数据挖掘原理与算法

合集下载

数据挖掘的基本原理和算法

数据挖掘的基本原理和算法

数据挖掘的基本原理和算法随着互联网的快速发展和大数据时代的到来,数据挖掘成为一门重要的技术。

它是通过发现数据中的模式、关系和规律,从而为商业、科学和决策提供有价值的信息和洞察力。

本文将介绍数据挖掘的基本原理和算法。

一、数据挖掘的基本原理1. 数据采集:首先需要收集相关的数据集。

数据可以来源于多种渠道,例如企业内部的数据库、社交媒体平台、网页等。

2. 数据清洗:经过数据采集后,需要对数据进行清洗和预处理。

这包括去除噪声数据、处理缺失值、处理异常值等步骤。

3. 数据转换:对于不同类型的数据,需要进行适当的转换,以便能够应用各种数据挖掘算法。

常见的数据转换包括标准化、归一化、离散化等。

4. 数据集划分:将数据集划分为训练集和测试集。

训练集用于构建模型,测试集用于评估模型的性能。

5. 模型构建:选择适当的算法来构建数据挖掘模型。

常见的算法包括分类算法、聚类算法、关联规则挖掘算法等。

6. 模型评估:通过评估指标,如准确率、精确率、召回率等来评估模型的性能。

7. 模型优化:如果模型的性能不理想,可以进行参数调优、特征选择等操作,以提升模型的准确度和泛化能力。

二、数据挖掘的常见算法1. 分类算法:分类算法用于将数据划分为不同的类别。

常见的分类算法有决策树、朴素贝叶斯、支持向量机等。

2. 聚类算法:聚类算法用于将数据分组为相似的类别。

常见的聚类算法有K均值、层次聚类、DBSCAN等。

3. 关联规则挖掘算法:关联规则挖掘算法用于发现数据集中的关联关系。

常见的关联规则挖掘算法有Apriori、FP-growth等。

4. 异常检测算法:异常检测算法用于识别数据中的异常点或异常行为。

常见的异常检测算法有基于统计的方法、基于聚类的方法等。

5. 预测算法:预测算法用于根据历史数据来预测未来的趋势或结果。

常见的预测算法有回归分析、时间序列分析等。

三、数据挖掘的应用领域1. 金融领域:数据挖掘可以应用于金融风险评估、信用评分、投资策略等方面。

数据挖掘常用的十大算法

数据挖掘常用的十大算法

数据挖掘常⽤的⼗⼤算法 数据挖掘(英语:Data mining),⼜译为资料探勘、数据采矿。

它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的⼀个步骤。

数据挖掘⼀般是指从⼤量的数据中通过算法搜索隐藏于其中信息的过程。

数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多⽅法来实现上述⽬标。

数据挖掘经典算法1. C4.5:是机器学习算法中的⼀种分类决策树算法,其核⼼算法是ID3算法。

解析:C4.5算法是机器学习算法中的⼀种分类决策树算法,其核⼼算法是ID3 算法。

C4.5算法继承了ID3算法的长处。

并在下⾯⼏⽅⾯对ID3算法进⾏了改进:1)⽤信息增益率来选择属性,克服了⽤信息增益选择属性时偏向选择取值多的属性的不⾜。

2)在树构造过程中进⾏剪枝;3)可以完毕对连续属性的离散化处理;4)可以对不完整数据进⾏处理。

C4.5算法有例如以下长处:产⽣的分类规则易于理解,准确率较⾼。

其缺点是:在构造树的过程中,须要对数据集进⾏多次的顺序扫描和排序,因⽽导致算法的低效。

1、机器学习中。

决策树是⼀个预測模型。

他代表的是对象属性与对象值之间的⼀种映射关系。

树中每⼀个节点表⽰某个对象,⽽每⼀个分叉路径则代表的某个可能的属性值,⽽每⼀个叶结点则相应从根节点到该叶节点所经历的路径所表⽰的对象的值。

决策树仅有单⼀输出。

若欲有复数输出,能够建⽴独⽴的决策树以处理不同输出。

2、从数据产⽣决策树的机器学习技术叫做决策树学习,通俗说就是决策树。

3、决策树学习也是数据挖掘中⼀个普通的⽅法。

在这⾥,每⼀个决策树都表述了⼀种树型结构,他由他的分⽀来对该类型的对象依靠属性进⾏分类。

每⼀个决策树能够依靠对源数据库的切割进⾏数据測试。

这个过程能够递归式的对树进⾏修剪。

当不能再进⾏切割或⼀个单独的类能够被应⽤于某⼀分⽀时。

数据挖掘原理、算法及应用章 (8)

数据挖掘原理、算法及应用章 (8)

第8章 复杂类型数据挖掘 1) 以Arc/info基于矢量数据模型的系统为例, 为了将空间
数据存入计算机, 首先, 从逻辑上将空间数据抽象为不同的 专题或层, 如土地利用、 地形、 道路、 居民区、 土壤单 元、 森林分布等, 一个专题层包含区域内地理要素的位置和 属性数据。 其次, 将一个专题层的地理要素或实体分解为点、 线、 面目标, 每个目标的数据由空间数据、 属性数据和拓 扑数据组成。
第8章 复杂类型数据挖掘 2. 空间数据具体描述地理实体的空间特征、 属性特征。 空
间特征是指地理实体的空间位置及其相互关系; 属性特征表 示地理实体的名称、 类型和数量等。 空间对象表示方法目前 采用主题图方法, 即将空间对象抽象为点、 线、 面三类, 根据这些几何对象的不同属性, 以层(Layer)为概念组织、 存储、 修改和显示它们, 数据表达分为矢量数据模型和栅格 数据模型两种。
第8章 复杂类型数据挖掘图Fra bibliotek-5 综合图层
第8章 复杂类型数据挖掘
图8-4 栅格数据模型
第8章 复杂类型数据挖掘
3. 虽然空间数据查询和空间挖掘是有区别的, 但是像其他数 据挖掘技术一样, 查询是挖掘的基础和前提, 因此了解空间 查询及其操作有助于掌握空间挖掘技术。
由于空间数据的特殊性, 空间操作相对于非空间数据要 复杂。 传统的访问非空间数据的选择查询使用的是标准的比 较操作符: “>”、 “<”、 “≤ ”、 “≥ ”、 “≠ ”。 而空间选择是一种在空间数据上的选择查询, 要用到空间操 作符.包括接近、 东、 西、 南、 北、 包含、 重叠或相交 等。
不同的实体之间进行空间性操作的时候, 经常需要在属性之 间进行一些转换。 如果非空间属性存储在关系型数据库中, 那么一种可行的存储策略是利用非空间元组的属性存放指向相 应空间数据结构的指针。 这种关系中的每个元组代表的是一 个空间实体。

数据挖掘原理、 算法及应用第4章 分类和预测

数据挖掘原理、 算法及应用第4章 分类和预测

第4章 分类和预测
4.3 决策树分类算法
从数据中生成分类器的一个特别有效的方法是生成一个 决策树(Decision Tree)。决策树表示方法是应用最广泛的逻辑 方法之一,它从一组无次序、无规则的事例中推理出决策树 表示形式的分类规则。决策树分类方法采用自顶向下的递归 方式,在决策树的内部结点进行属性值的比较,根据不同的 属性值判断从该结点向下的分支,在决策树的叶结点得到结 论。所以,从决策树的根到叶结点的一条路径就对应着一条 合取规则,整棵决策树就对应着一组析取表达式规则。
第4章 分类和预测
4.3.2 ID3算法 1. 信息论简介 1948年Shannon提出并发展了信息论,以数学的方法度
量并研究信息,通过通信后对信源中各种符号出现的不确定 程度的消除来度量信息量的大小。他提出了自信息量、信息 熵、条件熵及平均互信息量等一系列概念。
第4章 分类和预测 条件熵及平均互信息量等一系列概念。 (1) 自信息量。在收到ai之前,收信者对信源发出ai的不 确定性定义为信息符号ai的自信息量I(ai),即I(ai)=-lbp(ai), 其中p(ai)为信源发出ai的概率。 (2) 信息熵。自信息量只能反映符号的不确定性,而信 息熵可以用来度量整个信源X整体的不确定性,定义如下:
第4章 分类和预测
图4-3 表4-1所训练生成的决策树
第4章 分类和预测
5. ID3算法性能分析 ID3算法可以描述成从一个假设空间中搜索一个拟合训 练样例的假设。被ID3算法搜索的假设空间就是可能的决策 树的集合。ID3算法以一种从简单到复杂的爬山算法遍历这 个假设空间,从空的树开始,然后逐步考虑更加复杂的假设, 目的是搜索到一个正确分类训练数据的决策树。引导这种爬 山搜索的评估函数是信息增益度量。

数据挖掘领域的十大经典算法原理及应用

数据挖掘领域的十大经典算法原理及应用

数据挖掘领域的十大经典算法原理及应用数据挖掘是指从大量的数据中发现关联规则、分类模型、聚类模型等有用的信息的过程。

以下是数据挖掘领域的十大经典算法原理及应用:1. 决策树算法(Decision Tree)决策树是一种基于树形结构的分类模型,它通过构建树来将输入数据集划分为不同的类别。

决策树算法在金融风险评估、医疗诊断等领域有广泛应用。

2. 支持向量机算法(Support Vector Machine,SVM)支持向量机是一种二分类模型,其目标是在高维空间中找到一个最优的超平面,将不同类别的样本分离开来。

SVM在图像识别、文本分类等领域有广泛应用。

3. 神经网络算法(Neural Network)神经网络模拟人脑的工作原理,通过连接众多的神经元来完成学习和预测任务。

神经网络在图像处理、自然语言处理等领域有广泛应用。

4. 朴素贝叶斯算法(Naive Bayes)朴素贝叶斯算法是一种基于贝叶斯定理的统计分类方法,它假设所有特征之间相互独立,并通过计算后验概率来进行分类。

朴素贝叶斯在垃圾邮件过滤、文本分类等领域有广泛应用。

5. K均值聚类算法(K-means Clustering)K均值聚类是一种无监督学习算法,它通过将样本分成K个簇来实现数据的聚类。

K均值聚类在市场细分、客户群体分析等领域有广泛应用。

6. Apriori算法Apriori算法是一种频繁项集挖掘算法,它可以找出数据集中项之间的关联关系。

Apriori算法在购物篮分析、推荐系统等领域有广泛应用。

7. PageRank算法PageRank算法是一种用于网页排序的算法,它通过计算网页之间的链接关系来确定网页的重要性。

PageRank算法在引擎领域有广泛应用。

8. 随机森林算法(Random Forest)随机森林是一种集成学习算法,它通过构建多个决策树,并通过投票方式来进行分类或回归。

随机森林在金融风险评估、信用评分等领域有广泛应用。

9. AdaBoost算法AdaBoost是一种迭代的强学习算法,它通过调整样本权重来训练多个弱分类器,并通过加权投票方式来进行分类。

数据挖掘原理 算法及应用第3章 关联规则挖掘

数据挖掘原理 算法及应用第3章 关联规则挖掘

第3章
关联规则挖掘
图3-1 搜索候选项集和频繁项集过iori算法和它的相关过程的伪代码。
算法3.1
Apriori (发现频繁项目集)
输入: 数据集D、最小支持数minsup_count。 输出: 频繁项目集L。 (1) L1={large 1-itemsets}; //所有支持数不小于 minsup_count 的1
第3章
关联规则挖掘
(1) 发现频繁项目集:通过用户给定的最小支持度, 寻找所有频繁项目集,即满足支持度Support不小于 Minsupport的所有项目子集。发现所有的频繁项目集是形 成关联规则的基础。 (2) 生成关联规则:通过用户给定的最小可信度, 在 每个最大频繁项目集中,寻找置信度不小于Minconfidence 的关联规则。
l2 是可连接的,即l1[1]=l2[1]∧l1[2]=l2[2]
∧…∧l1[k-1]<l2[k-1]。条件l1[k-1]<l2[k-1]可以
保证不产生重复,而按照L1,L2, …,Lk-1,Lk, …,Ln
次序寻找频繁项集可以避免对事务数据库中不可能发生的
项集所进行的搜索和统计的工作。连接l1、l2的结果项集是l1 [1]、l1[2]、 …、 l1[k-1]、l2[k-1]。
第3章
关联规则挖掘
第 3章
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10
关联规则挖掘
基本概念 关联规则挖掘算法 Apriori改进算法 不候选产生挖掘频繁项集 使用垂直数据格式挖掘频繁项集 挖掘闭频繁项集 挖掘各种类型的关联规则 相关分析 基于约束的关联规则 矢量空间数据库中关联规则的挖掘
第3章
关联规则挖掘

数据挖掘算法的原理与实现

数据挖掘算法的原理与实现

数据挖掘算法的原理与实现数据挖掘算法是指通过分析、挖掘数据中隐藏的规律和属性,从中发现有用的信息的方法。

它在各个领域都有广泛的应用,例如商业、金融、医疗、社交媒体等。

数据挖掘算法的原理和实现需要了解其基本流程、常用算法和应用场景。

一、基本流程数据挖掘算法的基本流程包括数据预处理、特征选择、建模和评估。

数据预处理是对原始数据进行清洗、转换和筛选,使其适合后续处理。

特征选择是根据数据的重要性和相关性,选择最具代表性的特征。

建模是通过数据挖掘算法来建立模型,提取数据中的规律和关系。

评估是通过一定的指标和方法,对模型的成效进行评估和优化。

二、常用算法1.分类算法分类算法是将数据分成多个类别的算法。

其中,决策树是一种简单而强大的分类算法,通过对数据的分裂和判断,形成一棵树状结构,每个叶子节点代表一个分类。

SVM(支持向量机)是一种有监督学习的分类算法,通过寻找最优分割超平面来区分不同类别。

朴素贝叶斯分类器是一种基于贝叶斯定理的分类算法,通过计算先验概率和条件概率来进行分类。

2.聚类算法聚类算法是将数据划分成多个组或类的算法。

其中,K均值算法是一种常用的聚类算法,它通过不断调整质心位置,使同一类别的数据点距离质心最近,不同类别的数据点距离质心最远。

层次聚类算法是一种将数据点不断合并的算法,它通过距离矩阵和聚类树来表示不同数据点之间的距离和聚类关系。

DBSCAN算法是一种密度聚类算法,通过密度和距离的概念来寻找类别,并可发现任意形状的类别。

3.关联规则挖掘算法关联规则挖掘算法是一种用来发现数据中不同属性之间关系的算法。

其中,Apriori算法是一种常用的关联规则挖掘算法,它通过搜索频繁项集和关联规则,来发现数据中的相关性,如购物篮中的商品关系。

三、应用场景数据挖掘算法广泛应用于各种领域,如商业、金融、医疗、社交媒体等。

在商业领域中,数据挖掘算法可以用于推荐系统、市场分析和预测等方面。

在金融领域中,数据挖掘算法可以用于欺诈检测、风险控制和交易分析等方面。

数据挖掘算法原理与实现第2版第三章课后答案

数据挖掘算法原理与实现第2版第三章课后答案

数据挖掘算法原理与实现第2版第三章课后答案
1.密度聚类分析:
原理:密度聚类分析是指通过测量数据对象之间的密度(density)
来将其聚成几个聚类的一种聚类分析方法。

它把距离邻近的数据归入同一
类簇,并把不相连的数据分成不同的类簇。

实现:通过划分空间中每一点的邻域来衡量数据点之间的聚类密度。

它将每个数据点周围与它最近的K个数据点用一个空间圆包围起来,以定
义该数据点处的聚类密度。

然后,可以使用距离函数将所有点分配到最邻
近的类中。

2.引擎树:
原理:引擎树(Search Engine Tree,SET)是一种非常有效的数据
挖掘方法,它能够快速挖掘关系数据库中指定的有价值的知识。

实现:SET是一种基于决策树的技术,通过从关系数据库的历史数据
中提取出有价值的信息,来建立一种易于理解的引擎树,以及一些有益的
信息发现知识,以便用户快速找到想要的信息。

SET对原始数据进行一系
列数据挖掘处理后,能够提取出其中模式分析的信息,从而实现快速、高
效的引擎。

3.最大期望聚类:
原理:最大期望聚类(Maximization Expectation Clustering,MEC)是一种有效的数据挖掘算法,它可以自动识别出潜在的类簇结构,提取出
类簇内部的模式,帮助用户快速完成类簇分析任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Data Mining: Concepts and Techniques
2019/2/5
18
根据挖掘任务

分类或预测模型发现 数据总结与聚类发现 关联规则发现 序列模式发现 相似模式发现 混沌模式发现 依赖关系或依赖模型发现 异常和趋势发现等
2019/2/5
Data Mining: Concepts and Techniques

模式发现(Pattern Discovery)架构 规则发现(Rule Discovery)架构 基于概率和统计理论 微观经济学观点(Microeconomic View) 基于数据压缩(Data Compression)理论 基于归纳数据库(Inductive Database)理论 可视化数据挖掘(Visual Data Mining) 等等
2019/2/5
14
数据挖掘的技术含义


数据库中的知识发现(KDD: Knowledge Discovery in Databases)是比数据挖掘出现更早 的一个名词。 KDD与Data Mining的关系,有不同的看法:


KDD看成数据挖掘的一个特例:这是早期比较流行的观点,这种描 述强调了数据挖掘在源数据形式上的多样性。 数据挖掘是KDD的一个关键步骤:这种观点得到大多数学者认同, 有它的合理性。 KDD与Data Mining含义相同:事实上,在现今的许多场合,如技 术综述等,这两个术语仍然不加区分地使用着。也有其他的说法: KDD在人工智能界更流行,而Data Mining在数据库界使用 更多。 在研究领域被称作KDD,在工程领域则称之为数据挖掘。
2019/2/5
Data Mining: Concepts and Techniques
17
第一章 绪论
内容提要

数据挖掘技术的产生与发展 数据挖掘研究的发展趋势 数据挖掘概念 数据挖掘技术的分类问题 数据挖掘常用的知识表示模式与方法


不同数据存储形式下的数据挖掘问题
粗糙集方法及其在数据挖掘中的应用 数据挖掘的应用分析


从决策、分析和预测等高级商业目的看,原始数 据只是未被开采的矿山,需要挖掘和提炼才能获 得对商业目的有用的规律性知识。 从商业角度看,数据挖掘就是按企业的既定业务 目标,对大量的企业数据进行深层次分析以揭示 隐藏的、未知的规律性并将其模型化,从而支持 商业决策活动。
Data Mining: Concepts and Techniques
2019/2/5
Data Mining: Concepts and Techniques
15
数据挖掘定义

数据挖掘定义有广义和狭义之分。


从广义的观点,数据挖掘是从大型数据集(可能是不完全的、有 噪声的、不确定性的、各种存储形式的)中,挖掘隐含在其中的、 人们事先不知道的、对决策有用的知识的过程。 从这种狭义的观点上,我们可以定义数据挖掘是从特定形式的数 据集中提炼知识的过程。 OLTP Expert systems Small ML Statistical programs
2019/2/5
10

数据挖掘处于研究和应用探索阶段


经过十几年的研究和实践,数据挖掘技术已经吸 收了许多学科的最新研究成果而形成独具特色的 研究分支。 大部分学者认为数据挖掘的研究仍然处于广泛研 究和探索阶段:

一方面,数据挖掘的概念已经被广泛接受。 另一方面,数据挖掘的大面积应用还有待时日。

数据挖掘继承了专家系统的高度实用性特点,并 且以数据为基本出发点,客观地挖掘知识。 机器学习得到了充分的研究和发展:理论和算法。 数据挖掘研究在继承已有的人工智能相关领域, 特别是机器学习的研究成果的基础上,成为新的 研究分支。
2019/2/5
Data Mining: Concepts and Techniques


本世纪开始: Data mining 得到理论/技术深化。
Data Mining: Concepts and Techniques
2019/2/5
7
统计学的深入应用

强大有效的数理统计方法和工具,已成为信息咨 询业的基础 。 统计分析技术是基于严格的数学理论和高超的应 用技巧的 。


数据挖掘技术是数理统计分析应用的延伸和发展 。
2019/2/5
Data Mining: Concepts and Techniques
11
数据挖掘研究聚焦点

数据挖掘在如下几个方面需要重点开展工作:





数据挖掘技术与特定商业逻辑的平滑集成问题:数据挖掘需要代表性的应 用实例来证明(像“啤酒与尿布” )。 数据挖掘技术与特定数据存储类型的适应问题:不同的数据存储方式会影 响数据挖掘的具体实现机制、目标定位、技术有效性等。 大型数据的选择与规格化问题: 数据的噪音、信息丢失等问题的处理; 针对特定挖掘方法进行数据规格化等问题。 数据挖掘系统的构架与交互式挖掘技术: 在具体的实现机制、技术路线以及各阶段的功能定位等方面仍需细化 和深入研究。 良好的交互式挖掘(Interaction Mining)也是数据挖掘系统成功的 前提。 数据挖掘语言与系统的可视化问题:可视化挖掘除了要和良好的交互式技 术结合外,还必须在挖掘结果或过程的可视化进行探索和实践。 数据挖掘理论与算法研究 一方面,在已有的理论框架下有许多面向实际应用目标的挖掘理论等 待探索和创新。 另一方面,随着数据挖掘技术本身和相关技术的发展,新的挖掘理论 和算法的诞生是必然的。
《数据挖掘原理与算法》 By 毛国君,段立娟,王石,石云 Pub. 清华大学出版社,2004
使用说明: 本书是一本全面介绍数据挖掘和知识发现技术的 专业书籍,可作为计算机专业研究生或高年级本科生 教材。共分8章,各章相对独立成篇,以利于读者选 择性学习。本课件供全书讲解之用,为了取得好的教 学效果,教师应该根据学生层次、教学大纲或课时安 排进行必要裁减。
知识获取成为专家系统研究中公认的瓶颈问题。 知识表示成为一大难题:知识工程师在整理表达从领域专家那里 获得的知识时勉强抽象出来的规则有很强的工艺色彩。 对常识和百科知识出奇地贫乏:人工智能学家Feigenbaum估计, 一般人拥有的常识存入计算机大约有100万条事实和抽象经验法则, 离开常识的专家系统有时会比傻子还傻。
19
根据挖掘对象

关系数据库挖掘 面向对象数据库挖掘 空间数据库挖掘 时态数据库挖掘 文本数据源挖掘 多媒体数据库挖掘 异质数据库挖掘 遗产数据库挖掘 web数据挖掘等
2019/2/5
Data Mining: Concepts and Techniques
20
根据挖掘方法
Data Mining: Concepts and Techniques
2019/2/5
13
从商业角度看数据挖掘技术

数据挖掘从本质上说是一种新的商业信息处理技 术:


数据挖掘技术把人们对数据的应用,从低层次的联机查询操作, 提高到决策支持、分析预测等更高级应用上。 通过对数据的统计、分析、综合和推理,发现数据间的关联性、 未来趋势以及一般性的概括知识等,这些知识性的信息可以用来 指导高级商务活动。
9
第一章 绪论
内容提要

数据挖掘技术的产生与发展 数据挖掘研究的发展趋势 数据挖掘概念 数据挖掘技术的分类问题 数据挖掘常用的知识表示模式与方法


不同数据存储形式下的数据挖掘问题
粗糙集方法及其在数据挖掘中的应用 数据挖掘的应用分析
Data Mining: Concepts and Techniques
Visualization
Information Science
Other Disciplines
2019/2/5
Data Mining: Concepts and Techniques
6
数据库系统的发展

60年代:简单文件处理系统向数据库系统变革 。


70年代:层次、网络和关系型数据库普及。
80年代:RDBS及其相关工具、数据索引及数据组 织技术被广泛采用;中期开始,分布式数据库广 发讨论,关系数据库技术和新型技术的结合。 90年代:数据库领域中的新内容、新应用、新技 术层出不穷,形成了庞大的数据库家族;人们期 望分析预测、决策支持等高级应用, Data mining and data warehousing等出现。
2019/2/5 Data Mining: Concepts and Techniques
1
第一章 绪论
内容提要

数据挖掘技术的产生与发展 数据挖掘研究的发展趋势 数据挖掘概念 数据挖掘技术的分类问题 数据挖掘常用的知识表示模式与方法


不同数据存储形式下的数据挖掘问题
粗糙集方法及其在数据挖掘中的应用 数据挖掘的应用分析

下列技术不是数据挖掘:

2019/2/5
Data Mining: Concepts and Techniques
16
数据挖掘研究的理论基础



数据挖掘方法可以是基于数学理论的,也可以是 非数学的;可以是演绎的,也可以是归纳的。 从研究者可能是来自于数据库、人工智能、数理 统计、计算机科学以及其他方面的学者和工程技 术人员,他们会从不同的视点进行探讨性研究。 有下面一些重要的理论视点值得关注:

和数据库技术的结合性研究
2019/2/5
Data Mining: Concepts and Techniques
相关文档
最新文档