忆、基本技能的培养和数学解题能力的提高,忽视初中数学思想的作用。

在素质教育下的初中数学教学中,掌握教材全局的知识体系结构,把握知识结构中的基本理论及其中蕴含着的基本数学思想,加强数学思想的渗透教学,是深化数学教学改革的突破口。

而古典数学思想几乎囊括了全部的初中数学思想。

因此,加强古典数学思想在初中数学中的渗透具有十分重要的意义。

1数学思想与古典数学思想的内涵1.1数学思想思想是思维活动的结果,属于理性认识。

数学思想是人脑对现实世界的空间形式和数量关系的本质的反映,是思维加工的产物,是人们对现实世界的空间形式和数量关系的本质的认识。

它隐藏在数学概念、法则、公式、公理、定理、方法等知识的背后,反映了这些知识的共同本质。

它比一般的数学概念和数学方法具有更高的概括性和抽象性,因而更深刻、更本质。

数学思想是数学知识的核心,是数学的精髓和灵魂。

1.2古典数学思想古典数学思想是贯穿整个初等数学时期(公元前6世纪—16世纪)的数学思想。

它按时间及数学发展的社会背景可分为三类:(1)古代希腊数学(公元前6世纪—6世纪)(2)中世纪东方数学(3世纪—15世纪)(3)欧洲文艺复兴时期(15世纪—16世纪)它主要包含的数学思想有:符号思想、集合思想、对应思想、函数与方程思想、数形结合思想、分类思想、转化思想、一般化思想、实用思想。

1.2.1符号思想在研究数学问题时,为使问题简明,常常要引进数学符号,这种引进数学符号来简化问题的思想就是符号思想。

符号思想的产生是数学史上重大的里程碑。

没有符号思想,就没有代数,没有几何,就没近代数学和现代数学。

1.2.2集合思想集合是元数组成的整体,子集、交集、并集、差集、补集本质上反映了集合与集合之间的关系。

1.2.3对应思想对应本质上反映了两个集合的元素与元素之间的某种关系,当两个集合建立了某种对应时,这两个集合的元素和元素之间就发生了某种关系。

中国古代数学思想与方法(一)

中国古代数学思想与方法(一)
中国古代数学思想与方法(一)
邓鹏
西华师范大学
一、神奇的发明--中华数学之光
1.《周易》的数学思想
《周易》又称《易经》-------为“五经”之首 (《尚书》、《礼记》、《诗经》、《春秋》) 《周易》分为两大部分:易经和易传。《经》包括卦、 爻两种符号和卦辞、爻辞两种说明。相传伏羲画卦,文 王作辞。大约西周初年(公元前11世纪)成书,后经春 秋、战国以至西汉人陆续写成。
六十甲子表
中国早在商代就已创造了干支记日法。甲骨文中 的卜辞就是用干支记日的,还发现有比较完整的甲子 表。殷商的帝王们也大多用其出生的那一天的干支日 名来命名,如 帝辛就是商纣王的名字。
我国干支记年从东汉《四分历》颁发实行的那一 年——东汉章帝元和二年(公元85年)开始的,自那以 来,直至今天都连续使用这种干支记年法,从未间断, 也从未混乱过。这是世界上使用时间最长的记年法。
可以不查甲子表,直接进行如下推算: 在甲子表中,天干逢10一循环,凡第1、11、21、 31、41、51位的天干皆是甲,地支逢12一循环,凡第1、 13、25、37、49的地支皆是子。 因此,可求得
b1 b(mod10), 0 b1 10
b2 b(mod12), 0 b2 12
首先判断李自成起义失败在17世纪。公元4年是甲 子,公元14年是甲戌,公元24年是甲申。因此 24+60×27 = 1644年 是甲申年。而17世纪中只有这一个甲申年。 故李自成起义失败是在1644年。
据《春秋》记载: “鲁隐公三年春王二月己巳日有食之”, 可以推得这一次全日食,发生在公元前720年2月22日。 注意:按国际惯例,公元元年(1年)的前一年是公元 前1年(-1年),没有公元零年。因此,推算公元前某年 的干支年号,从公元4年(甲子年)往前推要减去一年。 近代史上许多重大事件,也常以该事件发生的干支年 号来命名,如“辛亥革命”、“甲午战争”、“辛丑条 约”、“庚子赔款”等。

初中数学古代知识点总结

初中数学古代知识点总结

初中数学古代知识点总结一、古代数学的发展1. 古代数学的发展初期,主要是以实际问题为导向的。

古代数学家们主要是为了解决土地测量、建筑设计、商业交易等实际问题而进行数学研究的。

例如在古代埃及,人们就使用简单的数学知识来进行土地测量和税收计算。

2. 在古代美索不达米亚,人们首先发现了一些数学规律,并将它们应用到实际问题中。

例如在美索不达米亚,人们首先发现了一些数字的运算规律,例如乘法和除法的运算规律。

3. 在古代印度,人们发现了一些重要的数学定理和算法。

例如在印度,人们发现了一些关于勾股定理和自然数的性质。

这些数学定理和算法对数学的发展产生了一定的推动作用。

4. 古代希腊数学是古希腊人在几何学方面取得了重大成就。

例如在古希腊,人们发现了一些重要的几何定理和算法,例如平行线问题、三角形三边关系、圆的性质等。

这些几何定理和算法对后来的数学发展产生了重大的影响。

5. 在古代中国,人们发现了一些重要的数学定理和算法。

例如在中国,人们发现了一些关于勾股定理和平方根的性质。

这些数学定理和算法对数学的发展产生了一定的推动作用。

二、古代数学的重要成就1. 美索不达米亚的数学成就:美索不达米亚是世界上数学发展最早的地区之一,在美索不达米亚,人们首先发现了一些数字的运算规律,并将它们应用到实际问题中。

例如在美索不达米亚,人们发现了一些关于乘法和除法的运算规律。

2. 埃及的数学成就:埃及是世界上数学发展最早的地区之一,古埃及人发明了简便方法进行几何推理和计算,比如船形法则和吉萨大金字塔等。

此外,他们还发明了数字系统,用符号来表示数目,进而推广到日期的编法。

3. 希腊的数学成就:古希腊人在几何学方面取得了重大成就。

例如在希腊,人们发现了一些重要的几何定理和算法,例如平行线问题、三角形三边关系、圆的性质等。

这些几何定理和算法对后来的数学发展产生了重大的影响。

4. 中国的数学成就:古代中国在数学领域也有很多成就。

例如中国人首先发现并应用了勾股定理,对数学的发展起到了很大的促进作用。

初中数学解题技巧常用的数学思想方法

初中数学解题技巧常用的数学思想方法

初中数学解题技巧常用的数学思想方法初中数学解题技巧:常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。

数学学科的各部分之间也是相互联系,可以相互转化的。

在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。

配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。

换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。

这种思维过程通常称为“执果寻因”8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。

历史故事与数学思想方法数学思想方法有哪些

历史故事与数学思想方法数学思想方法有哪些

历史故事与数学思想方法数学思想方法有哪些历史故事与数学思想方法|数学思想方法有哪些在我们熟悉的历史故事中,有不少蕴涵着常用的数学思想方法.如果我们能利用这些历史故事来启发、引导学生进行相关的数学思维,解决数学问题,往往会收到事半功倍的效果,学生容易理解,并能主动运用.下面举几例来说明.1 鲁班造锯与类比思想鲁班造锯是学生熟悉的一个历史故事.当鲁班的手不慎被一片小草割破后,他通过仔细观察发现小草叶子的边沿布满了密集的小齿.于是便产生联想,根据小草的结构发明了锯子.鲁班在这里就运用了“类比思想”.所谓“类比思想”,就是在两类不同的事物之间进行对比,找出若干相同或相似点之后,推测在其他方面也可能存在相同或相似之处的一种思维方式.类似的故事还有“叩诊法”的发现.18世纪中叶,奥地利医生奥恩布鲁格,从制酒商经常用手指关节敲叩木制酒桶,凭着叩声的不同,就能准确地估计出桶内还有多少酒.由此他联想到,是否可以把人的胸腔类比作酒桶,根据用手指敲叩患者胸部所得的不同音响来作出诊断呢?由此他发明了“叩诊法”,此法至今仍是临床医疗中常用的诊断方法之一.在中学数学中,应用类比推理的例子是很多的.比如,从整数的运算与性质,可以推想有理数的运算与性质;从分数的有关性质与法则,可以推想分式的有关性质与法则;从实数的有关运算,可以推想代数式的有关运算;可以根据三角形的性质,推想四面体的性质;等等.2 曹冲称象与转化的思想(化归的思想)在曹冲称象的故事中,聪明的曹冲运用了这样一种方法:要知道大象的体重但不能直接去称,便把问题变为容易办到的去称石头的重量,最后由石头的重量还原为大象的体重.这里曹冲运用了一个极为普遍的思想:转化的思想.即把有待解决的问题,通过适当的方法,转化为已经解决或已经知道其解决方法的问题.类似的故事还有“七桥问题”:在18世纪,东普鲁士哥尼斯堡(今属立陶宛共和国)内有一条大河,河中有两个小岛.全城被大河分成四块陆地.河上架有七座桥,把四块陆地联系起来.当时许多市民都在思索如下的问题:一个人能否从某一陆地出发,不重复地经过每座桥一次,最后回到原来的出发地.这就是历史上有名的哥尼斯堡七桥问题.大数学家欧拉用“一笔画”的方法解决了这个问题,就是巧妙地运用了转化的思想.在中学数学教材中,运用转化方法的例子是很多的.如,多边形内角和定理是转化为三角形内角和定理而得到解决的;分式方程是转化为整式方程得到解决的;方程组(不等式组)是转化为方程(不等式)得到解决的;等等.3 司马光砸缸与逆向思维的思想司马光砸缸的故事,是人们很熟悉的历史故事.当一个小朋友掉进大水缸里以后,其他小朋友想到的是让“人离开水”,当无法把落水小孩捞起时便惊慌失措.司马光想到的却是让“水离开人”,在紧要关头把缸砸破让水流去,救活了这个小朋友.这里便运用了逆向思维的方法,即“人离开水”的逆向思维是“水离开人”.逆向思维是一种积极的具有创造性的思维形式.它可以培养人们思维的灵活性与创造性.然而人们却往往受习惯思维(思维定势)的影响,喜欢从正面,也就是顺向去思考问题,而不愿意或很少从反面,也就是逆向去思考问题.实际上,有些问题,正难则反,如果我们不要受思维定势的影响,从反面逆向的去思考问题,或逆用公式、性质等,常常可以收到意想不到的效果,而且还训练了学生的灵活思维能力.逆向思维的运用是很广泛的.我们可以逆用公式、性质、法则等进行计算、化简、求值;运用逆向思维进行巧妙的证明(如,反证法与分析法);甚至在游戏中也可用逆向思维的方法.4 开普勒以直代曲的思想微积分源于解决四大问题:速度、切线、最值、面积(体积).其最基本的思想就是“以直代曲”.这里还有一个有趣的故事:开普勒很喜欢喝啤酒.一天,喝着喝着,突然怀疑起啤酒商的啤酒桶的体积来,想验证一下体积是否符实,有没有耍什么花招.经过苦思,找到了一种《测定啤酒桶体积的新方法》,书中讨论了多种旋转体的体积,基本思想就是“以直代曲”.5 “道旁李苦”与反证法的思想王戎七岁的时候,和小朋友们一道玩耍,看见路边有株李树,结了很多李子,枝条都被压断了.那些小朋友都争先恐后地跑去摘.只有王戎没有动.有人问他为什么不去摘李子,王戎回答说:“这树长在大路边上,还有这么多李子,这一定是苦李子.”摘来一尝,果然是这样.(《世说新语》)这个故事说明,王戎小时候能够勤于观察、善于动脑,能根据有关现象进行推理判断,而且他的推理是正确的.这里王戎运用的就是反证法的思想:论题是树在道边而多子,此必苦李,论证过程应是:假使不是苦李,那么长在道边没人看管的李子一定会被人吃了,但实际上李子却没有人吃,这与假设相矛盾.所以,假设不成立,一定是苦李.6 “大敦穴”的发现与归纳法的思想《内经》是我国最古老的一部医学宝典,其中的《针刺篇》曾记载了这样一个故事:有一个樵夫经常犯头疼病,但找不到治疗的办法.有一次,这个樵夫上山去砍柴,无意中碰破了足拇指,出了一点血,但这时他却感到头部不疼了,当时他也没有在意.后来,他的头疼病复发,在砍柴时又偶然碰破了上次碰破过的地方,这时他的头疼病又好了,这次却引起了他的注意:奇怪,为什么碰破了这个部位,我的头疼病就好了呢?于是便记住了这个部位.以后,每当他犯头疼病的时候,就有意识地去刺破这个部位,结果头疼病马上就好了,或是减轻了疼痛.这个樵夫所碰的部位,就是现在人体穴位中的大敦穴,它在足拇指的指甲的外侧根部.这个樵夫发现大敦穴的过程,就是采用了归纳法的思想.归纳法就是从特殊的具体的认识推进到一般的抽象的认识的一种思维方式.它是科学发现的一种常用的有效的思维方式.比如:“哥德巴赫猜想”的发现、多面体中的“欧拉公式”的发现、费尔马大定理的发现都是运用归纳法的典型例子.中学数学中的例子更是多的不胜枚举:多边形内角和定理、幂的运算法则等无不是用归纳的思想得出的.7 《庄子》与无穷的思想早在远古时代,无限的概念就比其他任何概念都激动着人们的感情,而且远在两千年以前,人们就已经产生了对数学无穷的萌芽认识.在我国,著名的《庄子》一书中有言:“一尺之棰,日取其半,而万世不竭.”从中就可体现出我国早期对数学无穷的认识水平.而我国第一个创造性地将无穷思想运用到数学中,且运用相当自如的是魏晋时期著名数学家刘徽.他提出用增加圆内接正多边形的边数来逼近圆的“割圆术”,并阐述道:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”可见刘徽对数学无穷的认识已相当深刻,正是以“割圆术”为理论基础,刘徽得出徽率,而其后继者祖冲之更是得出了圆周率介于3.***-*****与3.***-*****之间的领先国外上千年的惊人成果.8 “二桃杀三士”与“抽屉原理”《晏子春秋》里记载了一个“二桃杀三士”的故事:齐景公门下有三名武力超群的勇士,他们虽为齐国立过不少功劳,但却都因居功自傲而目中无人、横行霸道.齐国的宰相晏婴就想除掉他们.晏婴知道,用武力绝对制服不了三人,只能用别的计谋.于是,他请齐景公赏赐三名勇士两个桃子,并且吩咐说:“你们自己按各人功劳的大小去分配桃子吧!”三名勇士都要求自己单独吃一个桃子,否则,就意味着自己的功劳不大,岂不有失勇士的面子,这是绝对不能让步的.但他们又感到虽然自己单独吃一个桃子是受之无愧的,但这样一来,其余两位就只能合吃一个桃子了,这将使他们感到奇耻大辱,为了夸耀自己而羞辱朋友,又有损哥们义气.他们左右为难,便都赌气自杀了.晏子不费吹灰之力便达到了预期的目的,实在算得上“阴谋”.但有趣的是,他却运用了数学中的一个重要的原理――抽屉原理.抽屉原理又名鸽笼原理或狄力克雷原理.这个原理形象的说法就是:把三件物品放到两个抽屉里,一定有一个抽屉里至少有两件物品.这个故事中两个桃子可看作两个抽屉,三名勇士可看作三件物品,把三件物品放到两个抽屉中,至少有两件物品要落进同一个抽屉里,即至少有两名勇士只能合吃一个桃子.由于三名勇士都争强好胜,互不相让的性格弱点,就决定悲剧结局的不可避免,老谋深算的晏子就凭简单的抽屉原理而稳操胜券了.类似还有:“在13个人中必有2个人是在同一个月份出生的”,“在同一年出生的367个人中至少有2个人生日相同”,等等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学解题方法:中国古代解题中的的数学思想
初中数学解题方法:中国古代解题中的的数学思想
1. 早在甲骨文中出现的十进位制记数方法,就是早期的数学计算思想;商
代的骨尺和牙尺上也有寸和分的刻度,主要的意义在便于计算。

《九章算术》中开放紧纳性的表述系统,是按个别到一般的方法建立起来的,是由一个或几个问题归纳出基本规律和一般解法,再把各种算法进行综合,得到解决某领域中各种问题的方法,再把各领域的方法形成一章,汇成《九章算术》,形成抽象化的数学计算思想
2. 《周易》中的六十四别卦,其核心是八经卦,它的符号表示实际上是一
种特殊的数表,是由一堆数字组合而成,有限的符号在不同的位置上相互配置,组合生成无穷多的意义,形成早期的组合的数学思想,是离散数学的基础。

3. 《礼记》中指出初等教育要有数的教育,《周礼》中提到数的教育要有日
常生活中的计算。

成为早期的培养人才的“经世致用” 的数学实用思想。

《周髀算经》中系统的把数学应用在天文地理中,突出了数学的实用思想。

4. 三国时代的魏人刘徽为《九章算术》作注解10 卷时提出的“出入相补
原理”成为我国最早的数形结合思想,尤其重要的是他所创造的“割圆术”使极限思想在
世界上开了先例。

5. 庄子天下篇中有一句话是“一日之锤,日取其半,万世不竭”首次提
出了“无限的思想”进而出现了无限向有限转化的辩证思想。

概括中国古代数学思想有如下的特点:经世致用的实用思想;算法化、模
型化、数值化、离散化的计算思想;朴素的辩证思想;极限思想;数形结合思想等。

成为数学问题解决的常用的思想方法。

(二)中学数学解题中的的基本思想:
中学数学中常见的数学思想有:函数与方程、数形结合、分类讨论、转化与化归的思想。

这典型的四类数学思想对初中数学问题的解决有着重要的思维指导作用。

1. 函数与方程的思想:函数与方程的思想是中学数学最基本的思想。

所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。

而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。

2. 数形结合的思想:数与形在一定的条件下可以转化。

如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。

因此数形结合的思想对问题的解决有举足轻重的作用。

3. 分类讨论的思想。

相关文档
最新文档