【错题重做】中心对称-4

合集下载

中心对称 练习题

中心对称 练习题

中心对称练习题中心对称是几何学中常见的概念,它是指一个物体与其关于某个点的对称物体完全相同。

在这个练习题中,我们将探讨一些与中心对称相关的问题,并通过解析和说明来帮助读者更好地理解这一概念。

下面是一些练习题:练习题一:1. 在平面xy上,画一个中心在原点O的圆,并标记该圆的半径r。

解析:要画一个中心在原点O的圆,我们需要以O为圆心,r为半径画一个圆。

在平面xy上,我们可以使用一个圆规和一支铅笔来完成这个绘图任务。

首先将圆规的一个脚放在O点,然后利用铅笔调整圆规的另一个脚的长度为r,接着固定住这个长度,绕着O点转动圆规画出圆的轨迹。

最后将这个轨迹用一条曲线连接起来,就得到了一个中心在原点O的圆。

2. 给定一个点A(3, 4),请找出关于点A的中心对称点A'的坐标。

解析:关于点A的中心对称点A'的特点是,点A在O点的中垂线上,并且与O点的距离等于点A与A'的距离。

根据这个特点,我们可以确定A'在平面xy上的坐标。

首先,考虑点A到原点O的距离,根据勾股定理,这个距离为√(3^2 + 4^2) = √(9 + 16) = √25 = 5。

因此,A'与O的距离也必须为5。

O的中心对称点,所以点A与A'之间的连线与x轴的夹角可以看作是x轴与OA的夹角的两倍。

而点A的坐标为(3, 4),所以OA与x轴的夹角为arctan(4/3)。

因此,点A'与x轴的夹角为2 * arctan(4/3)。

最后,通过这个夹角和A'与O的距离,我们可以得到A'在平面xy上的坐标。

由于A'与O的距离为5,那么A'的坐标可表示为(5 * cos(2* arctan(4/3)), 5 * sin(2 * arctan(4/3)))。

将这个表达式计算出来,就可以得到A'的坐标。

练习题二:1. 在平面xy上,画一个以(2, 3)为中心的圆,并标记该圆的半径为r。

中心对称 练习题

中心对称 练习题

中心对称练习题中心对称练习题中心对称是数学中一个重要的概念,它在几何学和代数学中都有广泛的应用。

在几何学中,中心对称指的是一个图形关于某个点对称,即该点作为对称中心。

而在代数学中,中心对称则是指一个函数关于某个点对称,即该点作为对称中心。

中心对称的概念在解题中经常出现,下面将给出一些中心对称的练习题,帮助读者更好地理解和应用这一概念。

1. 在平面直角坐标系中,点A(2, 4)关于原点O对称,求点A'的坐标。

解析:由于点A关于原点O对称,所以点A'与点A的横坐标和纵坐标符号相反,即A'的坐标为(-2, -4)。

2. 在平面直角坐标系中,点B(3, 5)关于直线y = x对称,求点B'的坐标。

解析:由于点B关于直线y = x对称,所以点B'与点B的横坐标和纵坐标互换,即B'的坐标为(5, 3)。

3. 在平面直角坐标系中,点C(4, -2)关于y轴对称,求点C'的坐标。

解析:由于点C关于y轴对称,所以点C'与点C的横坐标符号相反,纵坐标不变,即C'的坐标为(-4, -2)。

4. 在平面直角坐标系中,点D(1, -3)关于直线y = -x对称,求点D'的坐标。

解析:由于点D关于直线y = -x对称,所以点D'与点D的横坐标和纵坐标互换并取相反数,即D'的坐标为(3, 1)。

通过以上练习题,我们可以看出中心对称的特点:关于某个点对称时,横坐标和纵坐标的变化规律。

在解题中,我们可以利用这一特点来求解关于中心对称的问题。

除了点的中心对称,我们还可以将线段、图形等进行中心对称。

下面给出一个例子:5. 在平面直角坐标系中,已知线段AB的起点为A(2, 3),终点为B(5, 7),求线段AB关于原点O的中心对称线段A'B'的起点和终点坐标。

解析:由于线段AB关于原点O对称,所以线段A'B'与线段AB的起点和终点坐标分别关于原点O对称。

人教版九年级上册数学同步练习《中心对称》(习题+答案)

人教版九年级上册数学同步练习《中心对称》(习题+答案)

23.2中心对称内容提要1.把一个图形绕着某一个定点旋转180︒,如果它能够和另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.2.中心对称的性质:(1)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)中心对称的两个图形是全等图形.3.中心对称作图的步骤:(1)首先确定对称中心和图形中的关键点;(2)作出关键点关于对称中心的对称点;(3)连接对应点部分,形成相应的图形.4.将一个图形绕着某个定点旋转180︒后能与自身重合,则这种图形叫做中心对称图形,这个定点叫做对称中心,常见的中心对称图形有:线段、平行四边形(包括:矩形、菱形、正方形)等.5.点(),--.P x y',P x y关于原点的对称点为()23.2.1中心对称基础训练1.下列说法中正确的是()A.全等的两个图形成中心对称B.成中心对称的两个图形必须重合C.成中心对称的两个图形全等D.旋转后能够重合的两个图形成中心对称2.如图,ABC∆关于点O成中心对称,则下列结论不成立的是()∆和'''A B CA.点A与点'A是对称点B.'=BO B OC.''∥AB A BD.'''∠=∠ACB C A B3.如下图是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()4.如图,ABC∆绕点O转了度到达∆和DEF∆关于点O中心对称,则ABCAO OD=.DEF∆,且:5.如图,把ABC∠=∆绕边AC的中点O旋转180︒到CDA∆的位置,则BC=,BAC ,ABC∆关于点O成对称.∆与CDA6.如图,直线EF经过平行四边形ABCD的对角线的交点,若3AE cm=,四边形AEFB的面积为215cm,则CF=,四边形EDCF的面积为.7.如图,已知ABC∆与ABC∆关于点P成中心对称.A B C∆,使'''∆和点P,画出'''A B C8.如图,ABC ∆和DEF ∆关于点O 成中心对称. (1)找出它们的对称中心O ;(2)若6AB =,5AC =,4BC =,求DEF ∆的周长;(3)连接AF ,CD ,试判断四边形ACDF 的形状,并说明理由.9.在平面直角坐标系中,ABC ∆的三个顶点坐标分别为()2,1A -,()3,3B -,()0,4C -. (1)画出ABC ∆关于原点O 成中心对称的111A B C ∆; (2)画出111A B C ∆关于y 轴对称的222A B C ∆.10.如图所示,已知ABC∆中,AD是中线,(1)画出以点D为对称中心,与ABD∆成中心对称的三角形;(2)猜想2AD与AB AC+的大小关系,并说明理由.23.2.2中心对称图形基础训练1.下列交通标志中,既是轴对称图形又是中心对称图形的是()2.如图,对于它的对称性表述正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形3.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是()A.①B.②C.③D.④4.下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.45.线段是中心对称图形,它的对称中心是;平行四边形是对称图形,它的对称中心是.6.正方形是轴对称图形,它的对称轴共有条.7.如图,在数轴上,A,P两点表示的数分别是1,2,1A,2A关于点O对称,2A,3A关于1点P对称,A,4A关于点O对称,4A,5A关于点P对称……依此规律,则点14A表示的数3是.8.如图,在44⨯的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形),再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形.9.图①、图②均为76⨯的正方形网格,点A,B,C在格点上.(1)在图①中确定格点D,并画出以A,B,C,D为顶点的四边形,使其为轴对称图形(画一个即可);(2)在图②中确定格点E,并画出以A,B,C,E为顶点的四边形,使其为中心对称图形(画一个即可).10.如图,将正方形ABCD中的ABD∆的位置,EF交AB于M,GF∆绕对称中心O旋转至GEF交BD于N,请猜想BM与FN有怎样的数量关系?并证明你的结论.23.2.3 关于原点对称的点的坐标基础训练1.如图所示,已知平行四边形ABCD 的两条对角线AC 与BD 交于平面直角坐标系的原点,点A 的坐标为()2,3-,则点C 的坐标为( ) A .()3,2-B .()2,3--C .()3,2-D .()2,3-2.在平面直角坐标系中,点()3,4P -关于原点对称的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.如果点(),P x y 关于原点对称的点是'P ,则'P 的坐标是( ) A .(),x yB .(),x y -C .(),x y -D .(),x y --4.如图,点A ,B ,C 的坐标分别为()0,1-,()0,2,()3,0.从下面四个点()3,3M ,()3,3N -,()3,0P -,()3,1Q -中选择一个点,使以点A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是( ) A .点MB .点NC .点PD .点Q5.点()2,3P -关于x 轴对称的点的坐标是 ,关于原点对称的点的坐标是 .6.以下各点中,()5,0A -,()0,2B ,()2,1C -,()2,0D ,()0,5E ,()2,1F -,()2,1G --,关于原点对称的两点是.7.点(),4A a 与点()3,B b 关于原点对称,则a =,b =.8.如图所示,PQR ∆是ABC ∆经过某种变换后得到的图形,如果ABC ∆中任意一点M 的坐标是(),a b ,那么它的对应点N 的坐标为.9.在下列网格图中,每个小正方形的边长均为1个单位,在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =.(1)试在图中作出ABC ∆以A 为旋转中心,沿顺时针方向旋转90︒后的图形11AB C ∆; (2)若点B 的坐标为()3,5-,试在图中画出直角坐标系,并标出A ,C 两点的坐标; (3)根据(2)中的坐标系作出与ABC ∆关于原点对称的图形222A B C ∆,并标出2B ,2C 两点的坐标.10.直角坐标系第二象限内的点()22,3P x x +与另一点()2,Q x y +关于原点对称,试求2x y +的值.能力提高1.已知点()1,1A a -和()2,1B b -关于原点对称,则a b +的值为( ) A .1-B .0C .1D .3-2.如图,将ABC ∆绕点()0,1C 旋转180︒得到''A B C ∆,设点A 的坐标为(),a b ,则点'A 的坐标为( )A .(),a b --B .(),1a b ---C .(),1a b --+D .(),2a b --+3.下列命题:(1)关于中心对称的两个图形一定不全等;(2)关于中心对称的两个图形是全等图形;(3)两个全等的图形一定成中心对称.其中真命题的个数是( ) A .0个B .1个C .2个D .3个4.如图,顺次连接矩形ABCD 各边中点,得到菱形EFGH ,这个由矩形和菱形所组成的图形( )A .是轴对称图形但不是中心对称图形B .是中心对称图形但不是轴对称图形C .既是轴对称图形又是中心对称图形D .没有对称性5.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,过点O 作直线分别交AD ,BC 于点E ,F .如果四边形AEFB 的面积为8,则平行四边形ABCD 的面积是.6.已知0a <,则点()21,3P a a ---+关于原点对称的点'P 在第象限.7.如图所示,点A ,B ,C 的坐标分别是()2,4,()5,1,()3,1-.若以点A ,B ,C ,D 为顶点的四边形既是轴对称图形,又是中心对称图形,则点D 的坐标为.8.如图,将等腰三角形ABC 绕底边BC 的中点O 旋转180︒. (1)画出旋转后的图形.(2)旋转后得到的三角形与原三角形拼成什么图形?说明理由.(3)要使拼成的图形为正方形,那么ABC ∆还应满足什么条件?为什么?9.如图,ABC ∆三个顶点的坐标分别是()1,1A ,()4,2B ,()3,4C . (1)试画出ABC ∆向左平移5个单位长度后得到的111A B C ∆; (2)试画出ABC ∆关于原点对称的222A B C ∆;(3)在x 轴上求作一点P ,使PAB ∆周长最小,试画出PAB ∆,并直接写出点P 的坐标.拓展探究1.有一块如图所示的土地,请划出一条分界线,把这块土地平均分给两户农民.(在以下的几个图形中用三种方法进行分割)2.有两块形状完全相同的不规则的四边形木板,如图所示,两位木工师傅通过测量可知∠=∠=︒,AD CD=.现要将其拼成正方形,思考一段时间后,一位木工师傅说“我可B D90以将这两块木板拼成一个正方形.”另一位木工师傅说:“我可以将一块木板拼成一个正方形,两块木板拼成两个正方形.”两位师傅把每一块木板都只分割一次,你知道他们是怎么做的吗?画出图形,并说明理由.23.2 参考答案:23.2.1 中心对称 基础训练1.C 2.D 3.C 4.180 1:1 5.AD DCA ∠ 中心 6.3cm 215cm 7.略 8.(1)略 (2)15 (3)四边形ACDF 为平行四边形,因为它的对角线互相平分. 9.(1)111A B C ∆如图所示;(2)222A B C ∆如图所示. 10.(1)如图所示(2)2AD AB AC <+.理由:ABD ∆与ECD ∆成中心对称,ADB EDC ∴∆∆≌.CE AB ∴=. AE CE AC >+,2AD AB AC ∴<+.23.2.2 中心对称图形 基础训练1.D 2.B 3.B 4.B 5.线段的中点 中心 对角线的交点 6.4 7.25-8.答案不唯一,如图(1)、(2)、(3)、(4)中任何一个位置都行. 9.(1)如图(1);(2)如图(2).10.猜想:BM FN =.证明:在正方形ABCD 中,BD 为对角线,O 为对称中心,BO DO ∴=,45BDA DBA ∠=∠=︒.GEF ∆为ABD ∆绕O 点旋转所得,FO DO ∴=,F BDA ∠=∠,OB OF ∴=,OBM OFN ∠=∠,OBM OFN ∴∆∆≌,BM FN ∴=.23.2.3 关于原点对称的点的坐标 基础训练1.D 2.D 3.D 4.C 5.(2,3) (2,3)- 6.C 和F 7.3- 4- 8.(,)a b -- 9.如图所示的11AB C ∆;(2)建立如图所示的直角坐标系,点A 的坐标为(0,1),点C 的坐标为(3,1)-; (3)如图所示的222A B C ∆,点2B 的坐标为(3,5)-点2C 的坐标为(3,1)-.10.根据题意,得2(2)(2)0x x x +++=,3y =-.11x ∴=-,22x =-. 点P 在第二象限, 220x x ∴+<.1x ∴=-.27x y ∴+=-. 能力提高1.A 2.D 3.B 4.C 5.16 6.四 7.(0,1) 8.(1)略;(2)菱形,理由是它的四条边都相等; (3)90∠=︒,因为有一个角是直角的菱形是正方形.9.如图所示,A ,B C 向左平移5个单位后的坐标分别为(4,1)-,(1,2)-,(2,4)-,连接这三个点,得111A B C ∆.(2)如图所示,A ,B ,C 关于原点的对称点的坐标分别为(1,1)--,(4,2)--,(3,4)--连接这三个点,得222A B C ∆.(3)如图所示,(2,0)P .作点A 关于x 轴的对称点A ',连接A B '交x 轴于点P ,则点P 即为所求作的点.拓展探究1.如图2.如图(1),将两块四边形拼成正方形,连接BD ,将DBC ∆绕D 点顺时针旋转90度,即可得出B BD '∆,此时三角形BB D '是等腰直角三角形,同理可得到正方形B EBD '.如图(2)将一个四边形拼成正方形,过点D 作DE BC ⊥于点E ,过点D 作DF BA ⊥交BA 的延长线于点F ,90FDA ADE CDE ADE ∴∠+∠=∠+∠=︒,FDA CDE ∴∠=∠,(AAS)AFD CED ∴∆∆≌,FD DE ∴=.又90B F BED ∠=∠=∠=︒,∴四边形FBED 为正方形.。

轴对称图形与中心对称复习

轴对称图形与中心对称复习

轴对称图形与中心对称复习一、轴对称图形轴对称图形是指能够沿着一个轴线折叠后两边完全重合的图形。

在平面几何中,轴对称图形具有以下特点:1.轴线对称性:轴对称图形具有一个轴线,该轴线对称地分割图形成两部分,两部分图形在轴线上的所有对应点完全重合。

2.对称点:轴对称图形的轴线上的每一个点都有一个对应点,称为对称点,对称点关于轴线对称。

3.对称性:轴对称图形的任意一点关于轴线对称的对应点也在图形中。

常见的轴对称图形包括正方形、长方形、圆形以及许多字母和数字等。

轴对称图形在日常生活和设计中广泛应用,具有美学和功能性的优点。

二、中心对称图形中心对称图形是指存在一个中心点,将图形绕该中心点旋转一定角度后重合的图形。

中心对称图形具有以下特点:1.中心对称性:中心对称图形具有一个中心点,该中心点的任意一条射线上的对称点与中心点距离相等,图形通过旋转保持对称。

2.对称点:中心对称图形的中心点对称地分割图形,对称点与中心点距离相等。

3.对称性:中心对称图形的任意一点关于中心点对称的对应点也在图形中。

常见的中心对称图形包括五角星、六角星、雪花等。

中心对称图形在艺术、布局设计等领域中具有重要的应用,给人以和谐、平衡的感觉。

三、轴对称与中心对称的异同轴对称和中心对称有许多相似之处,但也存在一些不同点。

相似之处:1.对称性:轴对称和中心对称图形都具有对称性,在空间上都有一种平衡的美感。

2.对称点:轴对称和中心对称图形都有对称点,关于轴线/中心点对称。

不同之处:1.轴线或中心点的位置:轴对称图形的轴线位于图形的一侧,将图形分割成两个镜像对称的部分;而中心对称图形的中心点位于图形的中心位置,图形旋转后能够实现重合。

2.对称方式:轴对称是通过沿轴线进行折叠实现对称,对称后左右两侧完全一致;中心对称是通过旋转实现对称,对称后图形相同角度旋转后完全一致。

四、应用实例1.建筑设计:轴对称和中心对称图形常用于建筑设计中,如对称的立面设计和室内布局,能够给人一种和谐、平衡的感觉。

中心对称-精品文档

中心对称-精品文档

自然界中的中心对称
花朵
许多花朵的形状是对称的,如向 日葵、百合和菊花等。这种对称 不仅美观,还有助于吸引传粉昆 虫。
动物
自然界中许多动物的形状也是中 心对称的,如蝴蝶、蜜蜂和章鱼 等。这种对称有助于动物的运动 和生存。
03
中心对称的判定
平行四边形判定法
总结词
通过判断图形是否为平行四边形来判 定中心对称。
利用轴对称性质作图
总结词
利用轴对称的性质,将图形进行翻转或 旋转,以完成对称作图。
VS
详细描述
首先确定对称轴,然后将图形上的点或线 段按照对称轴进行翻转或旋转,以得到对 称的图形。这种方法适用于绘制轴对称的 图形,如长方形、三角形等。
05
中心对称的练习题与解析
基础练习题
总结词:理解中心对称的基本概念
绘画
艺术家可以利用中心对称的原理来构图,使画面更加平衡和 稳定。例如,在绘制圆形物体或对称图案时,可以找到一个 中心点,然后画出与该点相对称的形状或线条。
雕塑
在雕塑创作中,中心对称也被广泛应用。许多雕塑作品采用 了对称的设计,以突出稳定感和平衡感,如希腊的古典雕塑 和中国的石狮子。
建筑设计
建筑设计中的对称
在几何学中,这个特 性是判断一个图形是 否具有中心对称性的 标准。
几何图形中的中心对称
圆形、正方形、长方形等都是 常见的中心对称图形。
这些图形都有一个对称中心, 通过该中心可以将图形分成两 个对称的部分。
在这些图形中,任意一点关于 对称中心都有对称点,且这两 点与对称中心的距离相等。
中心对称的性质
01
中心对称图形一定是轴 对称图形,但轴对称图 称中心具有对称性,即 其对称中心是其几何中 心。

中心对称图形练习题

中心对称图形练习题

中心对称图形练习题中心对称图形是指一个图形关于某一点对称,这个点称为中心对称点。

以下是关于中心对称图形的练习题:1. 判断题:中心对称图形的中心对称点是唯一的。

()2. 选择题:下列哪个图形不是中心对称图形?A. 正方形B. 等边三角形C. 圆形D. 矩形3. 填空题:若一个图形关于点O对称,且点A(2,3)在该图形上,则其对称点的坐标是()。

4. 简答题:请描述中心对称图形的性质,并给出一个生活中的例子。

5. 计算题:若一个中心对称图形的中心对称点坐标为(a,b),图形上一点P(x,y)关于该点对称,求点P的对称点坐标。

6. 作图题:给定一个中心对称点O(0,0),请画出一个中心对称的五角星图形。

7. 应用题:在一个中心对称图形中,已知点A(-3,4)和点B(3,-4),求这两点关于中心对称点的对称点坐标。

8. 证明题:证明对于任意一个中心对称图形,其上任意两点关于中心对称点的对称点连线都经过中心对称点。

9. 探索题:如果一个图形既是轴对称图形又是中心对称图形,这个图形可能是什么形状?请给出理由。

10. 综合题:在一个中心对称图形中,已知点C(1,1)和点D(-1,-1),若点E(x,y)在该图形上,且点E关于中心对称点的对称点为点F(-x,-y),请找出点E的所有可能坐标。

答案提示:1. 正确。

中心对称图形的中心对称点是唯一的。

2. 选项B。

等边三角形不是中心对称图形,因为它没有中心对称点。

3. 答案:(-2,-3)。

根据中心对称的性质,对称点的横纵坐标与原点坐标互为相反数。

4. 中心对称图形的性质包括:图形上任意一点关于中心对称点的对称点都存在,且对称点连线经过中心对称点。

生活中的例子可以是雪花图案。

5. 答案:点P的对称点坐标为(2a-x, 2b-y)。

6. 作图时,以O点为中心,画出五角星的一半,然后根据中心对称的性质画出另一半。

7. 答案:点A的对称点为(3,-4),点B的对称点为(-3,4)。

2025高考数学专项复习运用“对称变换”的思想方法解题含答案

运用“对称变换”的思想方法解题在中学数学中,对称的问题主要有以下4种形式:1.中心对称:①点关于点的对称;②曲线关于点的对称。

2.轴对称:①点关于直线的对称;②曲线关于直线的对称。

3.平面对称:①点关于平面的对称;②曲线关于平面的对称。

4.多项式对称:①一般轮换对称;②顺序轮换对称。

几何中的轴(面)对称和中心对称是最直观的对称,平面图形绕其内一定点旋转2πnn ∈N *的变换,也是常见的对称变换。

典型例题1定理一:函数y =f x 满足f a +x =f a -x 的充要条件是y =f x 的图像关于直线x =a 对称。

定理二:函数y =f x 满足f a +x -b =b -f a -x 的充要条件是y =f x 的图像关于点a ,b 成中心对称。

定理三:函数y =f x 满足F x =f x +a -f a 为奇函数的充要条件是y =f x 的图像关于点a ,f a 成中心对称(注:若a 不属于x 的定义域,则f a 不存在.依次解答如下问题:(1)设函数y =f x 的图像关于直线x =1对称,若x ≤1时,y =x 2+1,求x >1时y 的解析式;(2)若函数y =x 2+mx +1x的图像关于点0,1 中心对称,求m 的值;(3)已知函数f x 在-∞,0 ∪0,+∞ 上的图像关于点0,1 中心对称,且当x ∈0,+∞ 时f x =x 2+x +1.根据定理二求出f x 在-∞,0 上的解析式;(4)设函数y =f x ,y =g x 在定义域R 上的图像都是关于点a ,b 中心对称,则对于函数y =f x +g x ,y =f x -g x ,y =f x ⋅g x 及y =f xg x ,指出其中一个函数的图像一定关于点成中心对称,再指出其中一个函数的图像可以不关于点中心对称,并分别说明理由;(5)讨论函数f x =x -23 x +53 +x -3 -2x -83的图像的对称性。

中心对称练习题

中心对称练习题中心对称是几何学中的一个重要概念,指的是图形中存在一条中心轴,使得对称轴两侧的部分完全一致。

在几何学中,研究中心对称的性质和特点对于理解和解决问题非常有帮助。

下面将给出一些中心对称的练习题,帮助读者更好地理解和掌握这个概念。

练习题1:镜像图形给出下面图形,找出其中的对称轴,并标出对称轴的位置。

[图形]解析:解题思路是观察图形的特点,判断图形中是否存在对称轴。

通过观察,我们可以发现图形中存在一条竖直的中心轴,将图形分为左右两部分,两侧完全对称。

因此,这条竖直线就是图形的对称轴。

练习题2:找出对称图形给出下列图形,选出其中是中心对称的图形。

[图形]A. ○B. △C. ■D. ★解析:解题思路是观察每个选项图形的特点,判断是否存在中心对称。

A选项是圆形,圆形拥有无限多个对称轴,但没有一个明显的中心对称线,因此排除。

B选项是三角形,三角形没有中心对称性,排除。

C选项是正方形,正方形拥有4条对称轴,其中两条为中心对称线,因此满足条件。

D选项是星形,星形没有中心对称性,排除。

所以,选项C是中心对称的图形。

练习题3:图形绘制根据下列描述,绘制图形,使其满足中心对称的条件。

描述:图形由一个边长为4cm的正方形和一个边长为2cm的等腰直角三角形组成,正方形的一个顶点与三角形的直角顶点相连。

解析:解题思路是通过具体描述绘制图形,观察图形是否满足中心对称。

首先,绘制一个边长为4cm的正方形。

然后,从正方形的一个顶点画出一条长度为2cm的线段,并将其与正方形对应边的中点相连。

我们将得到一个等腰直角三角形。

通过观察,我们可以发现正方形和三角形在连接线的一侧完全对称。

因此,这个图形满足中心对称。

练习题4:图形判断给出下列描述,请判断其是否满足中心对称。

描述1:一个边长为5cm的正方形;描述2:一个等腰梯形,上底长为6cm,下底长为4cm,高为3cm。

解析:解题思路是通过观察图形的描述,判断是否满足中心对称。

初中数学中心对称图形专题训练50题含参考答案

初中数学中心对称图形专题训练50题含参考答案一、单选题1.下列图形中,是中心对称的图形是()A.B.C.D.【答案】B【详解】某个图形绕着它的中心旋转180°能够重合的图形是中心对称图形,以上四个图形中,图B符合题意,故选B2.下列所给图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既是轴对称图形又是中心对称图形,故本选项符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意;故选:B.称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称与中心对称图形的概念求解即可.【详解】解:A.该图形是中心对称图形,但不是轴对称图形,不符合题意;B.该图形是轴对称图形,但不是中心对称图形,不符合题意;C.该图形是轴对称图形,但不是中心对称图形,不符合题意;D.该图形既是中心对称图形又是轴对称图形,符合题意.故选:D.【点睛】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180 ,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键.4.推进生态文明建设,实行垃圾分类和资源化利用是每个公民义不容辞的责任.下列四幅图是垃圾分类标志图案,则四幅图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【分析】利用轴对称图形和中心对称图形的定义逐一判断即可得解;【详解】解:A、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、不是中心对称图形,也不是轴对称图形,故本选项不合题意;故选:A.【点睛】本题主要考查轴对称图形和中心对称图形,解题的关键是明确轴对称图形和中心对称图形的特征.5.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.【答案】B【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意;故选:B.【点睛】本题考查了中心对称图形,解题的关键是根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.是轴对称图形,不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.下列图形中既是轴对称图形,又是中心对称图形的是()A.平行四边形B.等边三角形C.正方形D.正五边形【答案】C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.平行四边形是中心对称图形,但不是轴对称图形,故此选项错误;B.等边三角形是轴对称图形,但不是中心对称图形,故此选项错误;C.正方形是中心对称图形,又是轴对称图形,故此选项正确;D.正五边形是轴对称图形合,但不是中心对称图形,故此选项错误.故选:C.【点睛】掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.下列图形是中心对称图形的是()A.B.C.D.【答案】B【分析】根据中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A.不是中心对称图形,故该选项不正确,不符合题意;B. 是中心对称图形,故该选项正确,符合题意;C. 不是中心对称图形,故该选项不正确,不符合题意;D. 不是中心对称图形,故该选项不正确,不符合题意;故选:B【点睛】本题考查了中心对称图形的识别,掌握中心对称图形的定义是解题的关键.9.下列图形中,是轴对称图形但不是中心对称图形的是()A.正五边形B.平行四边形C.矩形D.圆【答案】A【分析】根据轴对称图形与中心对称图形的概念结合正五边形、平行四边形、矩形、圆的性质求解.【详解】解:A、正五边形是轴对称图形,不是中心对称图形,故此选项正确;B、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;C、矩形是轴对称图形,也是中心对称图形,故此选项错误;D、圆是轴对称图形,也是中心对称图形,故此选项错误.故选:A【点睛】此题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.10.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A、是轴对称图形,不是中心对称图形,故A选项不合题意;B、不是轴对称图形,是中心对称图形,故B选项不符合题意;C、既是轴对称图形,又是中心对称图形,故C选项合题意;故选C.【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.11.垃圾分类人人有责.下列垃圾分类标识是中心对称图形的是()A.B.C.D.【答案】B【分析】根据中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】A. 不是中心对称图形,不符合题意;B.是中心对称图形,符合题意;C. 不是中心对称图形,不符合题意;D. 不是中心对称图形,不符合题意;故选B【点睛】本题考查了中心对称图形的识别,掌握中心对称图形的定义是解题的关键.12.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.【答案】A【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【详解】A、是中心对称图形,故本选项符合题意;B、不是中心对称图形,故本选项不合题意;C、不是中心对称图形,故本选项不合题意;D、不是中心对称图形,故本选项不合题意;故选:A.【点睛】本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.A.B.C.D.【答案】D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、不是轴对称图形,是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,不是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.14.下列命题中,真命题的个数为()①一个锐角和一条边分别相等的两个直角三角形全等;①定理的逆定理一定成立;①经过旋转,对应线段平行且相等;①等腰三角形的角平分线和中线重合;①在平面直角坐标系中,关于原点成中心对称的两个图形中,对应点的横、纵坐标互为相反数.A.1B.2C.3D.4【答案】A【分析】利用全等三角形的判定方法、旋转的性质、等腰三角形的性质及关于原点成中心对称的点的坐标特点分别判断后即可确定正确的选项.【详解】解:①一个锐角和一条边分别相等的两个直角三角形不一定全等,故错误,是假命题,不符合题意;①定理的逆定理不一定成立,故错误,是假命题,不符合题意;①经过旋转,对应线段相等,但不一定平行,故错误,是假命题,不符合题意;①等腰三角形的顶角平分线和底边中线重合,故错误,是假命题,不符合题意;①在平面直角坐标系中,关于原点成中心对称的两个图形中,对应点的横、纵坐标互为相反数,正确,是真命题,符合题意,综上分析可知,真命题有1个,故A正确.故选:A.【点睛】本题主要考查了命题与定理的知识,解题的关键是了解全等三角形的判定方法、旋转的性质、等腰三角形的性质及关于原点成中心对称的点的坐标特点,难度不大.15.下列图形中,既是轴对称图形,又是中心对称图形的是()A.角B.平行四边形C.矩形D.等边三角形【答案】C【分析】根据轴对称及中心对称的定义,结合选项所给图形的特点即可作出判断.【详解】A.角是轴对称图形,不是中心对称图形,故本选项错误;B.平行四边形不轴对称图形,是中心对称图形,故本选项错误;C.矩形既是轴对称图形也是中心对称图形,故本选项正确;D.等边三角形是轴对称图形,不是中心对称图形,故本选项错误.故选:C.【点睛】本题考查了中心对称图形和轴对称图形的概念,属于基础题.16.下列图形中,可以看作既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A、不是轴对称图形,是中心对称图形,故选项A不符合题意;B、不是轴对称图形,是中心对称图形,故选项B不符合题意;C、是轴对称图形,不是中心对称图形,故选项C不符合题意;D、是轴对称图形,也是中心对称图形;故选项D符合题意;故选:D.【点睛】本题考查中心对称图形以及轴对称图形的识别,掌握它们的定义是解题的关键.17.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形及中心对称图形定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心;平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,叫轴对称图形,逐项验证即可得到答案.【详解】解:A、该图形不是轴对称图形,是中心对称图形,不符合题意;B、该图形既是轴对称图形,又是中心对称图形,符合题意;C、该图形是轴对称图形,不是中心对称图形,不符合题意;D、该图形是轴对称图形,不是中心对称图形,不符合题意;故选:B.【点睛】本题考查轴对称图形及中心对称图形的定义与判断,熟练掌握轴对称图形及中心对称图形的定义是解决问题的关键.18.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.【答案】D【详解】试题解析:A、是轴对称图形,但不是中心对称图形.故错误;B、既不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,但不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.19.点 P (2,﹣3)关于原点对称的点的坐标是_________. 【答案】(-2,3)【分析】根据平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数.【详解】解:已知点P (2,-3),则点P 关于原点对称的点的坐标是(-2,3),故答案为:(-2,3).【点睛】本题主要考查了关于原点的对称点的性质,正确把握横纵坐标的关系是解题关键. 20.将点()1,2P -绕坐标原点旋转180︒后点的坐标为________.【答案】()1,2-【分析】根据中心对称图形的性质即可解答.【详解】解:点()1,2P -绕坐标原点旋转180︒后点的坐标为()1,2-,故答案为:()1,2-.【点睛】本题主要考查了中心对称图形的性质,熟记关于原点对称横、纵坐标都变为相反数是解题的关键.21.已知(,3)M a -和(4,)N b 关于原点对称,则a b +=______.【答案】-1【分析】根据关于原点对称点的坐标特征,求出a b 、的值,相加即可;【详解】解:(,3)M a -和(4,)N b 关于原点对称,则=-4=3a b 、,-4+3=-1a b +=;故答案为:-1【点睛】本题考查了关于原点对称点的坐标变化规律,解题关键是求出a b 、的值. 22.在如图方格纸中,选择标有序号1、2、3、4中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是__________.【分析】根据中心对称的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形即可解答.【详解】当涂黑4时,将图形绕O旋转180°,与原图重合,阴影部分为中心对称图形.故答案为:4.【点睛】本题考查了中心对称图形,掌握中心对称图形的定义是关键.23.点A(-6,m)与点A′(n,3)关于原点中心对称,则m+n的值是____ .【答案】3【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】①点A(−6,m)与点A′(n,3)关于原点中心对称,①n=6,m=−3,①m+n=3,故答案为3.【点睛】考查关于原点对称的点的坐标特征,横坐标和纵坐标都互为相反数.24.如图,以平行四边形ABCD对角线的交点O为原点,平行于BC边的直线为x 轴,建立如图所示的平面直角坐标系.若D点坐标为(5,3),则B点坐标为__________.【答案】(-5,-3)【分析】根据平行四边形是中心对称图形,再根据平行四边形ABCD对角线的交点O 为原点和点D的坐标,即可得到点B的坐标.【详解】解:①坐标原点O为平行四边形ABCD对角线的交点①B 、D 两点关于点O 对称①D (5,3)①B (-5,-3)故答案为:(-5,-3)【点睛】本题考查了平行四边形的性质,坐标与图形的性质,解答本题的关键是明确题意,利用平行四边形性质解答.25.在平面直角坐标系中,已知点()4,3A -与点B 关于原点对称,则点B 的坐标是______. 【答案】(-4,3)【分析】根据关于原点对称的点横纵坐标都互为相反数即可得到答案.【详解】解:①点()4,3A -与点B 关于原点对称,①点B 的坐标是()4,3-,故答案为:()4,3-.【点睛】本题考查了点的坐标,掌握关于原点对称的点的横纵坐标都互为相反数,是解题的关键.26.若点(),2P a 与点()5,Q b 关于原点对称,则=a _____,b =_____. 【答案】 5- 2-【分析】根据平面直角坐标系中关于原点对称的点的坐标特征:相应坐标互为相反数,即可得到答案.【详解】解:①点(),2P a 与点()5,Q b 关于原点对称,①52a b =-=-,,故答案为:5,2--.【点睛】本题考查平面直角坐标系中关于原点对称的点的坐标特征,熟练掌握关于原点对称的点的坐标特征:相应坐标互为相反数是解决问题的关键.27.已知点A (a ,5)与点B (-3,b )关于原点对称,则a +b 的值是______.【答案】2-【分析】平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),根据这一结论求得a ,b 的值,再进一步计算.【详解】解:①点A (a ,5)与点B (-3,b )关于原点对称,①35a b =⎧⎨=-⎩, ①a +b=3-5=-2;故答案为:2-.【点睛】本题主要考查了关于原点对称的点的坐标,掌握关于原点对称的点的坐标特征是解题的关键.28.若点()1,5P a -与点()5,1Q b -关于原点成中心对称,则a b -=______. 【答案】10-【分析】直接利用关于原点对称点的性质得出a ,b 的值,进而得出答案.【详解】解:点()1,5P a -与点()5,1Q b -关于原点成中心对称,15,15a b ∴-=--=-,解得4,6a b =-=,则4610a b -=--=-,故答案为:10-.【点睛】本题主要考查了关于原点对称点的性质(点的横、纵坐标均互为相反数),正确得出a ,b 的值是解题关键.29.若点M (3,a ),N (b ,﹣5)关于原点对称,则a +b =____.【答案】2【分析】根据关于原点对称的点的坐标特征,得到a ,b 的值,进而求a +b 即可求解.【详解】解:①点M (3,a ),N (b ,﹣5)关于原点对称,①b =-3,a =5,①a +b =-3+5=2.故答案是: 2.【点睛】本题主要考查关于原点对称的点的坐标特征,掌握关于原点对称的两点的横纵左边分别互为相反数,是解题的关键.30.直角坐标系中,直线y =2x+3关于原点对称的解析式为_____.【答案】y =2x ﹣3【分析】若两条直线关于原点对称,则这两条直线平行,即k 值不变;与y 轴的交点关于原点对称,即b 值互为相反数.【详解】解:直线y =2x+3关于原点对称的解析式为y =2x ﹣3,故答案为:y =2x ﹣3.【点睛】本题考查一次函数,能够数形结合来分析此类型的题,根据图形,发现k 和b 值之间的关系.31.已知点()2,2A -关于x 轴的对称点为点B ,关于原点的对称点为点C ,关于y 轴的对称点为点D ,则四边形ABCD 的面积为_____. 【答案】16【分析】根据关于x 轴、y 轴、原点对称的点的坐标特征可得出B 、C 、D 点的坐标,可得四边形ABCD 是边长为4的正方形,进而可得面积.【详解】①关于x 轴的对称点为点B ,关于原点的对称点为点C ,关于y 轴的对称点为点D ,①()2,2B --,()2,2C -,()2,2D .①四边形ABCD 是边长为4的正方形,①其面积为16,故答案为16【点睛】本题考查关于原点对称的点的坐标;关于x 轴、y 轴对称的点的坐标,关于x 轴的对称点,横坐标不变,纵坐标变成相反数;关于y 轴的对称点,纵坐标不变,横坐标变成相反数;关于原点的对称点,横纵坐标都变成相反数.32.在等腰直角ABC 中,90C =∠,2BC cm =,如果以AC 的中点D 为旋转中心,将这个三角形旋转180°,点B 落在点B '处,则DB '的长度为______.1133.将二次函数y =x 2+2x -3的图象绕原点旋转180°,若得到的新的函数图象上总有两个点在直线y =x -m 上,则m 的取值范围是____.34.若点(,2)P a -与点(3,)Q b 关于原点对称,则b a =_____________.【答案】9【分析】根据关于原点的对称点的特征计算即可.【详解】解:①点(,2)P a -与点(3,)Q b 关于原点对称,①3a =-,2b =,①239b a ==,故答案为:9.【点睛】本题主要考查了关于原点对称的点的有关计算,解题的关键是熟知直角坐标系中两点的坐标关于原点对称,这两个点横坐标互为相反数,纵坐标互为相反数.35.如图所示,△ABC与△A'B'C'关于点O成中心对称,则下列结论成立的是__.(填序号)①点A与点A'关于点O对称;①BO=B'O;①AC①A'C';①①ABC=①C'A'B'.【答案】①①①【分析】根据中心对称的性质解答.【详解】①①ABC与△A′B′C′关于点O成中心对称,①点A与点A′是对称点,BO=B′O′,①ABC=①A′B′C′,△ABC①①A′B′C′,△BOC①①B′OC′,①①ACB=①A′C′B′,①OCB=①O′C′B′,①①ACO=①A′C′O,①AC①A'C'①结论①ACB=①C′A′B′错误.故答案为①①①【点睛】本题考查了中心对称的性质,熟记性质并准确识图是解题的关键.36.在同一直角坐标系中,点A、B分别是函数y=x−2与y=−2x−1的图象上的点,且点A、B关于原点对称,则点A的坐标是______.【答案】(1,−1)【详解】解:设点A的坐标为(m,n),则点B的坐标为(−m,−n).根据题意得:221 n mn m=-⎧⎨-=-⎩,解得:11 mn=⎧⎨=-⎩,①点A的坐标为(1,−1).故答案为(1,−1).【点睛】本题考查了一次函数图象上点的坐标特征以及关于原点对称的点的坐标,根据一次函数图象上点的坐标特征,列出关于m、n的二元一次方程组是解题的关键.37.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP 的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,−300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标可以表示为_____.【答案】(3,240°),(3,−120°),(3,600°)【分析】根据中心对称的性质解答即可.【详解】①P(3,60°)或P(3,−300°)或P(3,420°),由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240°),(3,−120°),(3,600°),故答案为(3,240°),(3,−120°),(3,600°)【点睛】此题考查中心对称的性质,解题关键在于掌握其性质.三、解答题38.已知△ABC的顶点A、B、C在格点上,按下列要求在网格中画图.(1)△ABC绕点C顺时针旋转90°得到△A1B1C;(2)画△A1B1C关于点O的中心对称图形△A2B2C2.【答案】(1)见解析(2)见解析【分析】(1)分别作出A、B、的对应点A1、B1即可;(2)分别作出A1、B1、C的对应点A2、B2、C2即可;【详解】(1)解:①ABC绕点C顺时针旋转90°得到①A1B1C如图所示;(2)解:①A 1B 1C 关于点O 的中心对称图形①A 2B 2C 2如图所示;【点睛】本题考查作图﹣旋转变换,中心对称等知识,解题的关键是熟练掌握旋转变换、中心对称的性质,属于中考常考题型.39.作图题:已知①ABC 在方格纸中的位置如图所示,每个小方格的边长为1个单位长度;(1)将①ABC 向右平移4个单位长度得到①111A B C ,请你画出①111A B C ;(2)①ABC 与①222A B C 关于原点O 对称,请你画出①222A B C .【答案】(1)①111A B C 如图所示;(2)①222A B C 如图所示.【分析】(1)根据网格结构找出点A 、B 、C 向右平移4个单位的对应点111A B C 、、 的位置,然后顺次连接即可;(2) 根据网格结构找出点A 、B 、C 关于原点的对称点2A 、2B 、2C 的位置,然后顺次连接即可.(1)由图可得A (-2,5),B (-4,1),C (-1,3)则右平移4个单位的对应点1A (2,5)、1B (0,1)、C 1(3,3),如图所示;(2)①ABC 与①222A B C 关于原点O 对称,则2A (2,-5),2B (4,-1),2C (1,-3),如图所示.【点睛】本题考查作图——旋转和平移:根据旋转和平移的性质作图是解题的关键. 40.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,点A 、点C 关于点O 成中心对称,点B 、点D 关于点O 成中心对称,且点B 、D 关于AC 成轴对称.求证:四边形ABCD 是菱形.【答案】见解析【分析】根据轴对称的性质可得AC 垂直平分BD ,进而得到,BO DO AC BD =⊥,再根据点A 、点C 关于点O 成中心对称,可得AO CO =,然后根据对角线互相垂直且平分的四边形是菱形可证出结论.【详解】证明:∵点B 、D 关于AC 成轴对称,∴AC 垂直平分BD ,∴,BO DO AC BD =⊥,∵点A 、点C 关于点O 成中心对称,∴AO CO =,∴四边形ABCD 是菱形.【点睛】此题主要考查了菱形的判定,轴对称和中心对称,掌握对角线互相垂直平分的四边形是菱形是解题的关键.41.如图,在5×5的方格纸中,每个小正方形的边长均为1,A ,B 两点均在小正方形的顶点上,请按下列要求,在图1,图2中各画一个四边形(所画四边形的顶点均在小正方形的顶点上)(1)在图1中画四边形ABCD ,使其为中心对称图形.(2)在图2中画以A,B,E,F为顶点的平行四边形,且其中一条对角线长等于3.【答案】见解析【分析】(1)以AB为边画一个平时四边形即可;BF ,然后以AB为边,BF为对角线画平行四边形即可.(2)先作对角线3【详解】解:(1)如图1,四边形ABCD为所作;(2)如图2,四边形ABEF为所作.【点睛】考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平行四边形的判定.42.如图,①ABC三个顶点的坐标分别为A(0,1),B(4,2),C(1,3).(1)将①ABC向右、向下分别平移1个单位长度和5个单位长度得到①A1B1C1,请画出①A1B1C1,并写出点A1,C1的坐标;(2)请画出①ABC关于原点O成中心对称的①A2B2C2.。

九年级数学上册《中心对称》练习题及答案解析

九年级数学上册《中心对称》练习题及答案解析学校:___________姓名:___________班级:___________一、单选题1.将一张圆形纸片对折再对折,得到如下左图,然后沿着虚线剪开,得到两部分.其中一部分展开后的平面图形是()A.B.C.D.2.下列图案中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.直角三角形BC ,BC边上的高为4,则图中阴影部分的面3.如图,在平行四边形ABCD中,AC,BD为对角线,6积为()A.3B.6C.12D.244.成中心对称的两个图形,下列说法正确的是()①一定形状相同;②大小可能不等;③对称中心必在图形上;④对称中心可能只在一个图形上;⑤对称中心必在对应点的连线上.A .①③B .③④C .④⑤D .①⑤5.如图,点A 是反比例函数()20=>y x x 的图象上任意一点,AB x ∥轴交反比例函数3y x=-的图象于点B ,以AB 为边作ABCD ,其中C ,D 在x 轴上,则ABCD S 为( )A .6B .5C .4D .36.如图,点O 是矩形ABCD 的对称中心,点E 在AB 边上,连接CE .若点B 与点O 关于CE 对称,则CB :AB 为( )A .12 B C D二、填空题7.如图,在等腰ABC 中,120A ∠=︒,顶点B 在ODEF 的边DE 上,已知140∠=︒,则2∠=_________.8.在平面内,相交的两条直线是中心对称图形,它的对称中心是________.9.如图,△ABC 和△DEC 关于点C 成中心对称,若AC =1,AB =2,△BAC =90°,则AE 的长是_________.10.在Rt ABC 中,90ACB ∠=︒,8AC =,6BC =,D 是AB 中点,点F 在射线AC 上,连接DF ,将ADF 沿DF 翻折,点A 对应点为点G ,当DG AC ⊥时,线段AG 的长为______.11.如图,在菱形ABCD 中,AB =6,60ABC ∠=︒,AC 与BD 交于点O ,点N 在AC 上且AN =2,点M 在BC 上且BM =23BC ,P 为对角线BD 上一点,则PM ﹣PN 的最大值为____.12.如图,在平面直角坐标系中,等边ABC 与等边BDE 是以原点为位似中心的位似图形,且相似比为13,点A 、B 、D 在x 轴上,若等边BDE 的边长为12,则点C 的坐标为_________.三、解答题13.请你画出一条直线,把如图所示的平行四边形和圆两个图形分成面积相等的两部分(保留作图痕迹).14.如图,已知ABC 和A B C ''''''△ 及点O .(1)画出ABC 关于点O 对称的;(2)若A B C ''''''△与A B C '''关于点O '对称,请确定点O '的位置.15.已知90ABN ∠=︒,在ABN ∠内部作等腰ABC ,AB AC =,()090BAC αα∠=︒<≤︒.点D 为射线BN 上任意一点(与点B 不重合),连接AD ,将线段AD 绕点A 逆时针旋转α得到线段AE ,连接EC 并延长交射线BN 于点F .(1)如图1,当90α=︒时,线段BF 与CF 的数量关系是_________;(2)如图2,当090α︒<<︒时,(1)中的结论是否还成立?若成立,请给予证明;若不成立,请说明理由;(3)若60α=︒,AB =BD m =,过点E 作EP BN ⊥,垂足为P ,请直接写出PD 的长(用含有m 的式子表示).16.全等三角形知识结构图17.在平面直角坐标系中,(),P a b 是第一象限内一点,给出如下定义:1a k b =和2k b a=两个值中的最大值叫做点P 的“倾斜系数”k .(1)求点()6,2P 的“倾斜系数”k 的值;(2)△若点(),P a b 的“倾斜系数”2k =,请写出a 和b 的数量关系,并说明理由;△若点(),P a b 的“倾斜系数”2k =,且3a b +=,求OP 的长;(3)如图,边长为2的正方形ABCD 沿直线AC :y x =运动,(),P a b 是正方形ABCD 上任意一点,且点P 的“倾斜系数”k <a 的取值范围.参考答案与解析:1.C【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来,也可根据折痕形成的对角线特点进行判定.【详解】根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直平分.故选C .【点睛】本题主要考查学生的动手能力及空间想象能力,以及菱形的判定.掌握“对角线互相垂直平分的四边形是菱形”是解题关键.2.C【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,不符合题意;B、平行四边形不是轴对称图形,是中心对称图形,不符合题意;C、矩形是轴对称图形,也是中心对称图形,符合题意;D、直角三角形不一定是轴对称图形,不是中心对称图形,不符合题意.故选C.【点睛】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.C【分析】由题意,图中阴影部分的每一块都与非阴影部分的某一块关于平行四边形的中心对称,所以可以由中心对称图形的性质得到解答.【详解】由题意,图中阴影部分的每一块关于平行四边形的中心对称图形都在平行四边形上,且都是非阴影的部分,所以由中心对称图形的性质可得:所求的面积=116412 22ABCDS=⨯⨯=.故选C.【点睛】本题考查中心对称图形的判定和性质,掌握中心对称图形的性质是解题关键.4.D【分析】根据成中心对称的图形的性质,对各小题分析判断后利用排除法求解.【详解】△成中心对称的两个图形能够完全重合,所以一定形状相同,故本小题正确;△成中心对称的两个图形能够完全重合,所以大小一定相等,故本小题错误;△对称中心不一定在图形上,故本小题错误;△对称中心不一定在任何一个图形上,故本小题错误;△对称中心为对应点连线的中点,所以必在对应点的连线上,故本小题正确.综上所述:正确的有△△.故选D.【点睛】本题考查了中心对称,是基本概念题,熟练掌握成中心对称图形的性质是解题的关键.5.B【分析】设A的纵坐标是b,则B的纵坐标也是b,即可求得A、B的横坐标,则AB的长度即可求得,然后利用平行四边形的面积公式即可求解.【详解】解:设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=2x得,b=2x,则x=2b,即A的横坐标是2b;把y =b 代入y =-3x 得,b =-3x ,则x =3b ,B 的横坐标是:-3b. 则AB =2b -(-3b)=5b . 则S ▱ABCD =5b×b =5. 故选:B .【点睛】本题考查了是反比例函数与平行四边形的综合题,理解A 、B 的纵坐标是同一个值,表示出AB 的长度是关键.6.C【分析】连接DB ,AC ,OE ,利用对称得出OE =EB ,进而利用全等三角形的判定和性质得出OC =BC ,进而解答即可.【详解】解:连接DB ,AC ,OE ,△四边形ABCD 是矩形,△AC =DB ,△ABC =90°,OC =OA =OB =OD ,△点B 与点O 关于CE 对称,△OE =EB ,△OEC =△BEC ,在△COE 与△CBE 中,OE BE OEC BEC CE CE =⎧⎪∠=∠⎨⎪=⎩,△△COE△△CBE (SAS ),△OC =CB ,△AC =2BC ,△△ABC =90°,△AB,即CB :AB故选:C .【点睛】此题考查中心对称,全等三角形的性质与判定,矩形的性质,和勾股定理,利用对称得出OE=EB 是解题的关键.7.110º【分析】先根据等腰三角形的性质求出△ABC的度数;再根据平行四边形对边平行和两直线平行同旁内角互补的性质,得出△2+△ABE=180º,代入求解即可.【详解】解:△ABC是等腰三角形,△A=120º,△△ABC=△C=(180º-△A)÷2=30º,△四边形ODEF是平行四边形,△OF∥DE,△△2+△ABE=180º,即△2+30º+40º=180º,△△2=110º.故答案为:110º.【点睛】此题考查了等腰三角形的性质和平行四边形的性质,解题的关键是数形结合,熟练运用上述知识求解.8.两条直线的交点【分析】根据中心对称图形定义,我们可知图形绕交点旋转180°后,仍然能与原图形重合,所以两条直线的交点即为图形的对称中心.【详解】解:△两条相交直线绕他们的交点旋转180°后,仍能与原图形重合△两直线的交点就是图形的对称中心.故答案为:两条直线的交点.9.【分析】根据中心对称的性质AD=DE及△D=90゜,由勾股定理即可求得AE的长.【详解】△△DEC与△ABC关于点C成中心对称,△△ABC△△DEC,△AB=DE=2,AC=DC=1,△D=△BAC=90°,△AD=2,△△D=90°,△AE故答案为【点睛】本题考查了中心对称的性质,勾股定理等知识,关键中心对称性质的应用.10.【分析】由勾股定理求得AB 的长,延长GD 交AC 于E ,则DE △BC ,DE 是△ABC 的中位线,可得AE 、DE 、DG 的长,再由勾股定理解Rt △AGE 即可解答;【详解】解:由题意作图如下,延长GD 交AC 于E ,·Rt △ABC 中,由勾股定理得:AB 10=,△GE △AC ,BC △AC ,△DE △BC ,△D 是AB 中点,△DE 是△ABC 的中位线,△DE =12BC =3,AE =12AC =4,由折叠性质可得:DG =AD =12AB =5,Rt △AGE 中,EG =ED +DG =8,由勾股定理得:AG=故答案为:【点睛】本题考查了勾股定理,三角形的中位线,折叠的性质,正确作出辅助线是解题关键.11.2【分析】作点N 关于BD 的对称点N ',连接,MN PN '',从而可得PM PN PM PN MN ''-=-≤,再根据菱形的性质、等边三角形的判定证出CMN '△是等边三角形,然后根据等边三角形的性质可得2MN '=,由此即可得. 【详解】解:四边形ABCD 是菱形,6AB =, 6AB BC ∴==,OA OC =,AC BD ⊥,60ABC ∠=︒,ABC ∴是等边三角形,6,60AC AB ACB ∴==∠=︒,3OA OC ∴==,2AN =,1ON ∴=,如图,作点N 关于BD 的对称点N ',连接,MN PN '',则1,ON ON PN PN ''===,2,CN OC ON PM PN PM PN MN ''''∴=-=-=-≤,当且仅当,,P N M '共线时,等号成立, 23BM BC =,6BC =, 123CM BC ∴==, CMN '∴是等边三角形,2MN CM '∴==,即PM PN -的最大值为2,故答案为:2.【点睛】本题考查了菱形的性质、等边三角形的判定与性质、轴对称的性质等知识点,熟练掌握菱形的性质是解题关键.12.(4,【分析】作CF △AB 于F ,根据位似图形的性质得到BC △DE ,根据相似三角形的性质求出OA 、AB ,根据等边三角形的性质计算,得到答案.【详解】解:作CF △AB 于F ,△等边△ABC与等边△BDE是以原点为位似中心的位似图形,△BC△DE,△△OBC△△ODE,△BC OB DE OD=,△△ABC与△BDE的相似比为13,等边△BDE边长为12,△1, 12123==+BC OBOB解得,BC=4,OB=6,△OA=2,AB=BC=4,△CA=CB,CF△AB,△AF=2,由勾股定理得,CF△OF=OA+AF=2+2=4,△点C的坐标为(4,故答案为:(4,.【点睛】本题考查的是位似变换的概念和性质、等边三角形的性质、掌握位似变换的概念、相似三角形的性质是解题的关键.13.见解析【详解】试题分析:根据平行四边形的性质,过平行四边形中心的直线把平行四边形分成面积相等的两部分;根据圆的性质,过圆心的直线把圆分成面积相等的两部分,所以过平行四边形的中心与圆心的直线就是所要求作的直线.所以过平行四版型的中心和圆心的直线就是所求做的直线.解:如图所示.点睛:本题考查了中心对称图形的性质,熟悉过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.14.(1)见解析(2)见解析【分析】(1)连接三角形的各顶点与O 的连线,并延长相同长度,找到对应点,顺次连接.(2)若A B C ''''''△与A B C '''关于点O '对称,连接两组对应点的连线的交点O 就是对称点.(1)(2)【点睛】本题考查旋转变换作图,在找旋转中心时,要抓住“动”与“不动”,看图是关键.15.(1)BF =CF(2)成立;理由见解析 (3)62m PD =-或PD =0或62m PD =-【分析】(1)连接AF ,先根据“SAS”证明ACE ABD ∆∆≌,得出90ACE ABD ∠=∠=︒,再证明Rt Rt ABF ACF ≌,即可得出结论;(2)连接AF ,先说明EAC BAD ∠=∠,然后根据“SAS”证明ACE ABD ∆∆≌,得出90ACE ABD ∠=∠=︒,再证明Rt Rt ABF ACF ≌,即可得出结论;(3)先根据60α=︒,AB =AC ,得出△ABC 为等边三角形,再按照60BAD ∠︒<,60BAD ∠=︒,60BAD ∠︒>三种情况进行讨论,得出结果即可.(1)解:BF =CF ;理由如下:连接AF ,如图所示:根据旋转可知,90DAE α∠==︒,AE =AD ,△△BAC =90°,△90EAC CAD ∠+∠=︒,90BAD CAD ∠+∠=︒,△EAC BAD ∠=∠,△AC =AB ,△ACE ABD ∆∆≌(SAS ),△90ACE ABD ∠=∠=︒,△1809090∠=︒-︒=︒ACF ,△在Rt△ABF 与Rt△ACF 中AB AC AF AF =⎧⎨=⎩, △Rt Rt ABF ACF ≌(HL ),△BF =CF .故答案为:BF =CF .(2)成立;理由如下:连接AF ,如图所示:根据旋转可知,DAE α∠=,AE =AD ,△BAC α∠=,△EAC CAD α∠-∠=,BAD CAD α∠-∠=,△EAC BAD ∠=∠,△AC =AB ,△ACE ABD ∆∆≌,△90ACE ABD ∠=∠=︒,△1809090∠=︒-︒=︒ACF ,△在Rt△ABF 与Rt△ACF 中AB AC AF AF =⎧⎨=⎩, △Rt Rt ABF ACF ≌(HL ),△BF =CF .(3)△60α=︒,AB =AC ,△△ABC 为等边三角形,△60ABC ACB BAC ∠=∠=∠=︒,AB AC BC ===,当60BAD ∠︒<时,连接AF ,如图所示:根据解析(2)可知,Rt Rt ABF ACF ≌, △1302BAF CAF BAC ∠=∠=∠=︒,△AB = tan tan30BF BAF AB∴∠=︒=,即tan304BF AB =⨯︒==, 4CF BF ∴==,根据解析(2)可知,ACE ABD ∆∆≌,△CE BD m ==,△4EF CF CE m =+=+,906030FBC FCB ∠=∠=︒-︒=︒,60EFP FBC FCB ∴∠=∠+∠=︒,△90EPF ∠=︒,△906030FEP ∠=︒-︒=︒, △()1142222m PF EF m ==+=+, 42622m m BP BF PF ∴=+=++=+, △6622m m PD BP BD m =-=+-=-; 当60BAD ∠=︒时,AD 与AC 重合,如图所示:△60DAE ∠=︒,AE AD =,△△ADE 为等边三角形,△△ADE =60°,△9030ADB BAC ∠=︒-∠=︒,△603090ADE ∠=︒+︒=︒,△此时点P 与点D 重合,0PD =;当60BAD ∠︒>时,连接AF ,如图所示:根据解析(2)可知,Rt Rt ABF ACF ≌,△1302BAF CAF BAC ∠=∠=∠=︒,△AB =tan tan30BFBAF AB ∴∠=︒=,即tan304BF AB =⨯︒==,4CF BF ∴==,根据解析(2)可知,ACE ABD ∆∆≌,△CE BD m ==,△4EF CF CE m =+=+,△906030FBC FCB ∠=∠=︒-︒=︒,60EFP FBC FCB ∴∠=∠+∠=︒,△90EPF ∠=︒,△906030FEP ∠=︒-︒=︒, △()1142222m PF EF m ==+=+, 42622m m BP BF PF ∴=+=++=+, △6622m m PD BD BF m ⎛⎫=-=-+=- ⎪⎝⎭; 综上分析可知,62m PD =-或PD =0或62m PD =-. 16.见解析 【详解】17.(1)3(2)△a -2b 或b =2a,△OP (3)a>【分析】(1)直接由“倾斜系数”定义求解即可;(2)△由点(),P a b 的“倾斜系数”2k =,由a b =2或b a =2求解即可;△由a =2b 或b =2a ,又因a +b =3,求出a 、b 值,即可得点P 坐标,从而由勾股定理可求解;(3)当点P 与点D 重合时,且ka 有最小临界值,此时,b a 2a a+a ;当点P 与B 点重合,且ka 有最大临界值,此时,ab =2a a =-a得k <a 的取值范围.(1) 解:由题意,得632=,2163=, △3>13,△点()6,2P 的“倾斜系数”k =3;(2)解:△a =2b 或b =2a ,△点(),P a b 的“倾斜系数”2k =, 当ab =2时,则a =2b ; 当ba =2时,则b =2a ,△a =2b 或b =2a ;△△(),P a b 的“倾斜系数”2k =, 当ab =2时,则a =2b△3a b +=,△2b +b =3,△b =1,△a =2,△P (2,1),△OP= 当ba =2时,则b =2a ,△3a b +=,△a +2a =3,△a=1,△b=2,△P(1,2)△OP=综上,OP(3)解:由题意知,当点P与点D重合时,且ka有最小临界值,如图,连接OD,延长DA交x轴于E,此时,ba则2 aa+=解得:a;△k<则1a>;当点P与B点重合,且ka有最大临界值,如图,连接OB,延长CB交x轴于F,此时,a b =则2a a - 解得:a△k <则3a >综上,若P 的“倾斜系数”k <a>【点睛】本题考查新定义,正方形的性质,正比例函数性质,解题的关键是:(1)(2)问理解新定义,(3)问求临界值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【错题重做】中心对称-4
一、选择题(共5小题)
1.(2015春•滨海县校级月考)下列语句中,不正确的是()
A.图形平移是由移动的方向和距离所决定的
B.图形旋转是由旋转中心和旋转角度所决定的
C.任意两点都成中心对称
D.任意两条相等的线段都成中心对称
2.(2014春•海门市校级期末)如图,四边形ABCD是中心对称图形,对称中心为点O,过点O的直线与AD,BC分别交于E,F,则图中相等的线段有()
A.3对B.4对C.5对D.6对
3.(2015秋•招远市期末)如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD、BC于点E、F,下面的结论:(1)点E和点F,B和D是关于中心O的对称点;(2)直线BD必经过点O;(3)四边形ABCD是中心对称图形;(4)四边形DEOC 与四边形BFOA的面积必相等;(5)△AOE与△COF成中心对称,其中正确的个数为()
A.1个B.2个C.3个D.5个
4.(2015秋•都匀市期中)如图所示,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,若AB=3,BC=4,那么阴影部分的面积为()
A.4 B.12 C.6 D.3
5.(2015春•高密市期末)下列说法中错误的是()
A.成中心对称的两个图形全等
B.成中心对称的两个图形中,对称点的连线被对称轴平分C.中心对称图形的对称中心是对称点连线的中心
D.中心对称图形绕对称中心旋转180°后,都能与自身重合
【错题重做】中心对称-4
参考答案
一、选择题(共5小题)
1.D;2.C;3.D;4.D;5.B;。

相关文档
最新文档