选修4-5 不等式选讲(绝对值不等式)
选修4-5 第一节 绝对值不等式

返回
[基本能力]
一、判断题(对的打“√”,错的打“×”)
(1)不等式|x|<a 的解集为{x|-a<x<a}.
()
(2)|x-a|+|x-b|的几何意义是表示数轴上的点 x 到点 a,b 的
距离之和.
()
(3)不等式|2x-3|≤5 的解集为{x|-1≤x≤4}.
()
答案:(1)× (2)√ (3)√
或x2>x+1,1-2x-1>0.
解得 x>14,所以原不等式的解集为x|x>14.
返回
(2)|x+3|-|2x-1|<x2+1. [解] ①当 x<-3 时, 原不等式化为-(x+3)-(1-2x)<x2+1, 解得 x<10,∴x<-3. ②当-3≤x≤12时,原不等式化为(x+3)-(1-2x)<x2+1, 解得 x<-25,∴-3≤x<-25. ③当 x>12时,原不等式化为(x+3)-(2x-1)<x2+1, 解得 x>2,∴x>2. 综上可知,原不等式的解集为x|x<-25或x>2.
返回
2.(2018·全国卷Ⅰ)已知 f(x)=|x+1|-|ax-1|. (1)当 a=1 时,求不等式 f(x)>1 的解集; 解:当 a=1 时,f(x)=|x+1|-|x-1|, 即 f(x)=- 2x,2,-x≤1<-x<1,1, 2,x≥1. 故不等式 f(x)>1 的解集为xx>12 .
返回
(2)若存在实数 x,y,使 f(x)+g(y)≤0,求实数 a 的取值范围. 解:∵g(x)=(x-1)2+x-4 12-5≥ 2 x-12·x-4 12-5=-1,显然可取等号, ∴g(x)min=-1. 于是,若存在实数 x,y,使 f(x)+g(y)≤0,只需 f(x)min≤1. 又 f(x)=|x+1-2a|+|x-a2|≥|(x+1-2a)-(x-a2)|=(a-1)2, ∴(a-1)2≤1,∴-1≤a-1≤1,∴0≤a≤2, 即实数 a 的取值范围为[0,2].
人教a版高考数学(理)一轮课件:选修4-5不等式选讲

考纲解读
通过近几年的高考题可以看出, 本 部分内容的考查主要是在绝对值 不等式的几何意义和解绝对值不 等式两个方面,考查难度一般,试题 题型较为单一 .对于绝对值不等式 的证明一般会结合函数、导数等 内容考查,难度较大,属中高档题.
1.绝对值三角不等式 (1)定理 1:如果 a,b 是实数,则|a+b|≤|a|+|b|,当且仅当 ab≥0 时,等号成立. 其中不等式|a+b|≤|a|+|b|又称为三角不等式. (2)在|a+b|≤|a|+|b|中用向量 a,b 分别替换实数 a,b,则|a+b|<|a|+|b|的几 何意义是三角形的两边之和大于第三边(a,b 不共线). (3)定理 2:如果 a,b,c 是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0 时,等号成立.
(������ + 1)2 ≥ (x + 2)2 , ⇔ ������ + 2 ≠ 0, (������ + 1 + ������ + 2)(������ + 1-������-2) ≥ 0, 即 ������ ≠ -2, 解得 x≤- 且 x≠-2.
3 2
3 .设 a=2- 5,b= 5-2,c=5-2 5,则 a ,b ,c 之间的大小关系是 【答案】 c>b>a 【解析】分别由 a<0,b>0,c>0,再由 b 2-c2<0 得 b<c 判断.
5 .设 m 等于|a| ,|b| 和 1 中最大的一个,当|x|>m 时,求证: +
3 .|ax+b| ≤c,|ax+b| ≥c(c>0)型不等式的解法 (1)|ax+b| ≤c(c>0)型不等式的解法是:先化为不等式-c≤ax+b ≤c,再利用 不等式的性质求出原不等式的解集. (2)|ax+b| ≥c(c>0)的解法是:先化为 ax+b ≥c 或 ax+b ≤-c,再进一步利用不 等式的性质求出原不等式的解集.
数学绝对值不等式试题

数学绝对值不等式试题1.(本小题满分10分)选修4-5:不等式选讲已知函数.(Ⅰ)解不等式: ;(Ⅱ)若,求证:≤.【答案】(Ⅰ)(Ⅱ)见解析【解析】(Ⅰ)由题.因此只须解不等式. 2分当时,原不式等价于,即.当时,原不式等价于,即.当时,原不式等价于,即.综上,原不等式的解集为. 5分(Ⅱ)由题.当>0时,10分【考点】本题考查绝对值不等式的解法、绝对值三角不等式等基础知识,意在考查逻辑思维能力和基本运算求解能力.2.若关于的不等式的解集不为空集,则实数的取值范围是__________.【答案】【解析】∵,又不等式的解集不是空集,∴,解得,则参数的取值范围是.3.(设函数f(x)=|x+a|-|x-4|,x R(1)当a=1时,解不等式f(x)<2;(2)若关于x的不等式f(x)≤5-|a+l|恒成立,求实数a的取值范围.【答案】(1);(2).【解析】①∵,∴由得.(4分)②因为,要使恒成立,须使,即,解得.(7分)4.已知函数,,.(1)若当时,恒有,求的最大值;(2)若当时,恒有,求的取值范围.【答案】(1)1;(2).【解析】(1);.依题意有,,.故的最大值为1. 6分(2),当且仅当时等号成立.解不等式,得的取值范围是. 10分5.在区间上随机取一个数,使得成立的概率为____.【答案】【解析】设,则,当时,成立,【考点】本题把绝对值不等式和几何概型相结合来考查概率的运算,体现了几何概型“无处不在”的特点,考查了分类讨论思想和运算能力.6.在实数范围内,不等式|2x-1|+|2x+1|≤6的解集为__________【答案】【解析】本题考查绝对值不等式的解法以及转化与划归、分类讨论的数学思想.原不等式可化为.①或②或③由①得;由②得;由③得,综上,得原不等式的解集为.【点评】不等式的求解除了用分类讨论法外,还可以利用绝对值的几何意义——数轴来求解;后者有时用起来会事半功倍.体现考纲中要求会用绝对值的几何意义求解常见的绝对值不等式.来年需要注意绝对值不等式公式的转化应用.7.不等式|x+1|-|x-3|≥0的解集是______________.【答案】或[1,+∞)【解析】原不等式等价于①或②或③,解①得无解,解②得,解③得解得,即故原不等式的解集为或[1,+∞).【考点】解不等式8.若不等式恒成立,则实数a的取值范围是 .【答案】【解析】【错解分析】解含绝对值不等式也是考生常常出现错误的,错误原因有解法单一,比如只会运用去绝对值的方法,这样会导致计算量较多,易错。
选修4-5 绝对值不等式的解法专题讲解

解析:(1)当 a=3 时,
-x-1 x≥3 f(x)=|x-3|-2|x-1|=-3x+5 1<x<3 x+1 x≤1
,
所以,当 x=1 时,函数 f(x)取得最大值 2.
(2)由 f(x)≥0 得|x-a|≥2|x-1|, 两边平方得(x-a)2≥4(x-1)2, 即 3x2+2(a-4)x+4-a2≤0, 得[x-(2-a)][3x-(2+a)]≤0, 2+a 所以,①当 a>1 时,不等式的解集为[2-a, ]; 3 ②当 a=1 时,不等式的解集为{x|x=1}; 2+a ③a<1 时,不等式的解集为[ ,2-a]. 3
例 3.(2012· 山 东 卷 ) 若 不 等 式 |kx - 4|≤2 的 解 集 为 {x|1≤x≤3},则实数 k= .
【拓展演练 1】 (2012· 东北四校第一次模拟)已知关于 x 的不等式 |2x+1|-|x-1|≤log2a(其中 a>0). (1)当 a=4 时,求不等式的解集; (2)若不等式有解,求实数 a 的取值范围.
[解]
(1)当 a=1 时,lg(|x+3|+|x-7|)>1,
-3<x<7, 或 10>10, x≤-3, 或 4-2x>10,
⇔|x+3|+|x-7|>10,
x≥7, ⇔ 2x-4>10,
⇔x>7 或 x<-3. 所以不等式的解集为{x|x<-3 或 x>7}. (2)设 f(x)=|x+3|+|x-7|,则有 f(x)≥|(x+3)-(x- 7)|=10,当且仅当(x+3)(x-7)≤0, 即-3≤x≤7 时.f(x)取得最小值 10. ∴lg(|x+3|+|x-7|)≥1. 要使 lg(|x+3|+|x-7|)>a 的解集为 R,只要 a<1.
人教版高中数学选修4-5-不等式选讲(绝对值不等式)ppt课件

x 3、 解不等式|x+3|-|2x-1|< +1. 2
x 解 ①当 x<-3 时,原不等式化为-(x+3)-(1-2x)< +1,解得 x<10, 2 ∴x<-3. 1 x 2 ②当-3≤x< 时,原不等式化为(x+3)-(1-2x)< +1,解得 x<- , 2 2 5 2 ∴-3≤x<- . 5 1 x ③当 x≥ 时,原不等式化为(x+3)-(2x-1)< +1,解得 x>2,∴x>2. 2 2 2 综上可知,原不等式的解集为xx<-5,或x>2 .
第三节
绝对值不等式
[最新考纲] 1.理解绝对值的几何意义;理解绝对值三角不等式的代数 证明和几何意义,并了解其等号成立的条件;能利用绝对 值三角不等式证明一些简单的绝对值不等式. 2.掌握|ax+b|≤c,|ax+b|≥c,|x-a|+|x-b|≤c型不等式 的解法.
1.绝对值三角不等式 (1)定理1:如果a,b是实数,则|a+b| ≤ |a|+|b| ,当且仅当 时,等号成立; ab≥0 (2)定理2:如果a,b,c是实数,则|a-c|≤ , |a-b|+|b-c| 当且仅当 时,等号成立. (a- b)(b-c)≥0 (3)性质: ________≤| a±b|≤________;
∴原不等式的解集为(-∞,-3]∪[2,+∞).
法三:(数形结合法)将原不等式转化为|x-1|+|x+2|-5≥0.
-2x-6,x≤-2, 令 f(x)=|x-1|+|x+2|-5,则 f(x)=-2,-2<x<1, 2x-4,x≥1.
作出函数的图像,如图所示.
由图像可知,当 x∈(-∞,-3]∪[2,+∞)时,y≥0, ∴原不等式的解集为(-∞,-3]∪[2,+∞).
|a|-|b| |a|+|b|
《选修4-5--不等式选讲》知识点详解+例题+习题(含详细答案)

选修4-5不等式选讲最新考纲:1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:(1)|a +b|≤|a|+|b|(a,b∈R).(2)|a-b|≤|a-c|+|c-b|(a,b∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c,|ax+b|≥c,|x-c|+|x-b|≥a.3.了解柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法.ab≤0且|a ab≥0且|a定理2:如果a、b为正数,则≥,当且仅当a=b时,等号成立.定理3:如果a、b、c为正数,则≥,当且仅当a=b=c时,等号成立.定理4:(一般形式的算术—几何平均值不等式)如果a1、a2、…、a n为n个正数,则≥,当且仅当a1=a2=…=a n时,等号成立.4.柯西不等式(1)柯西不等式的代数形式:设a,b,c,d为实数,则(a2+b2)·(c2+d2)≥(ac+bd)2,当且仅当ad=bc时等号成立.(2)若a i,b i(i∈N*)为实数,则()()≥(i b i)2,当且仅当b i=0(i=1,2,…,n)或存在一个数k,使得a i=kb i(i=1,2,…,n)时,等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α|·|β|≥|α·β|,当且仅当这两个向量同向或反向时等号成立.1(1)(2)(3)|(4)(5)[2AC[[答案] A3.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是() A.|a+b|+|a-b|>2 B.|a+b|+|a-b|<2C.|a+b|+|a-b|=2 D.不能比较大小[解析]|a+b|+|a-b|≤|2a|<2.[答案] B4.若a,b,c∈(0,+∞),且a+b+c=1,则++的最大值为()A.1 B.C. D.2[∴([5[为-2≤a[解|(1)(2)把这些根由小到大排序,它们把定义域分为若干个区间.(3)在所分区间上,去掉绝对值符号组成若干个不等式,解这些不等式,求出它们的解集.(4)这些不等式解集的并集就是原不等式的解集.解绝对值不等式的关键是恰当的去掉绝对值符号.(1)(2015·山东卷)不等式|x-1|-|x-5|<2的解集是()A.(-∞,4) B.(-∞,1)C.(1,4) D.(1,5)(2)(2014·湖南卷)若关于x的不等式|ax-2|<3的解集为,则a=________.[解题指导]切入点:“脱掉”绝对值符号;关键点:利用绝对值的性质进行分类讨论.[解析](1)当x<1时,不等式可化为-(x-1)+(x-5)<2,即-4<2,显然成立,所以此时不等当当(2)当当当[对点训练已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.[解](1)当a=-3时,f(x)=当x≤2时,由f(x)≥3得-2x+5≥3,解得x≤1;当2<x<3时,f(x)≥3无解;当x≥3时,由f(x)≥3得2x-5≥3,解得x≥4;所以f(x)≥3的解集为{x|x≤1或x≥4}.(2)f(x)≤|x-4|?|x-4|-|x-2|≥|x+a|.当?4右|x 1.是(2)[[解析](1)∵|x-1|+|x+2|≥|(x-1)-(x-2)|=3,∴a2+a+2≤3,解得≤a≤.即实数a的取值范围是.(2)解法一:根据绝对值的几何意义,设数x,-1,2在数轴上对应的点分别为P,A,B,则原不等式等价于P A-PB>k恒成立.∵AB=3,即|x+1|-|x-2|≥-3.故当k<-3时,原不等式恒成立.解法二:令y=|x+1|-|x-2|,则y=要使|x+1|-|x-2|>k恒成立,从图象中可以看出,只要k<-3即可.故k<-3满足题意.[答案](1)(2)(-∞,-3)解含参数的不等式存在性问题,只要求出存在满足条件的x即可;不等式的恒成立问题,可转化为最值问题,即f(x)<a恒成立?a>f(x)max,f(x)>a恒成立?a<f(x)min.(1)(2)[解-a?a-3≤x≤3.故(2)f不等式的证明方法很多,解题时既要充分利用已知条件,又要时刻瞄准解题目标,既不仅要搞清是什么,还要搞清干什么,只有兼顾条件与结论,才能找到正确的解题途径.应用基本不等式时要注意不等式中等号成立的条件.(2015·新课标全国卷Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a-b|<|c-d|的充要条件.[解题指导]切入点:不等式的性质;关键点:不等式的恒等变形.[证明](1)因为(+)2=a+b+2,(+)2=c+d+2,由题设a+b=c+d,ab>cd得(+)2>(+)2.因此+>+.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.由a+(1)ab+bc+ac≤;(2)++≥1.[证明](1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca得a2+b2+c2≥ab+bc+ca. 由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(2)因为+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即++≥a+b+c.所以++≥1.———————方法规律总结————————[12条件.3.[121[解析]|2x-1|<3?-3<2x-1<3?-1<x<2.[答案](-1,2)2.若不等式|kx-4|≤2的解集为{x|1≤x≤3},则实数k=__________.[解析]∵|kx-4|≤2,∴-2≤kx-4≤2,∴2≤kx≤6.∵不等式的解集为{x|1≤x≤3},∴k=2.[答案] 23.不等式|2x+1|+|x-1|<2的解集为________.[解析]当x≤-时,原不等式等价为-(2x+1)-(x-1)<2,即-3x<2,x>-,此时-<x≤-.当-<x<1时,原不等式等价为(2x+1)-(x-1)<2,即x<0,此时-<x<0.当x≥1时,原不等式等价为(2x +1)+(x-1)<2,即3x<2,x<,此时不等式无解,综上,原不等式的解为-<x<0,即原不等式的解集为.[答案]4[[5.[故[6.[3a-1+2a=[7.若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是__________.[解析]∵f(x)=|x+1|+|x-2|=∴f(x)≥3.要使|a|≥|x+1|+|x-2|有解,∴|a|≥3,即a≤-3或a≥3.[答案](-∞,-3]∪[3,+∞)8.已知关于x的不等式|x-a|+1-x>0的解集为R,则实数a的取值范围是__________.[解析]若x-1<0,则a∈R;若x-1≥0,则(x-a)2>(x-1)2对任意的x∈[1,+∞)恒成立,即(a-1)[(a+1)-2x]>0对任意的x∈[1,+∞)恒成立,所以(舍去)或对任意的x∈[1,+∞]恒成立,解得a<1.综上,a<1.[答案](-∞,1)9.设a,b,c是正实数,且a+b+c=9,则++的最小值为__________.[=≥2[10.[即∴[11[解析]∵|x-1|+|x|+|y-1|+|y+1|=(|1-x|+|x|)+(|1-y|+|1+y|)≥|(1-x)+x|+|(1-y)+(1+y)|=1+2=3,当且仅当(1-x)·x≥0,(1-y)·(1+y)≥0,即0≤x≤1,-1≤y≤1时等号成立,∴|x-1|+|x|+|y-1|+|y+1|的最小值为3.[答案] 312.若不等式|x+1|-|x-4|≥a+,对任意的x∈R恒成立,则实数a的取值范围是________.[解析]只要函数f(x)=|x+1|-|x-4|的最小值不小于a+即可.由于||x+1|-|x-4||≤|(x+1)-(x -4)|=5,所以-5≤|x+1|-|x-4|≤5,故只要-5≥a+即可.当a>0时,将不等式-5≥a+整理,得a2+5a+4≤0,无解;当a<0时,将不等式-5≥a+整理,得a2+5a+4≥0,则有a≤-4或-1≤a<0.综上可知,实数a的取值范围是(-∞,-4]∪[-1,0).[13(1)(2)[解若若若(2)f(x)作出函数f(x)的图象,如图所示.由图象可知,f(x)≥1,∴2a>1,a>,即a的取值范围为.14.(2015·新课标全国卷Ⅰ)已知函数f(x)=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.[解](1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.当x≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得<x<1;当x≥1时,不等式化为-x+2>0,解得1≤x<2.(2)a+1,0),C(a,a15(1)(2)[解f(x).(2)若a=1,f(x)=2|x-1|,不满足题设条件;若a<1,f(x)=f(x)的最小值为1-a;若a>1,f(x)=f(x)的最小值为a-1.∴对于?x∈R,f(x)≥2的充要条件是|a-1|≥2,∴a的取值范围是(-∞,-1]∪[3,+∞).16.(2015·福建卷)已知a>0,b>0,c>0,函数f(x)=|x+a|+|x-b|+c的最小值为4.(1)(2)[解又(2)(42=即a当且仅当==,即a=,b=,c=时等号成立.故a2+b2+c2的最小值为.。
高中数学选修4—5 不等式选讲绝对值不等式

栏目索引
2-1 已知x,y∈R,且|x+y|≤ ,|x-y|≤ ,求证:|x+5y|≤1.
1 6
1 4
证明 因为|x+5y|=|3(x+y)-2(x-y)|,
所以|x+5y|=|3(x+y)-2(x-y)|≤|3(x+y)|+|2(x-y)|=3|x+y|+2|x-y|≤3× +2× =1, 即|x+5y|≤1.
1 2
=1时取等号). (2)f(x)+f(2x)=|x-a|+|2x-a|,a<0. 当x≤a时, f(x)+f(2x)=a-x+a-2x=2a-3x,则f(x)+f(2x)≥-a;
栏目索引
当a<x< 时, f(x)+f(2x)=x-a+a-2x=-x,则- <f(x)+f(2x)<-a;
当2<x<5时,-3<2x-7<3, 所以-3≤f(x)≤3. (2)由(1)可知, 当x≤2时, f(x)≥x2-8x+15的解集为空集; 当2<x<5时, f(x)≥x2-8x+15的解集为{x|5- 3 ≤x<5};
当x≥5时, f(x)≥x2-8x+15的解集为{x|5≤x≤6}.
综上,不等式f(x)≥x2-8x+15的解集为{x|5- 3 ≤x≤6}.
栏目索引
当x≥ 时,由f(x)<2得2x<2,解得x<1,∴ ≤x<1.
1 2
1 2
所以f(x)<2的解集M={x|-1<x<1}.
(2)证明:由(1)知,当a,b∈M时,-1<a<1,-1<b<1,从而(a+b)2-(1+ab)2=a2+b2-a2 b2-1=(a2-1)(1-b2)<0, 因此|a+b|<|1+ab|.
绝对值不等式

2.两个等价关系 (1)|x|<a⇔-a<x<a(a >0). (2)|x|>a⇔x<-a或x>a(a >0). 3.一个关键 解绝对值不等式的关键是去掉绝对值符号.
4.一个口诀 解含绝对值的不等式的基本思路可概括为十二字口诀 “找零点,分区间,逐个解,并起来”.
【教材母题变式】
1.已知x,y∈R,且|x+y|≤
当x∈(-∞,-1)时,g(x)单调递减,f(x)单调递增,
且g(-1)=f(-1)=2. 综上所述,f(x)≥g(x)的解集为 [1, 17 1].
2
②依题意得:-x2+ax+4≥2在[-1,1]恒成立.
即x2-ax-2≤0在[-1,1]恒成立.
则只需
12 a
12
•1 2
a 1
解0,得-1≤a≤1.
≤|x-a|+|2a-1|<1+|2a-1|≤1+|2a|+1 =2(|a|+1), 即|f(x)-f(a)|<2(|a|+1).
【技法点拨】 绝对值不等式性质的应用 利用不等式|a+b|≤|a|+|b|(a,b∈R)和|a-b|≤|ac|+|c-b|(a,b∈R),通过确定适当的a,b,利用整体思 想或使函数、不等式中不含变量,可以(1)求最值. (2)证明不等式.
解得x<3,
又因为x<-2,所以x<-2;
(ⅱ)当-2≤x≤ 时1 ,f(x)=1-2x-x-2=-3x-1,
2
令-3x-1>0,解得x<-1 ,
3
又因为-2≤x≤ 1,所以-2≤x<- ; 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【规律方法】 含有多个绝对值的不等式,可以分别令各绝对值里的式子 为零,并求出相应的根.把这些根从小到大排序,以这些根 为分界点,将实数分成若干小区间.按每个小区间来去掉绝
对值符号,解不等式,最后取每个小区间上相应解的并集.
【练习】 1、资料选修4系列P18:[针对训练];
2、 (2012· 新课标全国卷)已知函数 f(x)=|x+a|+|x-2|. (1)当 a=-3 时,求不等式 f(x)≥3 的解集; (2)若 f(x)≤|x-4|的解集包含[1,2],求 a 的取值范围.
|a|-|b| a±b|≤________ |a|+|b|; (3)性质:________≤|
2.绝对值不等式的解法 (1)含绝对值的不等式|x|<a与|x|>a的解法:
不等式 |x|<a |x|>a a>0 {x|-a<x<a} {x|x>a,或 x<-a} a=0 ∅ {x|x∈R,且 x≠0} a<0 ∅ R
(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:
①|ax+b|≤c⇔_______________ -c≤ax+b≤c ;
②|ax+b|≥c⇔______________________. ax+b≥c或ax+b≤-c
(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法:
动一个单位到点B1,此时B1A+B1B=5,
故原不等式的解集为(-∞,-3]∪[2,+∞).
法二: (零点分段法) 原不等式|x-1|+|x+2|≥5⇔
x≤-2, -2<x<1, 或 -x-1-x+2≥5 -x-1+x+2≥5 x≥1, 或 解得 x≥2 或 x≤-3, x - 1 + x + 2 ≥ 5 ,
∴原不等式的解集为(-∞,-3]∪[2,+∞).
法三:(数形结合法)将原不等式转化为|x-1|+|x+2|-5≥0.
-2x-6,x≤-2, 令 f(x)=|x-1|+|x+2|-5,则 f(x)=-2,-2<x<1, 2x-4,x≥1.
作出函数的图像,如图所示.
由图像可知,当 x∈(-∞,-3]∪[2,+∞)时,y≥0, ∴原不等式的解集为(-∞,-3]∪[2,+∞).
【针对训练】:
1.不等式|x-5|+|x+3|≥10 的解集是( A.[-5,7] C.(-∞,-5]∪[7,+∞) B.[-4,6] D.(-∞,-4]∪[6,+∞) )
2、资料选修 4 系列 P16[练一练]:1
解析:解法一:当 x≤-3 时,5-x+(-x-3)≥10,∴x≤-4; 当-3<x<5 时,5-x+x+3≥10,8≥10 无解,舍去; 当 x≥5 时,x-5+x+3≥10,∴x≥6. 综上 x∈(-∞,-4]∪[6,+∞). 选 D. 解法二:用特殊值检验,取 x=5 不符合题意,排除 A、B, 取 x=6 符合,排除 C,选 D.
4,x≤4, (4)令 f(x)=|x-8|-|x-4|=-2x+12,4<x≤8, -4,x>8, 当 x≤4 时,f(x)=4>2; 当 4<x≤8 时,f(x)=-2x+12>2,得 x<5,∴4<x<5; 当 x>8 时,f(x)=-4>2 不成立. 故原不等式的解集为:{x|x<5}.
解:(1)证明:由 a>0,有
1 f(x)=x+a +|x-a| 1 ≥x+a-(x-a)
1 =a+a≥2,
所以 f(x)≥2. 1 1 3 + (2)f(3)= a+|3-a|,当 a>3 时,f(3)=a+a, 5+ 21 由 f(3)<5 得 3<a< . 2 1+ 5 1 当 0<a≤3 时,f(3)=6-a+ ,由 f(3)<5 得 <a≤3. a 2 1+ 5 5+ 21 综上,a 的取值范围是 . , 2 2
式的解集∅的对立面(如f(x)>m的解集是空集,则f(x)≤m
恒成立)也是不等式的恒成立问题,此两类问题都可转化
为最值问题,即f(x)<a恒成立⇔a>f(x)max,f(x)>a恒成
立⇔a<f(x)min.
【针对训练】:
1、资料选修4系列P16[试一试]:1,2 2、资料选修4系列P16[练一练]:2
【规律方法】: 形如|x-a|+|x-b|≥c(或≤c)型的不等式主要有三种解法: (1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为 (-∞, a],(a,b],(b,+∞)(此处设a<b)三个部分,在每个部分上去掉绝对值 号分别列出对应的不等式求解,然后取各个不等式解集的并集. (2)几何法:利用|x-a|+|x-b|>c(c>0)的几何意义:数轴上到点x1=a和 x2=b的距离之和大于c的全体,|x-a|+|x-b|≥|x-a-(x-b)|=|a-b|. (3)图像法:作出函数y1=|x-a|+|x-b|和y2=c的图像,结合图像求解.
a 的取值范围.
解
(1)当 a=-2 时,不等式 f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.
设函数 y=|2x-1|+|2x-2|-x-3,
1 -5x,x<2, 1 则 y= - x - 2 , ≤x≤1, 2 3x-6,x>1,
其图像如图所示,由图像可知,当且仅当 x∈(0,2)时,y<0. 所以原不等式的解集是{x|0<x<2}.
解:法一:因为|x+1|-|x-3|表示数轴上的点P(x)与两定点 A(-1),B(3)距离的差,即|x+1|-|x-3|=PA-PB. 由绝对值的几何意义知,PA-PB的最大值为AB=4, 最小值为-AB=-4, 即-4≤|x+1|-|x-3|≤4. (1)若不等式有解,a只要比|x+1|-|x-3|的最大值小即可,故a<4. (2)若不等式的解集为R,即不等式恒成立,只要a比|x+1|-|x-3| 的最小值还小,即a<-4. (3)若不等式的解集为∅,a只要不小于|x+1|-|x-3|的最大值即可,
x 3、 解不等式|x+3|-|2x-1|< +1. 2
x 解 ①当 x<-3 时,原不等式化为-(x+3)-(1-2x)< +1,解得 x<10, 2 ∴x<-3. 1 x 2 ②当-3≤x< 时,原不等式化为(x+3)-(1-2x)< +1,解得 x<- , 2 2 5 2 ∴-3≤x<- . 5 1 x ③当 x≥ 时,原不等式化为(x+3)-(2x-1)< +1,解得 x>2,∴x>2. 2 2 2 综上可知,原不等式的解集为 xx<-5,或x>2 .
a 由题设可得- =-1,故 a=2. 2
考点三
绝对值不等式的证明
[典例] 资料选修4系列P17 考点二
练习: 资料选修4系列P17 :1、一题多变; 2、[针对训练]
3、(2014· 新课标全国卷Ⅱ)设函数
1 f(x)=x+a +|x-a|(a>0).
(1)证明:f(x)≥2; (2)若 f(3)<5,求 a 的取值范围.
即a≥4.
法二:由|x+1|-|x-3|≤|x+1-(x-3)|=4. |x-3|-|x+1|≤|(x-3)-(x+1)|=4. 可得-4≤|x+1|-|x-3|≤4. (1)若不等式有解,则a<4; (2)若不等式的解集为R,则a<-4; (3)若不等式解集为∅,则a≥4.
【规律方法】 本题中(1)是含参数的不等式存在性问题,只要求存 在满足条件的x即可; 不等式的解集为R是指不等式的恒成立问题,而不等
法一:利用绝对值不等式的几何意义求解,体现了数形结合 的思想; 法二:利用“零点分段法”求解,体现了分类讨论的思想; 法三:通过构造函数,利用函数的图像求解,体现了函数与 方程的思想.
考点一
含绝对值不等式的解法
[典例] 解下列不等式:
(1)1<|x+1|<3
(3)|x-1|+|x+2|≥5 解:(1) (-4,-2)∪(0,2) (2) ( ,
考点二
含参数的绝对值不等式问题
[典例] 1、(2012·山东卷)若不等式|kx-4|≤2的解集为 {x|1≤x≤3},则实数k=________. 解析:∵|kx-2|≤2,∴-2≤kx-4≤2,∴2≤kx≤6.
∵不等式的解集为{x|1≤x≤3},∴k=2.
考点二
含参数的绝对值不等式问题
[典例] 2、已知不等式|x+1|-|x-3|>a.分别求出下列情形中 a的取值范围: (1)不等式有解; (2)不等式的解集为R; (3)不等式的解集为∅.
6、设函数f(x)=|x-a|+3x,其中a>0. (1)当a=1时,求不等式f(x)≥3x+2的解集; (2)若不等式f(x)≤0的解集为{x|x≤-1},求a的值. 解 (1)当a=1时,f(x)≥3x+2可化为|x-1|≥2.
由此可得x≥3或x≤-1.
故不等式f(x)≥3x+2的解集为{x|x≥3,或x≤-1}.
考点四
绝对值不等式的综合应用
[典例] 1、(2013· 新课标全国Ⅰ卷)已知函数 f(x)=|2x-1|+|2x+a|, g(x)=x+3. (1)当 a=-2 时,求不等式 f(x)<g(x)的解集; (2)设 a>-1,且当
a 1 x∈-2,2 时,f(x)≤g(x),求
(2)当
a 1 x∈-2,2 时,f(x)=1+a,
不等式 f(x)≤g(x)化为 1+a≤x+3, 所以 x≥a-2 对
a 1 x∈- , 都成立, 2 2
a 4 应有- ≥a-2,则 a≤ , 2 3 从而实数 a
4 的取值范围是-1,3 .
3、资料选修4系列P17考点一:2,3
4.(2012·山东卷)若不等式|kx-4|≤2的解集为{x|1≤x≤3},则实