核磁共振类实验实验报告
核磁共振实验报告

核磁共振实验报告一、实验目的了解核磁共振的基本原理,掌握核磁共振仪器的操作方法,测量样品的核磁共振信号,并通过对信号的分析计算出样品的相关参数。
二、实验原理核磁共振(Nuclear Magnetic Resonance,NMR)是指处于静磁场中的原子核在另一交变电磁场作用下发生的物理现象。
原子核具有自旋,自旋会产生磁矩。
当原子核处于外加静磁场中时,其自旋能级会发生分裂。
如果此时在垂直于静磁场的方向上施加一个交变电磁场,当交变电磁场的频率与原子核的进动频率相等时,就会发生共振吸收现象,即核磁共振。
在核磁共振实验中,通常使用氢核(质子)作为研究对象。
氢核的自旋量子数为 1/2,在静磁场中会分裂为两个能级。
通过测量共振时的交变电磁场频率,可以计算出静磁场的强度;通过测量共振信号的强度和形状,可以获取有关样品中氢核的分布、化学环境等信息。
三、实验仪器本次实验使用的是_____型核磁共振仪,主要包括以下几个部分:1、磁铁:提供稳定的静磁场。
2、射频发生器:产生交变电磁场。
3、探头:包含样品管和检测线圈。
4、信号接收与处理系统:对检测到的核磁共振信号进行放大、滤波、数字化等处理。
5、计算机:控制仪器运行,采集和分析数据。
四、实验步骤1、样品准备选取合适的含氢样品,如纯净水、乙醇等。
将样品装入标准的样品管中,确保样品管无气泡。
2、仪器调试开启核磁共振仪电源,预热一段时间,使仪器达到稳定工作状态。
调节磁场强度,使其达到预定值。
校准射频发生器的频率范围和输出功率。
3、样品测量将装有样品的样品管放入探头中,确保位置准确。
启动扫描程序,逐渐改变射频频率,观察并记录核磁共振信号。
重复测量多次,以提高数据的准确性和可靠性。
4、数据处理将采集到的核磁共振信号导入计算机软件进行处理。
分析信号的峰位、峰宽、强度等参数。
根据相关公式计算样品的化学位移、自旋自旋耦合常数等重要参数。
五、实验数据与分析1、以纯净水为例,得到的核磁共振信号如图 1 所示。
核磁共振实验报告

核磁共振实验报告一、实验目的1.了解核磁共振的基本原理和仪器结构;2.学习核磁共振性质的测量方法;3.掌握核磁共振实验的基本操作。
二、实验仪器和用具核磁共振仪、样品管、场频中心标记物、标定试剂、样品转速调节器、计算机等。
三、实验原理核磁共振是利用磁共振现象进行的一种物质结构、原子核的环境等信息的研究方法。
通过在静磁场中施加射频场,使样品的原子核进行磁共振,进而测量其共振频率和化学位移,从而得到相关的物理和结构性质。
四、实验内容和步骤1.样品制备:在样品管中配制好待测物质溶液;2.实验准备:打开核磁共振仪电源,调节磁场强度和均匀性;3.校准:使用场中心标记物调整磁场的中心频率;4.样品激磁:将样品放入核磁共振仪的样品室中,进行样品激磁操作;5.信号获取:通过调整射频场的频率和强度,使样品核的共振信号最大化;6.信号处理:将获取的信号通过计算机进行数字化处理,得到频谱图和相关参数;7.数据记录:记录样品的共振频率、化学位移等相关参数。
五、实验数据和分析实验中,我们选取了甲醇样品进行核磁共振实验。
首先进行了磁场强度的校准,通过调整磁场的中心频率,使得样品的共振频率能够与参考标记物的共振频率相匹配。
接下来,进行了样品的激磁操作。
通过将样品放入样品室中,使其置于强磁场中,样品中的原子核开始进行自旋共振。
在信号获取过程中,我们通过调整射频场的频率和强度,使样品核的共振信号最大化。
当共振发生时,仪器会发出响应信号,我们利用该信号来调整射频场的参数,确保信号最强。
通过对获取的信号进行处理,我们得到了甲醇样品的核磁共振频谱图。
在频谱图中,可以观察到不同核的共振峰,通过测量共振峰的位置和间距,可以得到样品的化学位移和相关的物理属性。
六、实验结果和结论通过核磁共振实验,我们成功获得了甲醇样品的核磁共振频谱图。
通过测量共振峰的位置和间距,我们得到了样品的化学位移和相关的物理属性。
实验结果表明,核磁共振是一种非常有效的研究物质结构和性质的方法。
核磁实验报告结果(3篇)

第1篇实验名称:核磁共振实验实验日期: 2023年10月15日实验地点:核磁共振实验室实验仪器:核磁共振谱仪、示波器、射频发射器、探头、样品等实验目的:1. 了解核磁共振的基本原理及其在物质结构分析中的应用。
2. 学习核磁共振谱图的解析方法。
3. 掌握核磁共振实验的基本操作流程。
实验原理:核磁共振(Nuclear Magnetic Resonance,NMR)是利用具有磁矩的原子核在外加磁场中吸收特定频率的射频能量,产生共振现象的一种技术。
通过分析共振信号,可以获得有关原子核的性质和周围环境的信息。
实验内容:1. 样品准备:选取实验样品,并将其置于核磁共振谱仪的样品管中。
2. 磁场调节:调节核磁共振谱仪的磁场强度,使其与样品中原子核的进动频率相匹配。
3. 射频发射:发射特定频率的射频脉冲,激发样品中的原子核。
4. 信号采集:利用示波器采集原子核的共振信号。
5. 数据分析:对采集到的信号进行分析,解析核磁共振谱图。
实验结果:1. 核磁共振谱图:- 通过核磁共振谱图,观察到样品中存在多种化学环境不同的氢原子核。
- 谱图中峰的位置、形状和强度反映了不同化学环境中氢原子核的性质。
2. 化学位移:- 化学位移是核磁共振谱图中峰的位置,反映了原子核周围电子云的密度。
- 通过化学位移,可以确定不同化学环境中氢原子核的种类和数量。
3. 自旋耦合:- 自旋耦合是指相邻化学环境中氢原子核之间的相互作用,表现为谱图中峰的分裂。
- 通过自旋耦合,可以确定分子中相邻原子核之间的关系。
4. 峰面积:- 峰面积反映了不同化学环境中氢原子核的数量。
- 通过峰面积,可以确定分子中不同化学环境的氢原子核的比例。
讨论与分析:1. 核磁共振谱图分析:- 根据核磁共振谱图,可以确定样品中存在的有机物结构。
- 通过比较谱图与标准谱图,可以确定有机物的种类和含量。
2. 化学位移分析:- 化学位移可以提供有关样品中氢原子核周围电子云密度和化学环境的信息。
核磁共振成像实验报告

核磁共振成像实验报告
一、引言
核磁共振成像(MRI)是一种非侵入式的医学成像技术,常用于诊断和治疗疾病。
本实验旨在通过模拟MRI扫描实验,了解MRI的工作原理和影像生成过程。
二、实验材料与方法
1. 实验材料:包括磁共振设备模型、水样品、图像处理软件等。
2. 实验方法:
a. 将水样品放入磁共振设备中。
b. 使用磁场梯度和射频脉冲来激发水样品的核自旋。
c. 采集信号,并通过图像处理软件生成MRI图像。
三、实验结果与分析
经过实验操作和数据处理,成功生成了水样品的MRI图像。
在图像中,我们观察到不同组织的信号强度和分布情况。
通过分析MRI图像,可以发现水样品内部的结构特征,如脂肪、肌肉等组织的分布情况。
四、实验结论
本实验通过模拟MRI扫描,深入理解了MRI技术的工作原理和影像生成过程。
MRI技术在医学诊断中具有重要的应用前景,可为医生提供更准确的诊断结果,帮助患者得到更好的治疗。
五、参考文献
1. Smith A, et al. Magnetic Resonance Imaging: Principles and Applications. New York: John Wiley & Sons, 2010.
2. Brown C, et al. Introduction to MRI Technology. London: Springer, 2015.
六、致谢
感谢实验室的老师和同学们对本次实验的支持与帮助。
以上为核磁共振成像实验报告。
核磁共振材料实验报告

一、实验目的1. 了解核磁共振(NMR)的基本原理和应用领域;2. 掌握NMR实验仪器的操作方法;3. 通过NMR实验,研究材料的性质和结构;4. 培养实验操作能力和数据处理能力。
二、实验原理核磁共振是利用原子核在外加磁场中的磁矩与射频电磁波相互作用而产生共振现象的一种物理方法。
当原子核置于外加磁场中时,其磁矩会绕磁场方向进动,进动频率与外加磁场强度和原子核的性质有关。
当射频电磁波的频率与原子核进动频率相匹配时,原子核会吸收射频能量,产生共振现象。
三、实验仪器与试剂1. 实验仪器:NMR实验仪、示波器、射频发生器、探头、样品管、恒温装置等;2. 试剂:待测样品、溶剂等。
四、实验步骤1. 样品制备:将待测样品溶解于溶剂中,制备成一定浓度的溶液;2. 样品放置:将制备好的样品放入样品管中,放入NMR实验仪的探头中;3. 恒温:将样品管放入恒温装置中,调节温度至实验所需温度;4. 调谐:调整射频发生器,使射频频率与待测样品的共振频率相匹配;5. 测量:开启NMR实验仪,记录示波器上的信号,分析数据。
五、实验数据与分析1. 样品名称:苯甲酸乙酯;2. 样品浓度:0.1 mol/L;3. 溶剂:氯仿;4. 温度:298 K;5. 外加磁场强度:9.4 T;6. 射频频率:100 MHz。
实验结果如下:1. 样品的共振信号强度随浓度的增加而增强;2. 样品的化学位移随溶剂的种类和浓度发生变化;3. 样品的自旋量子数与外加磁场强度有关。
根据实验结果,可以分析出以下结论:1. 样品的共振信号强度与浓度呈线性关系,说明NMR实验可以用于研究溶液中物质的浓度;2. 样品的化学位移受溶剂种类和浓度的影响,可以用于研究物质的分子结构和环境;3. 样品的自旋量子数与外加磁场强度有关,可以用于研究物质的核磁共振性质。
六、实验讨论1. NMR实验在材料科学研究中的应用非常广泛,可以用于研究材料的结构、性质和动态过程;2. NMR实验具有较高的灵敏度和分辨率,可以用于研究低浓度样品;3. NMR实验需要精确的磁场强度和射频频率控制,对实验条件要求较高。
核磁共振实验报告

核磁共振实验报告一、实验目的本次核磁共振实验的主要目的是通过对样品的核磁共振现象进行观测和分析,深入理解核磁共振的基本原理,掌握核磁共振仪器的操作方法,并获取有关样品的结构和性质等方面的信息。
二、实验原理核磁共振(Nuclear Magnetic Resonance,简称 NMR)是指处于外磁场中的原子核在射频场作用下发生能级跃迁的现象。
当原子核处于外加磁场中时,其核自旋会产生不同的能级。
如果在垂直于外磁场的方向上施加一个射频场,且射频场的频率与原子核的进动频率相等时,就会发生共振吸收,从而产生核磁共振信号。
对于氢原子核(质子)来说,其自旋量子数为 1/2,在外磁场中会产生两个能级。
共振频率与外磁场强度成正比,可用公式表示为:ω =γB其中,ω 是射频场的角频率,γ 是核的旋磁比,B 是外磁场强度。
通过测量共振吸收信号的强度和位置,可以获取关于样品中氢原子的化学环境、分子结构等信息。
三、实验仪器与样品本次实验使用的仪器为_____型核磁共振仪。
仪器主要由磁场系统、射频发射与接收系统、数据采集与处理系统等组成。
实验所用的样品为_____溶液。
四、实验步骤1、样品制备将适量的样品溶解于适当的溶剂中,制备成均匀的溶液,并装入核磁共振样品管中。
2、仪器调试打开核磁共振仪,设置合适的磁场强度、射频功率、扫描时间等参数,进行仪器的预热和调试。
3、样品测量将样品管放入仪器的检测区域,启动测量程序,记录核磁共振信号。
4、数据处理对测量得到的数据进行处理,包括基线校正、峰面积积分、化学位移标定等,以获取有用的信息。
五、实验结果与分析1、共振图谱得到的核磁共振图谱显示了多个吸收峰,每个峰的位置和强度都反映了样品中不同化学环境下氢原子的信息。
2、化学位移通过对峰位置的测量和与标准物质的对比,确定了样品中各氢原子的化学位移值。
化学位移的差异表明了氢原子周围电子云密度的不同,从而反映了分子结构的特点。
3、峰面积积分对各吸收峰的面积进行积分,积分值与相应氢原子的数量成正比。
MR实验报告
MR实验报告1. 实验目的本实验的目的是通过MR(Magnetic Resonance,磁共振)技术,对样品进行成像和分析,了解其物性和结构。
2. 实验原理MR技术基于核磁共振现象,利用样品中的核自旋在磁场作用下产生的共振信号进行成像。
核自旋在磁场中具有不同的能级,在外加射频场的作用下,核自旋能级之间会发生能级跃迁,产生共振信号。
通过对这些共振信号的检测和处理,可以恢复出样品的物性和结构信息。
3. 实验步骤3.1 样品准备首先,准备好需要进行成像和分析的样品。
样品可以是液体、固体或生物组织等。
3.2 建立磁场在实验室中建立稳定且均匀的静态磁场,通常使用超导磁体或永磁体来产生磁场。
3.3 信号探测将样品放置在磁场中,并使用射频探头发出射频脉冲。
射频脉冲会激发样品中的核自旋共振信号。
3.4 信号接收和处理使用接收线圈接收样品中的共振信号,并将信号传输给电子设备进行处理和分析。
通过对信号的处理,可以得到样品的MR图像。
4. 实验结果与分析根据实验所得的MR图像,可以分析样品的物性和结构。
通过对图像中的信号强度、空间分布等信息的分析,可以得到样品的磁性、密度、组织结构等重要参数。
5. 实验总结MR技术是一种在医学、材料科学、化学等领域广泛应用的非侵入性成像技术。
通过本次实验,我们深入了解了MR技术的原理和应用。
同时,实验结果也为今后的科研和应用提供了有价值的参考。
6. 参考文献- 张三, 李四. MR技术在医学中的应用. 医疗科学杂志, 20XX, XX(X): XXX-XXX.以上是本次MR实验报告的内容。
核磁共振类实验-实验报告
核磁共振类实验-实验报告核磁共振类实验实验报告(一)核磁共振(二)脉冲核磁共振与核磁共振成像第一部分核磁共振基本原理1.核磁共振磁共振是指磁矩不为零的原子或原子核在稳恒磁场作用下对电磁辐射能的共振吸收现象。
如果共振是由原子核磁矩引起的,则该粒子系统产生的磁共振现象称核磁共振(简写作NMR);如果磁共振是由物质原子中的电子自旋磁矩提供的,则称电子自旋共振(简写ESR),亦称顺磁共振(写作EPR);而由铁磁物质中的磁畴磁矩所产生的磁共振现象,则称铁磁共振(简写为FMR)。
原子核磁矩与自旋的概念是1924年泡利(Pauli)为研究原子光谱的超精细结构而首先提出的。
核磁共振现象是原子核磁矩在外加恒定磁场作用下,核磁矩绕此磁场作拉莫尔进动,若在垂直于外磁场的方向上是加一交变电磁场,当此交变频率等于核磁矩绕外场拉莫尔进动频率时,原子核吸收射频场的能量,跃迁到高能级,即发生所谓的谐振现象。
研究核磁共振有两种方法:一是连续波法或称稳态法,使用连续的射频场(即旋转磁场)作用到核系统上,观察到核对频率的感应信号;另一种是脉冲法,用射频脉冲作用在核系统上,观察到核对时间的响应信号。
脉冲法有较高的灵敏度,测量速度快,但需要快速傅里叶变换,技术要求较高。
以观察信号区分,可观察色散信号或吸收信号。
但一般观察吸收信号,因为比较容易分析理解。
从信号的检测来分,可分为感应法,平衡法,吸收法。
测量共振时,核磁矩吸收射频场能量而在附近线圈中感应到信号,则为感应法;测量由于共振使电桥失去平衡而输出电压的即为平衡法;直接测量共振使射频振荡线圈中负载发生变化的为吸收法。
本实验用连续波吸收法来观察核磁共振现象。
2.核磁共振的量子力学描述核角动量P 由下式描述,(1)式中,I 是核自旋磁量子数,可取0,1/2,1,...对H 核,I=1/2。
核自旋磁矩μ与P 之间的关系写成P⋅=γμ (2)式中,称为旋磁比e 为电子电荷;pm 为质子质量;J g 为朗德因子。
实验报告核磁共振实验
实验报告核磁共振实验实验报告:核磁共振实验一、实验目的核磁共振(Nuclear Magnetic Resonance,NMR)技术在化学、生物、医学等领域都有着广泛的应用。
本次实验的主要目的是通过实际操作,深入了解核磁共振的基本原理和实验方法,掌握利用核磁共振技术进行物质结构分析的技能,并对实验结果进行准确的分析和解释。
二、实验原理核磁共振是指处于外磁场中的原子核系统受到相应频率的电磁波作用时,在其磁能级之间发生的共振跃迁现象。
原子核具有自旋,自旋会产生磁矩。
当原子核置于外加磁场中时,核自旋会产生不同的能级分裂。
在射频场的作用下,当射频场的频率与原子核的进动频率相等时,就会发生共振吸收,从而可以检测到核磁共振信号。
对于氢原子核(质子),其共振频率与外加磁场强度成正比,可表示为:\\omega =\gamma B_0\其中,\(\omega\)是进动频率,\(\gamma\)是旋磁比,\(B_0\)是外加磁场强度。
三、实验仪器与试剂1、核磁共振仪器:包括超导磁体、射频发生器、探测器、数据采集与处理系统等。
2、样品:选择了常见的有机化合物,如乙醇、乙酸等。
四、实验步骤1、样品准备:将适量的样品装入核磁共振样品管中,确保样品均匀分布。
2、仪器调试:打开核磁共振仪器,设置合适的磁场强度、射频频率等参数,进行匀场操作,以获得均匀的磁场。
3、数据采集:将样品管放入仪器中,启动数据采集程序,采集核磁共振信号。
4、数据处理:对采集到的数据进行处理,如傅里叶变换,得到核磁共振谱图。
五、实验结果与分析1、乙醇的核磁共振谱观察到了乙醇中甲基、亚甲基和羟基上氢原子的共振信号。
通过化学位移、峰面积和耦合常数等信息,可以推断出乙醇分子中不同氢原子的化学环境和相互作用。
2、乙酸的核磁共振谱清晰地分辨出了乙酸中甲基和羧基上氢原子的信号。
分析化学位移和峰形,了解乙酸分子的结构特征。
六、实验误差分析1、磁场不均匀性:可能导致谱线加宽,影响化学位移和峰形的准确性。
核磁共振实验实验报告
一、实验目的1. 理解核磁共振的基本原理。
2. 掌握核磁共振实验的操作技能。
3. 学习通过核磁共振谱图分析物质的结构。
4. 熟悉核磁共振仪器的使用方法。
二、实验原理核磁共振(Nuclear Magnetic Resonance,简称NMR)是一种利用原子核在外加磁场中产生共振吸收现象的技术。
当原子核置于磁场中时,其磁矩会与磁场相互作用,导致原子核的自旋能级发生分裂。
通过向样品施加特定频率的射频脉冲,可以使原子核从低能级跃迁到高能级,当射频脉冲停止后,原子核会释放能量回到低能级,产生核磁共振信号。
三、实验仪器1. 核磁共振仪(NMR Spectrometer)2. 样品管3. 射频脉冲发生器4. 数据采集系统5. 计算机四、实验步骤1. 准备样品:将待测样品溶解在适当的溶剂中,并转移至样品管中。
2. 调整磁场:将样品管放置在核磁共振仪的样品腔中,调整磁场强度至所需值。
3. 设置射频脉冲参数:根据样品的核磁共振特性,设置射频脉冲的频率、功率和持续时间等参数。
4. 数据采集:开启核磁共振仪,开始采集核磁共振信号。
5. 数据处理:将采集到的信号传输至计算机,进行数据处理和分析。
五、实验结果与分析1. 核磁共振谱图:通过核磁共振仪采集到的样品谱图显示了不同化学环境下的原子核的共振吸收峰。
峰的位置、形状和强度等信息可以用来推断样品的结构。
2. 化学位移:峰的位置(化学位移)反映了原子核在磁场中的相对位置。
通过比较标准物质的化学位移,可以确定样品中不同类型的原子核。
3. 峰的积分:峰的面积与样品中该类型原子核的数目成正比。
通过峰的积分,可以确定样品中不同类型原子核的相对比例。
4. 峰的分裂:峰的分裂(耦合)反映了原子核之间的相互作用。
通过分析峰的分裂情况,可以推断样品中原子核的连接方式和空间结构。
六、实验讨论1. 实验误差:实验误差可能来源于多种因素,如仪器精度、操作技能和样品纯度等。
为了减小误差,需要严格控制实验条件,并多次重复实验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核磁共振类实验实验报告(一)核磁共振(二)脉冲核磁共振与核磁共振成像第一部分 核磁共振基本原理1.核磁共振磁共振是指磁矩不为零的原子或原子核在稳恒磁场作用下对电磁辐射能的共振吸收现象。
如果共振是由原子核磁矩引起的,则该粒子系统产生的磁共振现象称核磁共振(简写作NMR );如果磁共振是由物质原子中的电子自旋磁矩提供的,则称电子自旋共振(简写ESR ),亦称顺磁共振(写作EPR);而由铁磁物质中的磁畴磁矩所产生的磁共振现象,则称铁磁共振(简写为FMR )。
原子核磁矩与自旋的概念是1924年泡利(Pauli )为研究原子光谱的超精细结构而首先提出的。
核磁共振现象是原子核磁矩在外加恒定磁场作用下,核磁矩绕此磁场作拉莫尔进动,若在垂直于外磁场的方向上是加一交变电磁场,当此交变频率等于核磁矩绕外场拉莫尔进动频率时,原子核吸收射频场的能量,跃迁到高能级,即发生所谓的谐振现象。
研究核磁共振有两种方法:一是连续波法或称稳态法,使用连续的射频场(即旋转磁场)作用到核系统上,观察到核对频率的感应信号;另一种是脉冲法,用射频脉冲作用在核系统上,观察到核对时间的响应信号。
脉冲法有较高的灵敏度,测量速度快,但需要快速傅里叶变换,技术要求较高。
以观察信号区分,可观察色散信号或吸收信号。
但一般观察吸收信号,因为比较容易分析理解。
从信号的检测来分,可分为感应法,平衡法,吸收法。
测量共振时,核磁矩吸收射频场能量而在附近线圈中感应到信号,则为感应法;测量由于共振使电桥失去平衡而输出电压的即为平衡法;直接测量共振使射频振荡线圈中负载发生变化的为吸收法。
本实验用连续波吸收法来观察核磁共振现象。
2.核磁共振的量子力学描述核角动量P 由下式描述, (1)式中, ηρ)1(+=I I P π2h=ηI 是核自旋磁量子数,可取0,1/2,1,...对H 核,I=1/2。
核自旋磁矩μϖ与P 之间的关系写成P ϖϖ⋅=γμ (2) 式中,称为旋磁比e 为电子电荷;p m 为质子质量;J g 为朗德因子。
以H 核为例,式(2)可写为两种表达:J Ng μμ=(3) 2Jp e g p m μ= (4) 式中12710050787.5--⨯=JT N μ称为核磁子,是核磁矩的单位。
把氢核放入外磁场B ϖ,可以取坐标轴z 方向为B ϖ的方向。
核的角动量在B ϖ方向上的投影值由下式决定 η⋅=m P B式中m 称为磁量子数,可以取I I I I m ---⋅⋅⋅-=),1(,,1,。
核磁矩在B ϖ方向上的投影值为N J B mg mh μγμ== (5)磁矩为μϖ的原子核在恒定磁场B ϖ中具有的势能为Bm g B B E N N B ⋅⋅⋅-=⋅-=⋅-=μμμϖϖ (6)任何两个能级之间的能量差则为 m B g E N J ∆=∆μ (7)由选择定则,1m ∆=± 时两能级间才可发生跃迁。
对氢核而言,I=1/2,所以磁量子数m 只能取两个值,即m=1/2,-1/2。
磁矩在外场方向上的投影也只能取两个值,如图1中(a )所示,与此相对应的能级如图1中(b )所示。
加一频率为ν的高频磁场1B ,如果电磁波的能量νh 与Zeeman 能级间隔相等时,即p J m e g 2⋅=γB g h N J μν= (7)或B γω= (8)则氢核就会吸收电磁波的能量,由m=1/2的能级跃迁到m=-1/2的能级,这就是核磁共振吸收现象。
式(7)就是核磁共振条件。
能级上的核数目没有差别,则在电磁波的激发下,上下能级上的核都要发生跃迁,并且跃迁几率是相等的,吸收能量等于辐射能量,我们究观察不到任何核磁共振信号。
只有当低能级上的原子核数目大于高能级上的核数目,吸收能量比辐射能量多,这样才能观察到核磁共振信号。
在热平衡状态下,核数目在两个能级上的相对分布由玻尔兹曼因子决定:⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛∆-=kT B g kT E N N N N 021exp exp μ (9) 式中1N 为低能级上的核数目,2N 为高能级上的核数目,E ∆为上下能级间的能量差,k 为玻尔兹曼常数,T 为绝对温度。
当kT B g N N <<0μ时,上式可以近似写成kT B g N N N N 0211μ-= (10)上式说明,低能级上的核数目比高能级上的核数目略微多一点。
对氢核来说,如果实验温度K T 300=,外磁场T B 10=,则6121075.61-⨯-=N N 或 6121107-⨯≈-N N N这说明,在室温下,每百万个低能级上的核比高能级上的核大约只多出7B 0B 个。
这就是说,在低能级上参与核磁共振吸收的每一百万个核中只有7个核的核磁共振吸收未被共振辐射所抵消。
所以核磁共振信号非常微弱,检测如此微弱的信号,需要高质量的接收器。
由式(10)可以看出,温度越高,粒子差数越小,对观察核磁共振信号越不利。
外磁场0B 越强,粒子差数越大,越有利于观察核磁共振信号。
一般核磁共振实验要求磁场强一些,其原因就在这里。
另外,要想观察到核磁共振信号,仅仅磁场强一些还不够,磁场在样品范围内还应高度均匀,否则磁场多么强也观察不到核磁共振信号。
原因之一是,核磁共振信号由式(7)决定,如果磁场不均匀,则样品内各部分的共振频率不同。
对某个频率的电磁波,将只有少数核参与共振,结果信号被噪声所淹没,难以观察到核磁共振信号。
第二部分 NMR 实验一、实验目的1.了解核磁共振的原理与应用2.掌握连续波核磁共振的仪器结构和实验方法3.测量永久磁铁扫场的磁感应强度和旋磁比二、实验原理观察核磁共振现象需要:均匀磁场 角频率为ω的旋转磁场1B满足:⊥01B B (11)0B ωγ= (12) 旋磁比 J N g h μγ=对于H 核, 可得γ=267.52MHz/T因此由(12)式得20 2.34910B ν-=⨯ (13)式中ν的单位为MHz本实验采用扫场法观察磁共振信号,固定ω,让连续变化并通过共振区,当满足(12)式时出现共振吸收峰。
27345.585, 5.50810/, 1.054610J N g J T h J s μ--==⨯=⨯g'sin100m B B tπ=扫场电流频率为50Hz ,对应扫场磁场则叠加的磁场 0sin100m B B B t π=+ (14)满足共振条件时,可观察到NMR 信号。
扫场通过共振区的时间远大于弛豫时间,满足布洛赫稳态条件,示波器上可观察到稳态共振吸收信号;反之,就观察到带尾波的共振吸收信号。
三、实验仪器NMR 实验装置,如图2图2四、实验数据及处理1.对于H 核的磁场B 0,B m 的测量B=B 0时,示波器上共振吸收信号等距,记此时的频率为ν0B=Bm 时,上述等距吸收峰两个合并为一个,记频率νm则由(13)式可计算相应的B 0,Bm0,样品ν0(MHz ) νm (MHz ) B 0(T ) Bm (T ) CuSO 4溶液21.943 21.982 0.515441 0.516357 FeCl 3溶液21.940 21.977 0.515371 0.516240 HF 溶液21.940 21.982 0.515371 0.516357 丙三醇21.940 21.979 0.515371 0.516287 水21.938 21.977 0.515324 0.516240 MnSO 4溶液21.939 21.974 0.515347 0.516169平均 21.940 21.979 0.515371 0.5162751122νγνγ=2.F 核旋磁比的测量由式(12)可得,则在HF 溶液中,以H 核为标准,可得F 核的旋磁比γ2五、结论和思考1.结论H 核:0515.371516.275m B mTB mT ==2.思考1) 扫场和旋转磁场在实验中的作用旋转磁场:使发生核磁共振扫场:使总磁场在一个范围内变化,让更多的核发生共振,从而便于观察到核磁共振第三部分 核磁共振成像实验一、实验目的1. 了解仪器结构,并掌握仪器和软件的使用2. 了解二维核磁共振成像原理,对样品进行二维成像的研究,观察梯度磁场各个参数对成像的影响二、实验原理原子核自旋,有角动量。
由于核带电荷,它们的自旋就产生磁矩。
当原子核置于静磁场中,本来是随机取向的双极磁体受磁场力的作用,与磁场作同一取向。
以质子即氢的主要同位素为例,它只能有两种基本状态:取向“平行”和“反向平行”,他们分别对应于低能和高能状态。
精确分析证明,自旋并不完全与磁场趋向一致,而是倾斜一个角度θ。
这样,双极磁体开始环绕磁场进动。
进动的频率取决于磁场强度。
也与原子核类型有关。
它们之间的关系满足拉莫尔关系:ω0=γB0,即进动角频率ω0是磁场强度B0与磁旋比γ的积。
γ是每种核素的一个基本物理常数。
氢的主要同位素,质子,在人体中丰度大,而且它的磁矩便于检测,因此最适宇从它得到核磁共振图像。
从宏观上看,作进动的磁矩集合中,相位是随机的。
它们的合成取向就形成宏观磁化,以磁矩M表示。
就是这个宏观磁矩在接收线圈中产生核磁共振信号。
在大量氢核中,约有一半略多一点处于低等状态。
可以证明,处于两种基本能量状态核子之间存在动态平衡,平衡状态由磁场和温度决定。
当从较低能量状态向较高能量状态跃迁的核子数等于从较高能量状态到较低能量状态的核子数时,就达到“热平衡”。
如果向磁矩施加符合拉莫尔频率的射频能量,而这个能量等于较高和较低两种基本能量状态间磁场能量的差值,就能使磁矩从能量较低的“平行”状态跳到能量较高“反向平行”状态,就发生共振。
由于向磁矩施加拉莫频率的能量能使磁矩发生共振,那么使用一个振幅为B1,而且与作进动的自旋同步(共振)的射频场,当射频磁场B1的作用方向与主磁场B0垂直,可使磁化向量M偏离静止位置作螺旋运动,或称章动,即经射频场的力迫使宏观磁化向量环绕它作进动。
如果各持续时间能使宏观磁化向量旋转90º角,他就落在与静磁场垂直的平面内。
可产生横向磁化向量Mxy。
如果在这横向平面内放置一个接收线圈,该线圈就能切割磁力线产生感生电压。
当射频磁场B1撤除后,宏观磁化向量经受静磁场作用,就环绕它进动,称为“自由进动”。
因进动的频率是拉莫尔频率,所感生的电压也具有相同频率。
由于横向磁化向量是不恒定,它以特征时间常数衰减至零为此,它感生的电压幅度也随时间衰减,表现为阻尼振荡,这种信号就称为自由感应衰减信号(FID, Free Induction Decay)。
信号的初始幅度与横向磁化成正比,而横向磁化与特定体元的组织中受激励的核子数目成正比,于是,在磁共振图像中可辨别氢原子密度的差异。
因为拉莫尔频率与磁场强度成比例,如果磁场沿X轴成梯度改变,得到的共振频率也显然与体元在X轴的位置有关。