一元二次方程根与系数关系及应用题(习题及答案)

合集下载

一元二次方程根与系数关系及应用题(习题)

一元二次方程根与系数关系及应用题(习题)

一元二次方程根与系数关系及应用题(习题)例题示范例1:设x1,x2是方程2760x x ++=的两个根,利用根与系数的关系,求221211x x +的值. 解:那个地点a=1,b=7,c=6.∴x1+x2=-7,x1·x2=6例2:某商场服装部销售一种名牌衬衫,平均每天售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价2元时,平均每天可多卖出3件.若商场要求该服装部每天盈利1 200元,每件衬衫应降价多少元?解:设衬衫应降价x 元,依照题意,得解得:x1=20,x2=0(不合题意,舍去)∴每件衬衫应降价20元.巩固练习某品牌服装原售价为173元,通过连续两次降价后售价为127元,设平均每次降价x%,则所列方程为_______________.小丽要在一幅长为80 cm ,宽为50 cm 的矩形风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅矩形挂图,使整幅挂图的面积是5 400 cm2,设金色纸边的宽度为x cm ,则x 满足的方程是_______________.一种商品经连续两次降价后,价格是原先的14,若两次降价的百分率相同,则那个百分率为_______________.若x1,x2是一元二次方程23540x x --=的两个根,则x1+x2与12x x ⋅的值分别是_____________.若关于x 的方程2250x x a -+-=有两个正根,则a 的取值范畴是_______________.设x1,x2是方程23620x x +-=的两个根,利用根与系数的关系,求下列各式的值.(1)12(1)(1)x x ++; (2)221212x x x x +;(3)1211x x +; (4)212()x x -.关于x 的一元二次方程22(21)10x k x k ++++=有两个不相等的实数根x1,x2. (1)求实数k 的取值范畴.(2)若方程两实数根x1,x2满足1212x x x x +=⋅,求k 的值.某市为争创全国文明卫生都市,2021年市政府对市区绿化工程投入的资金是2 000万元,2021年投入的资金是2 420万元,且从2021年到2021年,每年投入资金的年平均增长率相同.(1)求该市政府对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市政府在2021年需投入多少万元?小明家有一块长为8 m ,宽为6 m 的矩形空地,妈妈预备在该空地上建筑一个花园,并使花园面积为空地面积的一半.小明设计了如下的两种方案供妈妈选择,请你选择其中的一种方案帮小明求出图中的x 值.方案一200件的售价每提高0.5元,售时,才能使每天的利润为1 210元?汽车站水果批发市场经销一种水果,假如每千克盈利10元,每天可售出500千克.经市场调查发觉,在进价不变的情形下,若每千克这种水果在原售价的基础上每涨价1元,日销售量将减少20千克.假如市场每天销售这种水果盈利了6 000元,同时顾客又得到了实惠,那么每千克这种水果盈利了多少元?摸索小结从应用题处理框架角度来回忆经济型应用题:①明白得题意,梳理信息(列表、画图)借助_____方式梳理信息,注意从变化基础,变化关系,目标情形三个层面来进行分别梳理,操作时注意边写边进行表达.②建立数学模型依照题目中包蕴的经济关系或其他增长变化关系建立数学模型. 若满足等量关系,则建立_______模型.若满足不等关系,则建立_______模型.若描述的是两个变量的关系,则建立_______模型.通常利用函数性质来求解最大最小,最多最少的问题.③求解验证数据是否专门,结果是否符合题目要求及取值范畴;结果是否符合实际意义.结合本章知识图梳理本章知识,并回答下列问题:①解一元二次方程的差不多思想是___________,即通过_____或_____把一个一元二次方程转化为两个一元一次方程来解.②一元二次方程的解法中,_______是由________推导而来.③一元二次方程___________能够用来快速检验方程的解的正确性.【参考答案】巩固练习173(1-x%)2=127(50+2x)(80+2x)=5 40050%(1)53-; (2)43; (3)3; (4)203. (1)34k > (2)k=2 (1)10% (2)2 928.2万元方案一中x=2,方案二中x=2.将每件商品提高9元出售时,才能使每天的利润为1 210元.每千克这种水果盈利了15元.摸索小结①列表;②方程;不等式;函数;①降次;配方;因式分解;②公式法;配方法;③根与系数关系。

一元二次方程根与系数的关系习题(配答案)

一元二次方程根与系数的关系习题(配答案)

一元二次方程根与系数旳关系习题一、单选题:1.有关x 旳方程0122=+-x ax 中,如果0<a ,那么根旳状况是( B )(A )有两个相等旳实数根 (B)有两个不相等旳实数根(C )没有实数根 (D)不能拟定a 4)2(2--=∆ 解: 04>-∴a 实数根。

原方程有两个不相等的∴a 44-= 044>-∴a0<a 0>∆即2.设21,x x 是方程03622=+-x x 旳两根,则2221x x +旳值是( C )(A)15 (B)12 (C)6 (D )321x x ,方程两根为解: 2122122212)(x x x x x x -+=+∴ 2332121==+x x x x , 623232=⨯-= 3.下列方程中,有两个相等旳实数根旳是( B )(A ) 2y 2+5=6y(B)x 2+5=2错误!x(C)错误!x 2-错误!x+2=0(D)3x2-2错误!x+1=0 )0(”的方程即可本题为找出“=∆4.以方程x 2+2x-3=0旳两个根旳和与积为两根旳一元二次方程是( B )(A ) y 2+5y -6=0 (B )y2+5y +6=0 (C)y2-5y +6=0 (D)y 2-5y-6=0,则:,解:设方程两根为21x x 0)3)(2()]3()2[(2=--+-+--y y322121-=-=+x x x x , 0652=++y y 即::为根的一元二次方程为和以32--∴5.如果21x x ,是两个不相等实数,且满足12121=-x x ,12222=-x x ,那么21x x •等于( D )(A)2 (B )-2 (C ) 1 (D)-1 1212222121=-=-x x x x ,解: 的两根12221=-∴x x x x 可看作是方程, 121-=∴x x二、填空题:1、如果一元二次方程0422=++k x x 有两个相等旳实数根,那么k =2±。

初中数学一元二次方程根与系数的关系专项训练题一(附答案详解)

初中数学一元二次方程根与系数的关系专项训练题一(附答案详解)

初中数学一元二次方程根与系数的关系专项训练题一(附答案详解)1.若x=1是一元二次方程)0(02≠=++a c bx ax 的根,则判别式△=b 2-4ac 和完全平方式M=2)2(b a +的关系是( )A .△=MB .△>MC .△<MD .大小关系不能确定2.我们知道,一元二次方程x 2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数“i”,使其满足i 2=﹣1(即方程x 2=﹣1有一个根为i ).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i 1=i ,i 2=﹣1,i 3=i 2•i=(﹣1)•i=﹣i ,i 4=(i 2)2=(﹣1)2=1,从而对于任意正整数n ,我们可以得到i 4n+1=i 4n •i=(i 4)n •i=i ,同理可得i 4n+2=﹣1,i 4n+3=﹣i ,i 4n =1.那么i+i 2+i 3+i 4+…+i 2012+i 2013的值为( )A .0B .iC .﹣1D .13.我们已探究过一元二次方程的根与系数有如下关系:方程()的两个根是,,则,,若,是一元二次方程的两个根,则的值等于___________.4.阅读材料:设一元二次方程(≠0)的两根为,,则两根与方程的系数之间有如下关系:+=-,·=.根据该材料完成下列填空: 已知,是方程的两根,则(1)+= ,; (2)()()= . 5.如果是一元二次方程的一个根,是一元二次方程的一根,那么的值是________. 6.已知如下一元二次方程:第1个方程: 01232=-+x x ;第2个方程: 01452=-+x x ;第3个方程: 01672=-+x x ; ⋯⋯按照上述方程的二次项系数、一次项系数、常数项的排列规律,则第8个方程为 ;第n (n 为正整数)个方程为 ,其两个实数根为 . 7.已知,,满足,,则关于的一元二次方程的根是________. 8.设是一元二次方程的两个实数根,且,则a =__________. 9.阅读:一元二次方程的根,与系数存在下列关系:,;理解并完成下列各题:若关于的方程的两根为、.求和;求.10.如果21,x x 分别是一元二次方程a 2x +b x +c =0(a ≠0)的两根,请你解决下列问题: (1)推导根与系数的关系:21x x +=-a b , 21x x =ac(2)已知1x ,2x 是方程2x -4x +2=0的两个实根,利用根与系数的关系求221)(x x -的值; (3)已知sin a ,cos a (0090a <<)是关于x 的方程22x -0)13(=++m x 的两个根,求角a 的度数.11.阅读理解:若x 1,x 2是关于x 的一元二次方程ax 2+bx+c=0(a≠0)的两个根,则方程的两个根x 1,x 2和系数a ,b ,c 有如下关系:x 1+x 2=﹣b a ,x 1•x 2=ca,我们把它们称为一元二次方程的根与系数关系定理.问题解决:请你参考根与系数关系定理,解答下列问题:(1)若关于x 的方程x 2+3x+a=0有一个根为﹣1,则另一个根为 .(2)求方程2x2﹣3x=5的两根之和,两根之积.12.如果一元二次方程的两根为、,那么就有:,;人们称之为韦达定理,即根与系数的关系.如:的两根为、,则,.(1)如果方程的两根为、,且满足,,则________,________;(2)已知、是关于的方程的两实根,求的最大值.13.若,是关于的一元二次方程的两个根,则方程的两个根,和系数,,有如下关系:,,把它们称为一元二次方程根与系数关系定理,请利用此定理解答一下问题:已知,是一元二次方程的两个实数根.(1)是否存在实数,使成立?若存在,求出的值,若不存在,请你说明理由;(2)若,求的值和此时方程的两根.答案: 1.A解:把x=1代入)0(02≠=++a c bx ax 得a+b+c=0. 即b=-a-c ,△△=b 2-4ac=(-a-c )2-4ac=a 2-2ac+c2=(a-c )2,M=(2a+b )2=(2a-a-c )2=(a-c )2, 则△=M . 2.B 解:3.-2解:△x 1,x 2是一元二次方程x 2﹣4x +2=0的两个根,△x 1+x 2=4,x 1•x 2=2,△(x 1﹣2)(x 2﹣2)=x 1•x 2﹣2(x 1+x 2)+4=2﹣2×4+4=﹣2. 故答案为:-2. 4.(1)2011,2012;(2)2解:(1)根据题意得m+n=2012,mn=2013; (2)△m ,n 是方程x 2-2012x+2013=0的两根, △m 2-2012m+2013=0,n 2-2012n+2013=0, △m 2-2012m=-2013,n 2-2012n=-2013,△(m 2-2013m+2014)(n 2-2013n+2014)=(-m-2013+2014)(-n-2013+2014) =(-m+1)(-n+1)=mn-(m+n )+1=2013-2012+1=2. 5.0或3解:△a 是一元二次方程x 2−3x +m =0的一个根,−a 是一元二次方程x 2+3x −m =0的一个根, △a 2−3a +m =0△,a 2−3a −m =0△,+△,得2(a 2−3a )=0, △a =或 故选:或 6.17x 2+16x-1=0,(2n+1)x 2+2nx-1=0,x 1=-1,1212+=n x 解:由题意得第8个方程为17x 2+16x-1=0,第n (n 为正整数)个方程为(2n+1)x 2+2nx-1=0[]01)12()1(=-++x n x ,解得x 1=-1,1212+=n x .7.; 解:△,△△-△得: 3a=b ,c=2a , △ax 2+bx+c=0, △x==,△x 1==-1,x 2==-2;故答案为:x 1=-1;x 2=-2.8.8解:△x 1,x 2是一元二次方程x 2+5x-3=0的两个根, △x 2+5x 2-3=0,x 1x 2=-3, △2x 1(x 22+6x 2-3)+a=3, △2x 1x 2+a=3,△-6+a=3,△a=8,故答案是:8. 9.,;.解:△关于的方程的两根为、,△,;.10.(1)推导过程;(2)8;(3)30°或60°.解:(1)因为1x ,2x 是方程20(0)ax bx c a ++=≠的两根,所以224(40)2b b ac x b ac a-±-=-≥,即2142b b ac x a-+-=,2224(40)2b b ac x b ac a---=-≥∴1x +2x =242b b ac a -+-+242b b ac a ---=ba -;1x 2x =242b b ac a -+-×242b b ac a -+-=c a(2)△x 1,x 2是方程x 2-4x+2=0的两根, △x 1+x 2=4,x 1•x 2=2,△(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=42-4×2=8; (3)由题意得,31sin cos 2a a ++=,sin cos 2m a a = △2423sin cos 4a a ++=() 即 1+23122m ⨯=+ △32m =△原方程变为22x -3(31)02x ++=,解这个方程得:112x =,232x = ∴1sin 2a =或3sin 2a =即030=a 或060a = 答:a 的值是30°或60° 11.(1)﹣2(2)x 1+x 2=32,x 1x 2=﹣52解:(1)设一元二次方程的两根为x 1,x 2,且x 1=﹣1, 则根据一元二次方程根与系数的关系, 得﹣1+x 2=﹣3, 解得:x 2=﹣2. 故答案是:﹣2.(2)解:原方程可以转化为:2x 2﹣3x ﹣5=0, △a =2,b =﹣3,c =﹣5,△b 2﹣4ac =(﹣3)2﹣4×2×(﹣5)=49>0, △方程有两个不相等的实数根, 设方程的两个实数根分别x 1,x 2,则 x 1+x 2=32,x 1x 2=﹣52. 12.(1)(2)解:(1)由韦达定理得,,解得m=4,n=-1;(2)△、是关于的方程的两实根,△,,△=.△的最大值是.13.(1)存在,12(2),;,解:(1)存在.△,是一元二次方程的两个实数根,△且,△的取值范围为且,根据根与系数的关系得,,△,△,△,△;(2)△,△,即,△,解得,,当时,原方程变形为,解得,;当时,原方程变形为,解得,.。

初中根与系数的关系复习题 附答案

初中根与系数的关系复习题  附答案

10.已知关于 x 的方程(m-2)x2-(m-1)x+m=0. (1)请你选取一个合适的整数 m,使方程有两个有理数根,并求出这两个根; (2)当 m>0,且 m2-2m<0 时,讨论方程的实数根的情况.
11.(2013•平谷区一模)已知关于 m 的一元二次方程 2x2+mx-1=0. (1)判定方程根的情况; (2)设 m 为整数,方程的两个根都大于 -1 且小于
b a a b
3 ,那么它的另一个根是为
3
是关于 x 的方程 x2-4x+c=0 的一个根,则 c 的值是
7.已知关于 x 的方程 2x2-mx-6=0 的一个根 2,则 m=
,另一个根为
8.若 x1,x2 是方程 3x2-|x|-4=0 的两根,则
x1 x 2 1 的值 x1 x 2
9.方程 x2-3x+1=0 中的两根分别为 a 、b,则代数式 a 2-4 a -b 的值为
2
2
18.已知 x1,x2 是方程 x2-2x-2=0 的两实数根,不解方程求下列各式的值: (1)
2 2 x1 x 2

(2)
1 1 x1 x 2
19. 已知关于 x 的方程 x
2
x2 的积是两根和的两倍, ①求 m 的值; (2m 3) x m 2 6 0 的两根 ,求 a b 的值.
23.要在一个长 10m,宽 8m 的院子中沿三边辟出宽度相等的花圃,使花圃的面积等于院子面积的 30%, 试求这花圃的宽度.
24.某电热器经过两次降价后,利润由 20 元降到 5 元,已知降价前该产品的利润率是 25%,解答下列问 题: (1)求这种电热器的进价; (2)求经过两次降价后的售价; (3)求每次降价的平均降价率?(精确到 1%)

(完整版)一元二次方程根与系数的关系习题精选(含答案)

(完整版)一元二次方程根与系数的关系习题精选(含答案)

一元二次方程根与系数的关系习题精选(含答案)一.选择题(共22小题)1.(2014•宜宾)若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是( ) A .x2+3x﹣2=0B.x2﹣3x+2=0C.x2﹣2x+3=0D.x2+3x+2=02.(2014•昆明)已知x1,x2是一元二次方程x2﹣4x+1=0的两个实数根,则x1•x2等于( ) A .﹣4B.﹣1C.1D.43.(2014•玉林)x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是( ) A .m=0时成立B.m=2时成立C.m=0或2时成立D.不存在4.(2014•南昌)若α,β是方程x2﹣2x﹣3=0的两个实数根,则α2+β2的值为( ) A .10B.9C.7D.55.(2014•贵港)若关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣2,x2=4,则b+c的值是( ) A .﹣10B.10C.﹣6D.﹣16.(2014•烟台)关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是( ) A .﹣1或5B.1C.5D.﹣17.(2014•攀枝花)若方程x2+x﹣1=0的两实根为α、β,那么下列说法不正确的是( ) A .α+β=﹣1B.αβ=﹣1C.α2+β2=3D.+=﹣18.(2014•威海)方程x2﹣(m+6)x+m2=0有两个相等的实数根,且满足x1+x2=x1x2,则m的值是( ) A .﹣2或3B.3C.﹣2D.﹣3或2i mA .2B .1C .﹣1D .0 10.(2014•黄冈样卷)设a ,b 是方程x 2+x ﹣2015=0的两个实数根,则a 2+2a+b 的值为( ) A .2012B .2013C .2014D .2015 11.(2014•江西模拟)一元二次方程x 2﹣2x ﹣3=0与3x 2﹣11x+6=0的所有根的乘积等于( ) A.﹣6B .6C .3D.﹣3 12.(2014•峨眉山市二模)已知x 1、x 2是方程x 2﹣(k ﹣2)x+k 2+3k+5=0的两个实数根,则的最大值是( ) A .19B .18C .15D .13 13.(2014•陵县模拟)已知:x 1、x 2是一元二次方程x 2+2ax+b=0的两根,且x 1+x 2=3,x 1x 2=1,则a 、b 的值分别是( ) A .a=﹣3,b=1B .a=3,b=1C .a=﹣,b=﹣1D .a=﹣,b=1 14.(2013•湖北)已知α,β是一元二次方程x 2﹣5x ﹣2=0的两个实数根,则α2+αβ+β2的值为( ) A.﹣1B .9C .23D .27 15.(2013•桂林)已知关于x 的一元二次方程x 2+2x+a ﹣1=0有两根为x 1和x 2,且x 12﹣x 1x 2=0,则a 的值是( )A .a=1B .a=1或a=﹣2C .a=2D .a=1或a=216.(2013•天河区二模)已知一元二次方程x 2﹣4x+3=0两根为x 1、x 2,则x 1+x 2=( )A .4B .3C .﹣4D.﹣3 17.(2013•青神县一模)已知m 和n 是方程2x 2﹣5x ﹣3=0的两根,则的值等于( )A .B .C .D . 18.(2012•莱芜)已知m 、n 是方程x 2+2x+1=0的两根,则代数式的值为( )A 9B .±3C .3D 5ei n re 19.(2012•天门)如果关于x 的一元二次方程x 2+4x+a=0的两个不相等实数根x 1,x 2满足x 1x 2﹣2x 1﹣2x 2﹣5=0,那么a 的值为( ) A .3B .﹣3C .13D.﹣13 20.(2011•锦江区模拟)若方程x 2﹣3x ﹣2=0的两实根为x 1、x 2,则(x 1+2)(x 2+2)的值为( ) A.﹣4B .6C .8D .12 21.(2011•鄂州模拟)已知p 2﹣p ﹣1=0,1﹣q ﹣q 2=0,且pq ≠1,则的值为( )A .1B .2C .D .22.(2010•滨湖区一模)若△ABC 的一边a 为4,另两边b 、c 分别满足b 2﹣5b+6=0,c 2﹣5c+6=0,则△ABC 的周长为( ) A .9B .10C .9或10D .8或9或10二.填空题(共4小题)23.(2014•莱芜)若关于x 的方程x 2+(k ﹣2)x+k 2=0的两根互为倒数,则k= _________ .24.(2014•呼和浩特)已知m ,n 是方程x 2+2x ﹣5=0的两个实数根,则m 2﹣mn+3m+n= _________ .25.(2014•广州)若关于x 的方程x 2+2mx+m 2+3m ﹣2=0有两个实数根x 1、x 2,则x 1(x 2+x 1)+x 22的最小值为 _________ . 26.(2014•桂林)已知关于x 的一元二次方程x 2+(2k+1)x+k 2﹣2=0的两根为x 1和x 2,且(x 1﹣2)(x 1﹣x 2)=0,则k 的值是 _________ . 三.解答题(共4小题)27.(2014•泸州)已知x 1,x 2是关于x 的一元二次方程x 2﹣2(m+1)x+m 2+5=0的两实数根.(1)若(x 1﹣1)(x 2﹣1)=28,求m 的值;(2)已知等腰△ABC 的一边长为7,若x 1,x 2恰好是△ABC 另外两边的边长,求这个三角形的周长. 28.(2014•日照二模)已知x 1,x 2是关于x 的一元二次方程x 2+(3a ﹣1)x+2a 2﹣1=0的两个实数根,其满足29.(2013•孝感)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,请求出k的值;若不存在,请说明理由. 30.(2001•苏州)已知关于x 的一元二次方程,(1)求证:不论k取何值,方程总有两个不相等的实数根;(2)设x1、x2是方程的两个根,且x12﹣2kx1+2x1x2=5,求k的值.一元二次方程根与系数的关系习题精选(含答案)参考答案与试题解析一.选择题(共22小题)1.(2014•宜宾)若关于x 的一元二次方程的两个根为x 1=1,x 2=2,则这个方程是( ) A .x 2+3x ﹣2=0B .x 2﹣3x+2=0C .x 2﹣2x+3=0D .x 2+3x+2=0考点:根与系数的关系.分析:解决此题可用验算法,因为两实数根的和是1+2=3,两实数根的积是1×2=2.解题时检验两根之和是否为3及两根之积是否为2即可.解答:解:两个根为x 1=1,x 2=2则两根的和是3,积是2.A 、两根之和等于﹣3,两根之积等于﹣2,所以此选项不正确;B 、两根之和等于3,两根之积等于2,所以此选项正确;C 、两根之和等于2,两根之积等于3,所以此选项不正确;D 、两根之和等于﹣3,两根之积等于2,所以此选项不正确,故选:B .点评:验算时要注意方程中各项系数的正负. 2.(2014•昆明)已知x 1,x 2是一元二次方程x 2﹣4x+1=0的两个实数根,则x 1•x 2等于( ) A.﹣4B .﹣1C .1D .4考点:根与系数的关系.专题:计算题.分析:直接根据根与系数的关系求解.解答:解:根据韦达定理得x 1•x 2=1.故选:C .点评:本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=﹣,x 1•x 2=.3.(2014•玉林)x 1,x 2是关于x 的一元二次方程x 2﹣mx+m ﹣2=0的两个实数根,是否存在实数m 使+=0成立?则正确的结论是( ) A .m=0时成立B .m=2时成立C .m=0或2时成立D .不存在分析:先由一元二次方程根与系数的关系得出,x 1+x 2=m ,x 1x 2=m ﹣2.假设存在实数m 使+=0成立,则=0,求出m=0,再用判别式进行检验即可.解答:解:∵x 1,x 2是关于x 的一元二次方程x 2﹣mx+m ﹣2=0的两个实数根,∴x 1+x 2=m ,x 1x 2=m ﹣2.假设存在实数m 使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程x 2﹣mx+m ﹣2=0即为x 2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A .点评:本题主要考查了一元二次方程根与系数的关系:如果x 1,x 2是方程x 2+px+q=0的两根时,那么x 1+x 2=﹣p ,x 1x 2=q .4.(2014•南昌)若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2的值为( ) A .10B .9C .7D .5考点:根与系数的关系.分析:根据根与系数的关系求得α+β=2,αβ=﹣3,则将所求的代数式变形为(α+β)2﹣2αβ,将其整体代入即可求值.解答:解:∵α,β是方程x 2﹣2x ﹣3=0的两个实数根,∴α+β=2,αβ=﹣3,∴α2+β2=(α+β)2﹣2αβ=22﹣2×(﹣3)=10.故选:A .点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.5.(2014•贵港)若关于x 的一元二次方程x 2+bx+c=0的两个实数根分别为x 1=﹣2,x 2=4,则b+c 的值是( ) A.﹣10B .10C .﹣6D.﹣1分析:根据根与系数的关系得到﹣2+4=﹣b,﹣2×4=c,然后可分别计算出b、c的值,进一步求得答案即可.解答:解:∵关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣2,x2=4,∴根据根与系数的关系,可得﹣2+4=﹣b,﹣2×4=c,解得b=﹣2,c=﹣8∴b+c=﹣10.故选:A.点评:此题考查根与系数的关系,解答此题的关键是熟知一元二次方程根与系数的关系:x1+x2=﹣,x1x2=. 6.(2014•烟台)关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是( ) A .﹣1或5B.1C.5D.﹣1考点:根与系数的关系;根的判别式.专题:计算题.分析:设方程的两根为x1,x2,根据根与系数的关系得到x1+x2=a,x1•x2=2a,由于x12+x22=5,变形得到(x1+x2)2﹣2x1•x2=5,则a2﹣4a﹣5=0,然后解方程,满足△≥0的a的值为所求.解答:解:设方程的两根为x1,x2,则x1+x2=a,x1•x2=2a,∵x12+x22=5,∴(x1+x2)2﹣2x1•x2=5,∴a2﹣4a﹣5=0,∴a1=5,a2=﹣1,∵△=a2﹣8a≥0,∴a=﹣1.故选:D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的根的判别式.7.(2014•攀枝花)若方程x2+x﹣1=0的两实根为α、β,那么下列说法不正确的是( ) A .α+β=﹣1B.αβ=﹣1C.α2+β2=3D.+=﹣1考点:根与系数的关系.分析:先根据根与系数的关系得到α+β=﹣1,αβ=﹣1,再利用完全平方公式变形α2+β2得到(α+β)2﹣2αβ,利用通分变形+得到,然后利用整体代入的方法分别计算两个代数式的值,这样可对各选项进行判断.解答:解:根据题意得α+β=﹣1,αβ=﹣1.所以α2+β2=(α+β)2﹣2αβ=(﹣1)2﹣2×(﹣1)=3;+===1.故选:D .点评:本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=﹣,x 1•x 2=.8.(2014•威海)方程x 2﹣(m+6)x+m 2=0有两个相等的实数根,且满足x 1+x 2=x 1x 2,则m 的值是( ) A.﹣2或3B .3C .﹣2D.﹣3或2考点:根与系数的关系;根的判别式.专题:判别式法.分析:根据根与系数的关系有:x 1+x 2=m+6,x 1x 2=m 2,再根据x 1+x 2=x 1x 2得到m 的方程,解方程即可,进一步由方程x 2﹣(m+6)+m 2=0有两个相等的实数根得出b 2﹣4ac=0,求得m 的值,由相同的解解决问题.解答:解:∵x 1+x 2=m+6,x 1x 2=m 2,x 1+x 2=x 1x 2,∴m+6=m 2,解得m=3或m=﹣2,∵方程x 2﹣(m+6)x+m 2=0有两个相等的实数根,∴△=b 2﹣4ac=(m+6)2﹣4m 2=﹣3m 2+12m+36=0解得m=6或m=﹣2∴m=﹣2.故选:C .点评:本题考查了一元二次方程ax 2+bx+c=0(a ≠0,a ,b ,c 为常数)根的判别式△=b 2﹣4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元二次方程ax 2+bx+c=0(a ≠0)的根与系数的关系:若方程的两根为x 1,x 2,则x 1+x 2=﹣,x 1•x 2=.9.(2014•长沙模拟)若关于x 的一元二次方程x 2+(k+3)x+2=0的一个根是﹣2,则另一个根是( )A 2B .1C .D 0考点:根与系数的关系.分析:根据一元二次方程的根与系数的关系x1•x2=来求方程的另一个根.解答:解:设x1、x2是关于x的一元二次方程x2+(k+3)x+2=0的两个根,由韦达定理,得x1•x2=2,即﹣2x2=2,解得,x2=﹣1.即方程的另一个根是﹣1.故选C.点评:此题主要考查了根与系数的关系.在利用根与系数的关系x1+x2=﹣、x1•x2=时,要注意等式中的a、b、c所表示的含义.10.(2014•黄冈样卷)设a,b是方程x2+x﹣2015=0的两个实数根,则a2+2a+b的值为( ) A .2012B.2013C.2014D.2015考点:根与系数的关系;一元二次方程的解.专题:计算题.分析:先根据一元二次方程的解的定义得到a2+a﹣2015=0,即a2+a=2015,则a2+2a+b变形为a+b+2015,再根据根与系数的关系得到a+b=﹣1,然后利用整体代入的方法计算.解答:解:∵a是方程x2+x﹣2015=0的根,∴a2+a﹣2015=0,即a2+a=2015,∴a2+2a+b=a+b+2015,∵a,b是方程x2+x﹣2015=0的两个实数根∴a+b=﹣1,∴a2+2a+b=a+b+2015=﹣1+2015=2014.故选C.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.也考查了一元二次方程的解.11.(2014•江西模拟)一元二次方程x2﹣2x﹣3=0与3x2﹣11x+6=0的所有根的乘积等于( ) A .﹣6B.6C.3D.﹣3e t 分析:由一元二次方程x 2﹣2x ﹣3=0和3x 2﹣11x+6=0先用判别式判断方程是否有解,再根据根与系数的关系,即可直接得出答案.解答:解:由一元二次方程x 2﹣2x ﹣3=0,∵△=4+16=20>0,∴x 1x 2=﹣3,由一元二次方程3x 2﹣11x+6=0,∵△=121﹣4×3×6=49>0,∴x 1x 2=2∴﹣3×2=﹣6故选A .点评:本题考查了一元二次方程根与系数的关系.解此类题目要把代数式变形为两根之积的形式. 12.(2014•峨眉山市二模)已知x 1、x 2是方程x 2﹣(k ﹣2)x+k 2+3k+5=0的两个实数根,则的最大值是( ) A .19B .18C .15D .13考点:根与系数的关系;二次函数的最值.分析:根据x 1、x 2是方程x 2﹣(k ﹣2)x+(k 2+3k+5)=0的两个实根,由△≥0即可求出k 的取值范围,然后根据根与系数的关系求解即可.解答:解:由方程有实根,得△≥0,即(k ﹣2)2﹣4(k 2+3k+5)≥0所以 3k 2+16k+16≤0,所以 (3k+4)(k+4)≤0解得﹣4≤k ≤﹣.又由x 1+x 2=k ﹣2,x 1•x 2=k 2+3k+5,得x 12+x 22=(x 1+x 2)2﹣2x 1x 2=(k ﹣2)2﹣2(k 2+3k+5)=﹣k 2﹣10k ﹣6=19﹣(k+5)2,当k=﹣4时,x 12+x 22取最大值18.故选:B .点评:本题考查了根与系数的关系,属于基础题,关键是根据△≥0先求出k 的取值范围再根据根与系数的关系进行求解.13.(2014•陵县模拟)已知:x 1、x 2是一元二次方程x 2+2ax+b=0的两根,且x 1+x 2=3,x 1x 2=1,则a 、b 的值分别是( ) A .a=﹣3,b=1B .a=3,b=1C .a=﹣,b=﹣1D .a=﹣,b=1考点:根与系数的关系.分析:根据根与系数的关系得到得x1+x2=﹣2a,x1x2=b,即﹣2a=3,b=1,然后解一次方程即可.解答:解:根据题意得x1+x2=﹣2a,x1x2=b,所以﹣2a=3,b=1,解得a=﹣,b=1.故选D.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.14.(2013•湖北)已知α,β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α2+αβ+β2的值为( ) A .﹣1B.9C.23D.27考点:根与系数的关系.分析:根据根与系数的关系α+β=﹣,αβ=,求出α+β和αβ的值,再把要求的式子进行整理,即可得出答案.解答:解:∵α,β是方程x2﹣5x﹣2=0的两个实数根,∴α+β=5,αβ=﹣2,又∵α2+αβ+β2=(α+β)2﹣βα,∴α2+αβ+β2=52+2=27;故选D.点评:此题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法,若方程两个为x1,x2,则x1+x2=﹣,x1x2=.15.(2013•桂林)已知关于x的一元二次方程x2+2x+a﹣1=0有两根为x1和x2,且x12﹣x1x2=0,则a的值是( ) A .a=1B.a=1或a=﹣2C.a=2D.a=1或a=2考点:根与系数的关系;一元二次方程的解.专题:压轴题.分析:根据x12﹣x1x2=0可以求得x1=0或者x1=x2,所以①把x1=0代入原方程可以求得a=1;②利用根的判别式等于0来求a的值.解答:解:解x12﹣x1x2=0,得x1=0,或x1=x2,①把x1=0代入已知方程,得t i me an dAl l t h i ng sa ﹣1=0,解得:a=1;②当x 1=x 2时,△=4﹣4(a ﹣1)=0,即8﹣4a=0,解得:a=2.综上所述,a=1或a=2.故选:D .点评:本题考查了根与系数的关系、一元二次方程的解的定义.解答该题的技巧性在于巧妙地利用了根的判别式等于0来求a 的另一值.16.(2013•天河区二模)已知一元二次方程x 2﹣4x+3=0两根为x 1、x 2,则x 1+x 2=( ) A .4B .3C .﹣4D.﹣3考点:根与系数的关系.分析:根据一元二次方程x 2﹣4x+3=0两根为x 1、x 2,直接利用x 1+x 2=﹣求出即可.解答:解:∵一元二次方程x 2﹣4x+3=0两根为x 1、x 2,∴x 1+x 2=﹣=4.故选A .点评:此题主要考查了一元二次方程根与系数的关系,正确记忆根与系数关系公式是解决问题的关键. 17.(2013•青神县一模)已知m 和n 是方程2x 2﹣5x ﹣3=0的两根,则的值等于( ) A .B .C .D .考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到m+n=,mn=﹣,再变形+得到,然后利用整体思想计算.解答:解:根据题意得m+n=,mn=﹣,所以+===﹣.故选D .点评:本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=﹣,x 1•x 2=.18.(2012•莱芜)已知m 、n 是方程x 2+2x+1=0的两根,则代数式的值为( ) A 9B .±3C .3D5i e dl l t h i ng si nt he i rb a re go od fo s ..考点:根与系数的关系;二次根式的化简求值.专题:整体思想.分析:根据一元二次方程ax 2+bx+c=0(a ≠0)的根与系数的关系得到m+n=﹣2,mn=1,再变形得,然后把m+n=﹣2,mn=1整体代入计算即可.解答:解:∵m 、n 是方程x 2+2x+1=0的两根,∴m+n=﹣2,mn=1,∴====3.故选C .点评:本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根与系数的关系:若方程两根分别为x 1,x 2,则x 1+x 2=﹣,x 1•x 2=.也考查了二次根式的化简求值.19.(2012•天门)如果关于x 的一元二次方程x 2+4x+a=0的两个不相等实数根x 1,x 2满足x 1x 2﹣2x 1﹣2x 2﹣5=0,那么a 的值为( ) A .3B .﹣3C .13D.﹣13考点:根与系数的关系;根的判别式.分析:利用根与系数的关系求得x 1x 2=a ,x 1+x 2=﹣4,然后将其代入x 1x 2﹣2x 1﹣2x 2﹣5=x 1x 2﹣2(x 1+x 2)﹣5=0列出关于a的方程,通过解方程即可求得a 的值.解答:解:∵x 1,x 2是关于x 的一元二次方程x 2+4x+a=0的两个不相等实数根,∴x 1x 2=a ,x 1+x 2=﹣4,∴x 1x 2﹣2x 1﹣2x 2﹣5=x 1x 2﹣2(x 1+x 2)﹣5=a ﹣2×(﹣4)﹣5=0,即a+3=0,解得,a=﹣3;故选B .点评:本题考查了根与系数的关系.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法. 20.(2011•锦江区模拟)若方程x 2﹣3x ﹣2=0的两实根为x 1、x 2,则(x 1+2)(x 2+2)的值为( ) A.﹣4B .6C .8D .12考点:根与系数的关系.分析:根据(x 1+2)(x 2+2)=x 1x 2+2x 1+2x 2+4=x 1x 2+2(x 1+x 2)+4,根据一元二次方程根与系数的关系,即两根的和与积,代入数值计算即可.解答:解:∵x 1、x 2是方程x 2﹣3x ﹣2=0的两个实数根.thingsintheirbeingareg∴x1+x2=3,x1•x2=﹣2.又∵(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4.将x1+x2=3、x1•x2=﹣2代入,得(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4=(﹣2)+2×3+4=8.故选C点评:将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.21.(2011•鄂州模拟)已知p2﹣p﹣1=0,1﹣q﹣q2=0,且pq≠1,则的值为( ) A.1B.2C.D.考点:根与系数的关系.专题:计算题.分析:首先把1﹣q﹣q2=0变形为,然后结合p2﹣p﹣1=0,根据一元二次方程根与系数的关系可以得到p与是方程x2﹣x﹣1=0的两个不相等的实数根,那么利用根与系数的关系即可求出所求代数式的值.解答:解:由p2﹣p﹣1=0和1﹣q﹣q2=0,可知p≠0,q≠0,又∵pq≠1,∴,∴由方程1﹣q﹣q2=0的两边都除以q2得:,∴p与是方程x2﹣x﹣1=0的两个不相等的实数根,则由韦达定理,得p+=1,∴=p+=1.故选A.点评:本题考查了根与系数的关系.首先把1﹣q﹣q2=0变形为是解题的关键,然后利用根与系数的关系就可以求出所求代数式的值.22.(2010•滨湖区一模)若△ABC的一边a为4,另两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,则△ABC的周长为( ) A.9B.10C.9或10D.8或9或10考点:根与系数的关系;三角形三边关系.专题:压轴题.分析:由于两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,那么b、c可以看作方程x2﹣5x+6=0的两根,根据根与系数的关系可以得到b+c=5,bc=6,而△ABC的一边a为4,由此即可求出△ABC的一边a为4周长.解答:解:∵两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,∴b、c可以看作方程x2﹣5x+6=0的两根,∴b+c=5,bc=6,而△ABC的一边a为4,①若b=c,则b=c=3或b=c=2,但2+2=4,所以三角形不成立,故b=c=3.∴△ABC的周长为4+3+3=10或4+2+2②若b≠c,∴△ABC的周长为4+5=9.故选C.点评:此题把一元二次方程的根与系数的关系与三角形的周长结合起来,利用根与系数的关系来三角形的周长.此题要注意分类讨论.二.填空题(共4小题)23.(2014•莱芜)若关于x的方程x2+(k﹣2)x+k2=0的两根互为倒数,则k= ﹣1 .考点:根与系数的关系.专题:判别式法.分析:根据已知和根与系数的关系x1x2=得出k2=1,求出k的值,再根据原方程有两个实数根,求出符合题意的k的值.解答:解:∵x1x2=k2,两根互为倒数,∴k2=1,解得k=1或﹣1;∵方程有两个实数根,△>0,∴当k=1时,△<0,舍去,故k的值为﹣1.故答案为:﹣1.点评:本题考查了根与系数的关系,根据x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=﹣,x1x2=进行求解.24.(2014•呼和浩特)已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n= 8 .考点:根与系数的关系;一元二次方程的解.专题:常规题型.Array分析:根据m+n=﹣=﹣2,m•n=﹣5,直接求出m、n即可解题.解答:解:∵m 、n 是方程x 2+2x ﹣5=0的两个实数根,∴mn=﹣5,m+n=﹣2,∵m 2+2m ﹣5=0∴m 2=5﹣2mm 2﹣mn+3m+n=(5﹣2m )﹣(﹣5)+3m+n =10+m+n =10﹣2=8故答案为:8.点评:此题主要考查了一元二次方程根根的计算公式,根据题意得出m 和n 的值是解决问题的关键. 25.(2014•广州)若关于x 的方程x 2+2mx+m 2+3m ﹣2=0有两个实数根x 1、x 2,则x 1(x 2+x 1)+x 22的最小值为 .考点:根与系数的关系;二次函数的最值.专题:判别式法.分析:由题意可得△=b 2﹣4ac ≥0,然后根据不等式的最小值计算即可得到结论.解答:解:由题意知,方程x 2+2mx+m 2+3m ﹣2=0有两个实数根,则△=b 2﹣4ac=4m 2﹣4(m 2+3m ﹣2)=8﹣12m ≥0,∴m ≤,∵x 1(x 2+x 1)+x 22=(x 2+x 1)2﹣x 1x 2=(﹣2m )2﹣(m 2+3m ﹣2)=3m 2﹣3m+2=3(m 2﹣m+﹣)+2=3(m ﹣)2 +;∴当m=时,有最小值;∵<,∴m=成立;∴最小值为;故答案为:.点评:本题考查了一元二次方程根与系数关系,考查了一元二次不等式的最值问题.总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.26.(2014•桂林)已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根为x1和x2,且(x1﹣2)(x1﹣x2)=0,则k的值是 ﹣2或﹣ .考点:根与系数的关系;根的判别式.分析:先由(x1﹣2)(x1﹣x2)=0,得出x1﹣2=0或x1﹣x2=0,再分两种情况进行讨论:①如果x1﹣2=0,将x=2代入x2+(2k+1)x+k2﹣2=0,得4+2(2k+1)+k2﹣2=0,解方程求出k=﹣2;②如果x1﹣x2=0,那么将x1+x2=﹣(2k+1),x1x2=k2﹣2代入可求出k的值,再根据判别式进行检验.解答:解:∵(x1﹣2)(x1﹣x2)=0,∴x1﹣2=0或x1﹣x2=0.①如果x1﹣2=0,那么x1=2,将x=2代入x2+(2k+1)x+k2﹣2=0,得4+2(2k+1)+k2﹣2=0,整理,得k2+4k+4=0,解得k=﹣2;②如果x1﹣x2=0,那么(x1﹣x2)2=(x1+x2)2﹣4x1x2=[﹣(2k+1)]2﹣4(k2﹣2)=4k+9=0,解得k=﹣.又∵△=(2k+1)2﹣4(k2﹣2)≥0.解得:k≥﹣.所以k的值为﹣2或﹣.故答案为:﹣2或﹣.点评:本题考查了一元二次方程的根与系数的关系,根的判别式,注意在利用根与系数的关系时,需用判别式进行检验.三.解答题(共4小题)27.(2014•泸州)已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.考点:根与系数的关系;三角形三边关系;等腰三角形的性质.专题:代数几何综合题.分析:(1)利用(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,求得m的值即可;(2)分7为底边和7为腰两种情况分类讨论即可确定等腰三角形的周长.解答:解:(1)∵x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根,∴x1+x2=2(m+1),x1•x2=m2+5,∴(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,解得:m=﹣4或m=6;当m=﹣4时原方程无解,∴m=6;(2)①当7为底边时,此时方程x2﹣2(m+1)x+m2+5=0有两个相等的实数根,∴△=4(m+1)2﹣4(m2+5)=0,解得:m=2,∴方程变为x2﹣6x+9=0,解得:x1=x2=3,∵3+3<7,∴不能构成三角形;②当7为腰时,设x1=7,代入方程得:49﹣14(m+1)+m2+5=0,解得:m=10或4,当m=10时方程变为x2﹣22x+105=0,解得:x=7或15∵7+7<15,不能组成三角形;当m=4时方程变为x2﹣10x+21=0,解得:x=3或7,此时三角形的周长为7+7+3=17.点评:本题考查了根与系数的关系及三角形的三边关系,解题的关键是熟知两根之和和两根之积分别与系数的关系.28.(2014•日照二模)已知x 1,x 2是关于x 的一元二次方程x 2+(3a ﹣1)x+2a 2﹣1=0的两个实数根,其满足(3x 1﹣x 2)(x 1﹣3x 2)=﹣80.求实数a 的所有可能值.考点:根与系数的关系;根的判别式.专题:计算题.分析:根据△的意义由一元二次方程x 2+(3a ﹣1)x+2a 2﹣1=0的两个实数根得到△≥0,即(3a ﹣1)2﹣4(2a 2﹣1)=a 2﹣6a+5≥0,根据根与系数的关系得到x 1+x 2=﹣(3a ﹣1),x 1•x 2=2a 2﹣1,由(3x 1﹣x 2)(x 1﹣3x 2)=﹣80变形得到3(x 1+x 2)2﹣16x 1x 2=﹣80,于是有3(3a ﹣1)2﹣16(2a 2﹣1)=﹣80,解方程得到a=3或a=﹣,然后代入△验算即可得到实数a 的值.解答:解:∵x 1,x 2是关于x 的一元二次方程x 2+(3a ﹣1)x+2a 2﹣1=0的两个实数根,∴△≥0,即(3a ﹣1)2﹣4(2a 2﹣1)=a 2﹣6a+5≥0所以a ≥5或a ≤1.…(3分)∴x 1+x 2=﹣(3a ﹣1),x 1•x 2=2a 2﹣1,∵(3x 1﹣x 2)(x 1﹣3x 2)=﹣80,即3(x 12+x 22)﹣10x 1x 2=﹣80,∴3(x 1+x 2)2﹣16x 1x 2=﹣80,∴3(3a ﹣1)2﹣16(2a 2﹣1)=﹣80,整理得,5a 2+18a ﹣99=0,∴(5a+33)(a ﹣3)=0,解得a=3或a=﹣,当a=3时,△=9﹣6×3+5=﹣4<0,故舍去,当a=﹣时,△=(﹣)2﹣6×(﹣)+6=()2+6×+6>0,∴实数a 的值为﹣点评:本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根与系数的关系:如果方程的两根为x 1,x 2,则x 1+x 2=﹣,x 1•x 2=.也考查了一元二次方程根的判别式以及代数式的变形能力.29.(2013•孝感)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+2k=0有两个实数根x 1,x 2.(1)求实数k 的取值范围;(2)是否存在实数k 使得x 1•x 2﹣x 12﹣x 22≥0成立?若存在,请求出k 的值;若不存在,请说明理由.e an dAl l t h i ng si nt he i rb ei n ga re go od fo r考点:根与系数的关系;根的判别式.专题:压轴题.分析:(1)根据已知一元二次方程的根的情况,得到根的判别式△≥0,据此列出关于k 的不等式[﹣(2k+1)]2﹣4(k 2+2k )≥0,通过解该不等式即可求得k 的取值范围;(2)假设存在实数k 使得≥0成立.利用根与系数的关系可以求得,然后利用完全平方公式可以把已知不等式转化为含有两根之和、两根之积的形式≥0,通过解不等式可以求得k 的值.解答:解:(1)∵原方程有两个实数根,∴[﹣(2k+1)]2﹣4(k 2+2k )≥0,∴4k 2+4k+1﹣4k 2﹣8k ≥0∴1﹣4k ≥0,∴k ≤.∴当k ≤时,原方程有两个实数根. (2)假设存在实数k 使得≥0成立.∵x 1,x 2是原方程的两根,∴.由≥0,得≥0.∴3(k 2+2k )﹣(2k+1)2≥0,整理得:﹣(k ﹣1)2≥0,∴只有当k=1时,上式才能成立.又∵由(1)知k ≤,∴不存在实数k 使得≥0成立.点评:本题综合考查了根的判别式和根与系数的关系,在解不等式时一定要注意数值的正负与不等号的变化关系.30.(2001•苏州)已知关于x 的一元二次方程,(1)求证:不论k 取何值,方程总有两个不相等的实数根;(2)设x 1、x 2是方程的两个根,且x 12﹣2kx 1+2x 1x 2=5,求k 的值.n ga re go od fo rs 考点:根与系数的关系;根的判别式.专题:计算题;证明题;压轴题.分析:(1)要保证方程总有两个不相等的实数根,就必须使△>0恒成立;(2)欲求k 的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.解答:解:(1)已知关于x 的一元二次方程,∴△=(﹣2k )2﹣4×(k 2﹣2)=2k 2+8,∵2k 2+8>0恒成立,∴不论k 取何值,方程总有两个不相等的实数根.(2)∵x 1、x 2是方程的两个根,∴x 1+x 2=2k ,x 1•x 2=k 2﹣2,∴x 12﹣2kx 1+2x 1x 2=x 12﹣(x 1+x 2)x 1+2x 1x 2=x 1x 2=k 2﹣2=5,解得k=±.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.。

一元二次方程根与系数的关系习题精选(含答案)

一元二次方程根与系数的关系习题精选(含答案)

一元二次方程根与系数的关系一.选择题:1.若关于x 的一元二次方程的两个根为x 1=1,x 2=2,则这个方程是( )A . x 2+3x ﹣2=0B . x 2﹣3x+2=0C . x 2﹣2x+3=0D . x 2+3x+2=0 2.已知x 1,x 2是一元二次方程x 2﹣4x+1=0的两个实数根,则x 1•x 2等于( )A . ﹣4B . ﹣1C . 1D . 43.x 1,x 2是关于x 的一元二次方程x 2﹣mx+m ﹣2=0的两个实数根,是否存在实数m 使+=0成立?则正确的结论是( )A . m =0时成立B . m =2时成立C . m =0或2时成立D . 不存在4.若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2的值为( )A . 10B . 9C . 7D . 55若关于x 的一元二次方程x 2+bx+c=0的两个实数根分别为x 1=﹣2,x 2=4,则b+c 的值是( )A . ﹣10B . 10C . ﹣6D . ﹣16.关于x 的方程x 2﹣ax+2a=0的两根的平方和是5,则a 的值是( )A . ﹣1或5B . 1C . 5D . ﹣17.(2014•攀枝花)若方程x 2+x ﹣1=0的两实根为α、β,那么下列说法不正确的是( )8.方程x 2﹣(m+6)x+m 2=0有两个相等的实数根,且满足x 1+x 2=x 1x 2,则m 的值是( )A . ﹣2或3B . 3C . ﹣2D . ﹣3或29.若关于x 的一元二次方程x 2+(k+3)x+2=0的一个根是﹣2,则另一个根是( )A . 2B . 1C . ﹣1D . 010.设a ,b 是方程x 2+x ﹣2015=0的两个实数根,则a 2+2a+b 的值为( )A . 2012B . 2013C . 2014D . 201511.一元二次方程x 2﹣2x ﹣3=0与3x 2﹣11x+6=0的所有根的乘积等于( )A . ﹣6B . 6C . 3D . ﹣312.已知x 1、x 2是方程x 2﹣(k ﹣2)x+k 2+3k+5=0的两个实数根,则的最大值是( )A . 19B . 18C . 15D . 1313.已知:x 1、x 2是一元二次方程x 2+2ax+b=0的两根,且x 1+x 2=3,x 1x 2=1,则a 、b 的值分别是( ) A .a=﹣3,b=1 B . a =3,b=1 C . a=﹣,b=﹣1 D . a=﹣,b=1 14.已知α,β是一元二次方程x 2﹣5x ﹣2=0的两个实数根,则α2+αβ+β2的值为( )A . ﹣1B . 9C . 23D . 2715.已知关于x 的一元二次方程x 2+2x+a ﹣1=0有两根为x 1和x 2,且x 12﹣x 1x 2=0,则a 的值是( )A . a =1B . a =1或a=﹣2C . a =2D . a =1或a=216.已知一元二次方程x 2﹣4x+3=0两根为x 1、x 2,则x 1+x 2=( )A . 4B . 3C . ﹣4D . ﹣317.已知m 、n 是方程x 2+2x+1=0的两根,则代数式的值为( ) A . 9 B . ±3 C . 3 D . 5A . α+β=﹣1B . αβ=﹣1C . α2+β2=3D . +=﹣118.如果关于x的一元二次方程x2+4x+a=0的两个不相等实数根x1,x2满足x1x2﹣2x1﹣2x2﹣5=0,那么a 的值为()A.3B.﹣3 C.13 D.﹣1319.若△ABC的一边a为4,另两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,则△ABC的周长为()A.9B.10 C.9或10 D.8或9或10 二.填空题20.若关于x的方程x2+(k﹣2)x+k2=0的两根互为倒数,则k=_________.21.已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=_________.22.若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为_________.23.已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根为x1和x2,且(x1﹣2)(x1﹣x2)=0,则k 的值是_________.三.解答题24.已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.25.已知x1,x2是关于x的一元二次方程x2+(3a﹣1)x+2a2﹣1=0的两个实数根,其满足(3x1﹣x2)(x1﹣3x2)=﹣80.求实数a的所有可能值.26.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.27.已知关于x的一元二次方程,(1)求证:不论k取何值,方程总有两个不相等的实数根;(2)设x1、x2是方程的两个根,且x12﹣2kx1+2x1x2=5,求k的值.。

(完整版)一元二次方程根与系数的关系的关系(含答案)

(完整版)一元二次方程根与系数的关系的关系(含答案)

(完整版)一元二次方程根与系数的关系的关系(含答案)21。

2。

4 一元二次方程的根与系数的关系A基础知识详解————————--——-—☆重难点根据方程中两根的关系确定方程中字母的值○随堂例题例1 已知关于x的方程x2+(2k—1)x+k2-1=0有(完整版)一元二次方程根与系数的关系的关系(含答案) 两个实数根x 1、x 2.(1)求实数k 的取值范围;(2)若x 1、x 2满足x 12+x 22=16+x 1•x 2,求实数k 的值.(2)∵关于x 的方程x +(2k-1)x+k -1=0有两个实数根x 1,x 2,∴x 1+x 2=1-2k,x 1•x 2=k 2-1.∵x 12+x 22=(x 1+x 2)2—2x 1•x 2=16+x 1•x 2,∴(1-2k )2-2×(k 2—1)=16+(k 2-1),即k 2—4k —12=0,解得k=—2或k=6(不符合题意,舍去). ∴实数k 的值为-2.【一中名师点拨】题目中提到两个实数根,即隐含着根的判别式大于等于0;当根据方程中两根的关系确定方程中字母的值,关键是把这种关系式转化为含x 1+x 2及x 1x 2的形式。

○随堂训练1.(2017烟台)若x 1,x 2是方程x 2-2mx+m 2-m —1=0的两个根,且x 1+x 2=1-x 1x 2,则m 的值为( D ) A .—1或2 B .1或-2 C .—2 D .12.已知关于x 的一元二次方程x 2+(m+2)x+m=0, (1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)若x 1,x 2是原方程的两根,且2111x x +=-2,求m 的值。

解:(1)△=(m+2)2—4m=m 2+4>0,∴无论m 取何值,原方程总有两个不相等的实数根; (2)∵x 1,x 2是原方程的两根, ∴x 1+x 2=-(m+2),x 1x 2=m .∵2111x x +=2121x x x x +=—mm 2+=—2, 解得m=2,经检验,m=2是分式方程的解,且符合题意,∴m 的值为2.课后达标基础训练1.(2017呼和浩特)关于x 的一元二次方程x 2+(a 2—2a )x+a-1=0的两个实数根互为相反数,则a 的值为( B ) A .2 B .0 C .1 D .2或02.(2017新疆)已知关于x 的方程x 2+x-a=0的一个根为2,则另一个根是( A ) A .-3 B .—2 C .3 D .63.已知m ,n 是一元二次方程x 2—4x-3=0的两个实数根,则代数式(m+1)(n+1)的值为( D ) A .-6 B .-2 C .0 D .24。

一元二次方程判别式及根与系数关系专题训练(含答案)

一元二次方程判别式及根与系数关系专题训练(含答案)

一元二次方程判别式及根与系数关系专题训练10. 已知关于x 的一元二次方程220x x a --=.(1)如果此方程有两个不相等的实数根,求a 的取值范围; (2)如果此方程的两个实数根为12x x ,,且满足121123x x +=-,求a 的值.11. 已知关于x 的一元二次方程x 2-m x -2=0. ……①(1) 若x =-1是方程①的一个根,求m 的值和方程①的另一根; (2) 对于任意实数m ,判断方程①的根的情况,并说明理由.12. 已知关于x 的方程2(2)210x m x m +++-=.(1)求证方程有两个不相等的实数根.(2)当m 为何值时,方程的两根互为相反数?并求出此时方程的解.13. 当m 为何值时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根?此时这两个实数根是多少?14. 已知关于 x的一元二次方程 2410x x m -+-= 有两个相等的实数根,求m 的值及方程的根.15. 若关于x 的一元二次方程2420x x k ++=有两个实数根,求k 的取值范围及k 的非负整数值.16. 已知关于x 的一元二次方程x 2= 2(1-m )x -m 2的两实数根为x 1,x 2.(1)求m 的取值范围;(2)设y = x 1 + x 2,当y 取得最小值时,求相应m 的值,并求出最小值.17. 关于x 的一元二次方程230x x k --=有两个不相等的实数根.(1)求k 的取值范围.(2)请选择一个k 的负整数值,并求出方程的根.18.已知关于x 的一元二次方程2260x x k --=(k 为常数).(1)求证:方程有两个不相等的实数根; (3分)(2)设1x ,2x 为方程的两个实数根,且12214x x +=,试求出方程的两个实数根和k 的值. (4分)19. 关于x 的一元二次方程22(23)0x k x k +-+=有两个不相等的实数根αβ、.(1)求k 的取值范围;(2)若6αβαβ++=,求2()35αβαβ-+-的值.20. 已知关于x 的一元二次方程x 2 + 2(k -1)x + k 2-1 = 0有两个不相等的实数根.(1)求实数k 的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.21.在等腰△ABC 中,三边分别为a 、b 、c ,其中5a =,若关于x 的方程()2260x b x b +++-=有两个相等的实数根,求△ABC 的周长.22. 设12x x 、是关于x 的方程2410x x k -++=的两个实数根.试问:是否存在实数k ,使得1212x x x x >+·成立,请说明理由.23. 已知关于x 的方程222(2)0x m x m --+=.问:是否存在实数m ,使方程的两个实数根的平方和等于56.若存在,求出m 的值;若不存在,请说明理由.24. 关于x 的方程2(2)04k kx k x +++=有两个不相等的实数根.(1)求k 的取值范围.(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由.25. 关于x 的一元二次方程210x x p -+-=有两实数根12x x 、.(1)求p 的取值范围;(4分)(2)若1122[2(1)][2(1)]9x x x x +-+-=,求p 的值.(6分)一元二次方程判别式及根与系数关系专题训练答案第10题答案.解:(1)2(2)41()44a a ∆=--⨯⨯-=+.1分 方程有两个不相等的实数根,0∴∆>. 2分 即1a >-.3分 (2)由题意得:122x x +=,12x x a =- .4分121212112x x x x x x a++==-,121123x x +=-223a ∴=--. 6分3a ∴=.7分第11题答案.解:(1) x =-1是方程①的一个根,所以1+m -2=0,1分 解得m =1.2分 方程为x 2-x -2=0, 解得, x 1=-1, x 2=2. 所以方程的另一根为x =2.4分 (2) ac b 42-=m 2+8,5分 因为对于任意实数m ,m 2≥0,6分 所以m 2+8>0,7分 所以对于任意的实数m ,方程①有两个不相等的实数根. 8分第12题答案.(1)证明:因为△=)12(4)2(2--+m m 1分 =4)2(2+-m3分所以无论m 取何值时, △>0,所以方程有两个不相等的实数根. (2)解:因为方程的两根互为相反数,所以021=+x x , 5分 根据方程的根与系数的关系得02=+m ,解得2-=m ,7分所以原方程可化为052=-x ,解得51=x ,52-=x9分第13题答案.由题意,△=(-4)2-4(m -21)=0…………………………………………(2分)即16-4m+2=0,m=29.………………………………………………(4分)当m=29时,方程有两个相等的实数根x 1=x 2=2.……………………(6分)第14题答案.解:由题意可知 0= .即 2(4)4(1)0m ---=. 解得 5m =.3分当5m =时,原方程化为2440x x -+=. 解得 122x x ==.所以原方程的根为 122x x ==.5分第15题答案.解:∵关于x 的一元二次方程2420x x k ++=有两个实数根, ∴244121680k k ∆=-⨯⨯=-≥. ……3分 解得2k ≤. ……2分 ∴k 的非负整数值为0,1,2. ……3分第16题答案.(1)将原方程整理为 x 2 + 2(m -1)x + m 2 = 0. ∵ 原方程有两个实数根,∴ △= [ 2(m -1)2-4m 2 =-8m + 4≥0,得 m ≤21.(2) ∵ x 1,x 2为x 2 + 2(m -1)x + m 2 = 0的两根, ∴ y = x 1 + x 2 =-2m + 2,且m ≤21.因而y 随m 的增大而减小,故当m =21时,取得极小值1.第17题答案.解:(1)方程有两个不相等的实数根,∴ 2(3)4()k --->0. 即 49k >-,解得,94k >-. ……(4分)(2)若k 是负整数,k 只能为-1或-2. ……(5分) 如果k =-1,原方程为 2310x x -+=.解得,12x =22x =(如果k =-2,原方程为2320x x -+=,解得,11x =,22x =.)第18题答案.解:(1)0436)(14)6(42222>+=-⨯⨯--=-k k ac b ,·················2分因此方程有两个不相等的实数根.·································3分(2)12661b x x a -+=-=-= ,·····································4分 又12214x x += ,解方程组:12126,214,x x x x +=+=⎧⎨⎩ 解得:218.2,x x ==-⎧⎨⎩·····················5分方法一:将21-=x 代入原方程得:0)2(6)2(22=--⨯--k ,················6分解得:4±=k .·················································7分方法二:将21x x 和代入12c x x a=,得:1822k -=⨯-,······················6分解得:4±=k .·················································7分第19题答案.解:(1) 方程22(23)0x k x k +-+=有两个不相等的实数根,0∴∆>,即22(23)410k k --⨯⨯>.解得34k <.(2)由根与系数的关系得:2(23)k k αβαβ+=--=,. 262360k k αβαβ++=∴-+-= ,. 解得31k k ==-或.由(1)可知3k =不合题意,舍去. 151k αβαβ∴=-∴+==,,. 故()2235()519αβαβαβαβ-+-=+--=.第20题答案.(1)△= [ 2(k —1)] 2-4(k 2-1)= 4k 2-8k + 4-4k 2 + 4 =-8k + 8.∵ 原方程有两个不相等的实数根,∴ -8k + 8>0,解得 k <1,即实数k 的取值范围是 k <1.(2)假设0是方程的一个根,则代入得 02 + 2(k -1)· 0 + k 2-1 = 0, 解得 k =-1 或 k = 1(舍去).即当 k =-1时,0就为原方程的一个根.此时,原方程变为 x 2-4x = 0,解得 x 1 = 0,x 2 = 4,所以它的另一个根是4.第21题答案.解:根据题意得:△()()2246b b =+--28200b b =+-=解得:2b = 或10b =-(不合题意,舍去)∴2b =………………………………………………………………………………4分(1)当2c b ==时,45b c +=<,不合题意(2)当5c a ==时, 12a b c ++=…………………………………………6分第22题答案.解:∵方程有实数根,∴240b ac -≥,∴2(4)4(1)0k --+≥,即3k ≤.解法一:又∵22x ==±∴12(2(24x x +=++-=,12(2(21x x k =+-=+若1212x x x x >+ ,即14k +>,∴3k >.而这与3k ≤相矛盾,因此,不存在实数k ,使得1212x x x x >+ 成立. 解法二:又∵12441b x x a -+=-=-=,12111c k x x k a +===+ ,(以下同解法一)第23题答案.解:设方程的两实根为12x x ,,则:122(2)x x m +=-,212x x m = .1分 令221256x x +=得:2221212()24(2)256x x x x m m +-=--=.3分即28200m m --=.10m ∴=或2m =-.5分当10m =时,222[2(102)]410164000∆=--⨯=-<,∴10m =不合题意,舍去.6分当2m =-时,222[2(22)]4(2)8160∆=---⨯-=->.故:存在实数m 使原方程的两实根的平方和等于56,m 的值是2-.7分第24题答案.(1)由2(2)404k k k ∆=+->·得:1k >-又0k ≠∴k 的取值范围是1k >-且0k ≠. (2)不存在符合条件的实数k . 理由:设方程2(2)04k kx k x +++=的两根分别为1x ,2x ,由根与系数的关系有:121212214110k x x kx x x x ⎧++=-⎪⎪⎪=⎨⎪⎪+=⎪⎩则20k k +-=,2k ∴=- 但由(1)知,2k =-时0∆<,原方程无解,故2k ≠-. 因此不存在符合条件的实数k .第25题答案.解:(1)由题意得:2(1)4(1)0p ∆=---≥.2分 解得,54p ≤.4分(2)由1122[2(1)][2(1)]9x x x x +-+-=得,221122(2)(2)9x x x x +-+-=.6分12x x 、是方程210x x p -+-=的两实数根, 21110x x p ∴-+-=,22210x x p -+-=, 22112211x x p x x p ∴-=--=-,.(21)(21)9p p ∴+-+-=,即2(1)9p +=. 8分 2p ∴=,或4p =-. 9分 54p ≤,∴所求p 的值为4p =-.10分说明:1.可利用121x x +=,得121x x =-,211x x =-代入原求值式中求解; 2.把已知等式按多项式乘法展开后求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的百分率相同,则这个百分率为_______________. 4. 若 x1,x2 是一元二次方程 3x2 5x 4 0 的两个根,则 x1+x2
与 x1 x2 的值分别是_____________.
1
5. 若关于 x 的方程 2x2 x a 5 0 有两个正根,则 a 的取值范
围是_______________.
9. 小明家有一块长为 8 m,宽为 6 m 的矩形空地,妈妈准备在 该空地上建造一个花园,并使花园面积为空地面积的一半.小 明设计了如下的两种方案供妈妈挑选,请你选择其中的一种 方案帮小明求出图中的 x 值.
方案一
方案二
3
10. 某商店进购某种商品出售,若按每件盈利 2 元售出,每天可 售出 200 件.现在采取提高商品售价减少销售量的办法增加 利润,如果这种商品每件的售价每提高 0.5 元,其销售量就减 少 5 件,则将每件商品提高多少元出售时,才能使每天的利 润为 1 210 元?
2
8. 某市为争创全国文明卫生城市,2012 年市政府对市区绿化工程 投入的资金是 2 000 万元,2014 年投入的资金是 2 420 万元, 且从 2012 年到 2014 年,每年投入资金的年平均增长率相同. (1)求该市政府对市区绿化工程投入资金的年平均增长率; (2)若投入资金的年平均增长率不变,那么该市政府在 2016 年需投入多少万元?
∵ 1 1 x12 x22 (x1 x2 )2 2x1x2
x12 x22
x12 x22
(x1x2 )2
∴ 1 1 (7)2 2 6 37
x12 x22
62
36
例 2:某商场服装部销售一种名牌衬衫,平均每天售出 30 件,每
件盈利 40 元.为了扩大销售,减少库存,商场决定降价销售,经
6. 设 x1,x2 是方程 3x2 6x 2 0 的两个根,利用根与系数的关
系,求下列各式的值.
(1) (x1 1)(x2 1) ;
(2) x12 x2 x1x22 ;
(3) 1 1 ; x1 x2
(4) (x1 x2 )2 .
7. 关于 x 的一元二次方程 x2 (2k 1)x k 2 1 0 有两个不相等 的实数根 x1,x2. (1)求实数 k 的取值范围. (2)若方程两实数根 x1,x2 满足 x1 x2 x1 x2 ,求 k 的值.
9. 方案一中 x=2,方案二中 x=2.
10. 将每件商品提高 9 元出售时,才能使每天的利润为 1 210 元.
11. 每千克这种水果盈பைடு நூலகம்了 15 元.
思考小结
1. ①列表;②方程;不等式;函数; 2. ①降次;配方;因式分解;②公式法;配方法;③根与系数
关系
6
5
【参考答案】
巩固练习
1. 173(1-x%)2=127
2. (50+2x)(80+2x)=5 400
3. 50%
4. 5, 4 33
5. 5 a ≤ 41 8
6. (1) 5 ; 3
(2) 4 ; 3
(3)3;
(4) 20 . 3
7. (1) k 3 4
(2)k=2
8. (1)10%
(2)2 928.2 万元
调查,每件降价 2 元时,平均每天可多卖出 3 件.若商场要求该
服装部每天盈利 1 200 元,每件衬衫应降价多少元?
解:设衬衫应降价 x 元,根据题意,得 (40 x)(30 3 x) 1 200
2 解得:x1=20,x2=0(不合题意,舍去) ∴每件衬衫应降价 20 元.
巩固练习
1. 某品牌服装原售价为 173 元,经过连续两次降价后售价为 127 元,设平均每次降价 x%,则所列方程为_______________.
一元二次方程根与系数关系及应用题(习题)
例题示范
例 1:设 x1,x2 是方程 x2 7x 6 0 的两个根,利用根与系数的
关系,求 1 1 的值. x12 x22
解:这里 a=1,b=7,c=6.
b2 4ac 72 41 6 49 24 25 0
∴x1+x2=-7,x1·x2=6
2. 小丽要在一幅长为 80 cm,宽为 50 cm 的矩形风景画的四周外 围镶上一条宽度相同的金色纸边,制成一幅矩形挂图,使整 幅挂图的面积是 5 400 cm2,设金色纸边的宽度为 x cm,则 x 满足的方程是_______________.
3. 一种商品经连续两次降价后,价格是原来的 1 ,若两次降价 4
4
思考小结
1. 从应用题处理框架角度来回顾经济型应用题: ①理解题意,梳理信息(列表、画图) 借助_____方式梳理信息,注意从变化基础,变化关系,目标 情形三个层面来进行分别梳理,操作时注意边写边进行表达. ②建立数学模型 根据题目中蕴含的经济关系或其他增长变化关系建立数学模型. 若满足等量关系,则建立_______模型. 若满足不等关系,则建立_______模型. 若描述的是两个变量的关系,则建立_______模型.通常利用 函数性质来求解最大最小,最多最少的问题. ③求解验证 数据是否异常,结果是否符合题目要求及取值范围;结果是 否符合实际意义.
11. 汽车站水果批发市场经销一种水果,如果每千克盈利 10 元, 每天可售出 500 千克.经市场调查发现,在进价不变的情况 下,若每千克这种水果在原售价的基础上每涨价 1 元,日销 售量将减少 20 千克.如果市场每天销售这种水果盈利了 6 000 元,同时顾客又得到了实惠,那么每千克这种水果盈利了多 少元?
2. 结合本章知识图梳理本章知识,并回答下列问题:
①解一元二次方程的基本思想是___________,即通过_____ 或_____把一个一元二次方程转化为两个一元一次方程来解. ②一元二次方程的解法中,_______是由________推导而来. ③一元二次方程___________可以用来快速检验方程的解的 正确性.
相关文档
最新文档