机器学习10大经典算法.

机器学习10大经典算法.
机器学习10大经典算法.

1、C4.5

机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。从数据产生决策树的机器学习技术叫做决策树学习, 通俗说就是决策树。

决策树学习也是数据挖掘中一个普通的方法。在这里,每个决策树都表述了一种树型结构,他由他的分支来对该类型的对象依靠属性进行分类。每个决策树可以依靠对源数据库的分割进行数据测试。这个过程可以递归式的对树进行修剪。当不能再进行分割或一个单独的类可以被应用于某一分支时,递归过程就完成了。另外,随机森林分类器将许多决策树结合起来以提升分类的正确率。决策树同时也可以依靠计算条件概率来构造。决策树如果依靠数学的计算方法可以取得更加理想的效果。决策树一般都是自上而下的来生成的。

选择分割的方法有好几种,但是目的都是一致的:对目标类尝试进行最佳的分割。从根到叶子节点都有一条路径,这条路径就是一条“规则”。决策树可以是二叉的,也可以是多叉的。对每个节点的衡量:

1)通过该节点的记录数

2)如果是叶子节点的话,分类的路径

3)对叶子节点正确分类的比例。

有些规则的效果可以比其他的一些规则要好。由于ID3算法在实际应用中存在一些问题,于是Quilan提出了C4.5算法,严格上说C4.5只能是ID3的一个改进算法。相信大家对ID3算法都很.熟悉了,这里就不做介绍。

C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:

1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;

2) 在树构造过程中进行剪枝;

3) 能够完成对连续属性的离散化处理;

4) 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。

来自搜索的其他内容:C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. 分类决策树算法是从大量事例中进行提取分类规则的自上而下的决策树.

决策树的各部分是: 根: 学习的事例集. 枝: 分类的判定条件. 叶: 分好的各个类.

ID3算法

1.概念提取算法CLS

1) 初始化参数C={E},E包括所有的例子,为根.

2) IF C中的任一元素e同属于同一个决策类则创建一个叶子节点YES终止.

ELSE 依启发式标准,选择特征Fi={V1,V2,V3,...Vn}并创建判定节点划分C为互不相交的N个集合C1,C2,C3,...,Cn;

3) 对任一个Ci递归.

2. ID3算法

1) 随机选择C的一个子集W (窗口).

2) 调用CLS生成W的分类树DT(强调的启发式标准在后).

3) 顺序扫描C搜集DT的意外(即由DT无法确定的例子).

4) 组合W与已发现的意外,形成新的W.

5) 重复2)到4),直到无例外为止.

启发式标准:

只跟本身与其子树有关,采取信息理论用熵来量度.

熵是选择事件时选择自由度的量度,其计算方法为

P = freq(Cj,S)/|S|;

INFO(S)= - SUM( P*LOG(P) ) ; SUM()函数是求j从1到n和.

Gain(X)=Info(X)-Infox(X);

Infox(X)=SUM( (|Ti|/|T|)*Info(X);

为保证生成的决策树最小,ID3算法在生成子树时,选取使生成的子树的熵(即Gain(S))最小的的特征来生成子树.

§4.3.3: ID3算法对数据的要求

1. 所有属性必须为离散量.

2. 所有的训练例的所有属性必须有一个明确的值.

3. 相同的因素必须得到相同的结论且训练例必须唯一.

§4.3.4: C4.5对ID3算法的改进:

1. 熵的改进,加上了子树的信息.

Split_Infox(X)= - SUM( (|T|/|Ti| ) *LOG(|Ti|/|T|) );

Gain ratio(X)= Gain(X)/Split Infox(X);

2. 在输入数据上的改进.

1)

因素属性的值可以是连续量,C4.5对其排序并分成不同的集合后按照ID3算法当作离散量进行处理,但结论属性的值必须是离散值.

2) 训练例的因素属性值可以是不确定的,以? 表示,但结论必须是确定的

3. 对已生成的决策树进行裁剪,减小生成树的规模.

2、The k-means algorithm

k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。

假设有k个群组Si, i=1,2,...,k。μi是群组Si内所有元素xj的重心,或叫中心点。

k平均聚类发明于1956年,该算法最常见的形式是采用被称为劳埃德算法(Lloyd algorithm)的迭代式改进探索法。劳埃德算法首先把输入点分成k个初始化分组,可以是随机的或者使用一些启发式数据。然后计算每组的中心点,根据中心点的位置把对象分到离它最近的中心,重新确定分组。继续重复不断地计算中心并重新分组,直到收敛,即对象不再改变分组(中心点位置不再改变)。

劳埃德算法和k平均通常是紧密联系的,但是在实际应用中,劳埃德算法是解决k平均问题的启发式法则,对于某些起始点和重心的组合,劳埃德算法可能实际上收敛于错误的结果。(上面函数中存在的不同的最优解)

虽然存在变异,但是劳埃德算法仍旧保持流行,因为它在实际中收敛非常快。实际上,观察发现迭代次数远远少于点的数量。然而最近,David Arthur和Sergei Vassilvitskii提出存在特定的点集使得k平均算法花费超多项式时间达到收敛。

近似的k平均算法已经被设计用于原始数据子集的计算。

从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。

k平均算法的一个缺点是,分组的数目k是一个输入参数,不合适的k可能返回较差的结果。另外,算法还假设均方误差是计算群组分散度的最佳参数。

3、SVM

支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称svm)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。

支持向量机属于一般化线性分类器.他们也可以认为是提克洛夫规范化(Tikhonov Regularization)方法的一个特例.这族分类器的特点是他们能够同时最小化经验误差与最大化几何边缘区.因此支持向量机也被称为最大边缘区分类器。在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),也就是将隐藏变量象能够观测到的一样包含在内从而计算最大似然的期望值;另外一步是最大化(M),也就是最大化在E 步上找到的最大似然的期望值从而计算参数的最大似然估计。M 步上找到的参数然后用于另外一个E 步计算,这个过程不断交替进行。

Vapnik等人在多年研究统计学习理论基础上对线性分类器提出了另一种设计最佳准则。其原理也从线性可分说起,然后扩展到线性不可分的情况。甚至扩展到使用非线性函数中去,这种分类器被称为支持向量机(Support Vector Machine,简称SVM)。支持向量机的提出有很深的理论背景。支持向量机方法是在近年来提出的一种新方法。

SVM的主要思想可以概括为两点:(1) 它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;(2) 它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。

在学习这种方法时,首先要弄清楚这种方法考虑问题的特点,这就要从线性可分的最简单情况讨论起,在没有弄懂其原理之前,不要急于学习线性不可分等较复杂的情况,支持向量机在设计时,需要用到条件极值问题的求解,因此需用拉格朗日乘子理论,但对多数人来说,以前学到的或常用的是约束条件为等式表示的方式,但在此要用到以不等式作为必须满足的条件,此时只要了解拉格朗日理论的有关结论就行。

介绍

支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和Barnard 将支持向量机和其他分类器进行了比较。

动机

有很多个分类器(超平面)可以把数据分开,但是只有一个能够达到最大分割。我们通常希望分类的过程是一个机器学习的过程。这些数据点并不需要是中的点,而可以是任意(统计学符号)中或者(计算机科学符号) 的点。我们希望能够把这些点通过一个n-1维的超平面分开,通常这个被称为线性分类器。有很多分类器都符合这个要求,但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。

问题定义

设样本属于两个类,用该样本训练svm得到的最大间隔超平面。在超平面上的样本点也称为支持向量.我们考虑以下形式的样本点

其中ci为1或?1 --用以表示数据点属于哪个类. 是一个p ? (统计学符号), 或n ? (计算机科学符号) 维向量,其每个元素都被缩放到[0,1]或[-1,1].缩放的目的是防止方差大的随机变量主导分类过程.我们可以把这些数据称为“训练数据”,希望我们的支持向量机能够通过一个超平面正确的把他们分开。超平面的数学形式可以写作

根据几何知识,我们知道向量垂直于分类超平面。加入位移b的目的是增加间隔.如果没有b 的话,那超平面将不得不通过原点,限制了这个方法的灵活性。

由于我们要求最大间隔,因此我们需要知道支持向量以及(与最佳超平面)平行的并且离支持向量最近的超平面。我们可以看到这些平行超平面可以由方程族:

来表示。

如果这些训练数据是线性可分的,那就可以找到这样两个超平面,在它们之间没有任何样本点并且这两个超平面之间的距离也最大.通过几何不难得到这两个超平面之间的距离是2/|w|,因此我们需要最小化|w|。同时为了使得样本数据点都在超平面的间隔区以外,我们需要保证对于所有的i 满足其中的一个条件

这两个式子可以写作:

原型

现在寻找最佳超平面这个问题就变成了在(1)这个约束条件下最小化|w|.这是一个二次規劃QP(quadratic programming)最优化中的问题。

更清楚的,它可以表示如下:

最小化, 满足。

1/2 这个因子是为了数学上表达的方便加上的。

对偶型(Dual Form)

把原型的分类规则写作对偶型,可以看到分类器其实是一个关于支持向量(即那些在间隔区边缘的训练样本点)的函数。

支持向量机的对偶型如下:并满足αi > = 0

软间隔

1995年, Corinna Cortes 与Vapnik 提出了一种改进的最大间隔区方法,这种方法可以处理标记错误的样本。如果可区分正负例的超平面不存在,则“软边界”将选择一个超平面尽可能清晰地区分样本,同时使其与分界最清晰的样本的距离最大化。这一成果使术语“支持向量机”(或“SVM”)得到推广。这种方法引入了松驰参数ξi以衡量对数据xi的误分类度。

随后,将目标函数与一个针对非0ξi的惩罚函数相加,在增大间距和缩小错误惩罚两大目标之间进行权衡优化。如果惩罚函数是一个线性函数,则等式(3)变形为

4、Apriori算法

Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。

Apriori演算法所使用的前置统计量包括了:

?最大规则物件数:规则中物件组所包含的最大物件数量

?最小支援:规则中物件或是物件组必顸符合的最低案例数

?最小信心水准:计算规则所必须符合的最低信心水准门槛

该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递推的方法。

可能产生大量的候选集,以及可能需要重复扫描数据库,是Apriori算法的两大缺点。5、最大期望(EM)算法

在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),也就是将隐藏变量象能够观测到的一样包含在内从而计算最大似然的期望值;另外一步是最大化(M),也就是最大化在E 步上找到的最大似然的期望值从而计算参数的最大似然估计。M 步上找到的参数然后用于另外一个E 步计算,这个过程不断交替进行。

最大期望过程说明

我们用表示能够观察到的不完整的变量值,用表示无法观察到的变量值,这样和一起组成了完整的数据。可能是实际测量丢失的数据,也可能是能够简化问题的隐藏变量,如果它的值能够知道的话。例如,在混合模型(Mixture Model)中,如果“产生”样本的混合元素成分已知的话最大似然公式将变得更加便利(参见下面的例子)。

估计无法观测的数据

让代表矢量θ: 定义的参数的全部数据的概率分布(连续情况下)或者概率集聚函数(离散情况下),那么从这个函数就可以得到全部数据的最大似然值,另外,在给定的观察到的数据条件下未知数据的条件分布可以表示为:

6、PageRank

PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。

Google的PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。

Google有一套自动化方法来计算这些投票。Google的PageRank分值从0到10;PageRank 为10表示最佳,但非常少见,类似里氏震级(Richter scale),PageRank级别也不是线性的,而是按照一种指数刻度。这是一种奇特的数学术语,意思是PageRank4不是比PageRank3好一级——而可能会好6到7倍。因此,一个PageRank5的网页和PageRank8的网页之间的差距会比你可能认为的要大的多。

PageRank较高的页面的排名往往要比PageRank较低的页面高,而这导致了人们对链接的着魔。在整个SEO社区,人们忙于争夺、交换甚至销售链接,它是过去几年来人们关注的焦点,以至于Google修改了他的系统,并开始放弃某些类型的链接。比如,被人们广泛接受的一条规定,来自缺乏内容的“link farm”(链接工厂)网站的链接将不会提供页面的PageRank,从PageRank较高的页面得到链接但是内容不相关(比如说某个流行的漫画书网站链接到一个叉车规范页面),也不会提供页面的PageRank。Google选择降低了PageRank 对更新频率,以便不鼓励人们不断的对其进行监测。

Google PageRank一般一年更新四次,所以刚上线的新网站不可能获得PR值。你的网站很可能在相当长的时间里面看不到PR值的变化,特别是一些新的网站。PR值暂时没有,这不是什么不好的事情,耐心等待就好了。

为您的网站获取外部链接是一件好事,但是无视其他SEO领域的工作而进行急迫的链接建设就是浪费时间,要时刻保持一个整体思路并记住以下几点:

·Google的排名算法并不是完全基于外部链接的

·高PageRank并不能保证Google高排名

·PageRank值更新的比较慢,今天看到的PageRank值可能是三个月前的值

因此我们不鼓励刻意的去追求PageRank,因为决定排名的因素可以有上百种。尽管如此,PageRank还是一个用来了解Google对您的网站页面如何评价的相当好的指示,建议网站设计者要充分认识PageRank在Google判断网站质量中的重要作用,从设计前的考虑到后期网站更新都要给予PageRank足够的分析,很好的利用。我们要将PageRank看作是一种业余爱好而不是一种信仰。

--------------------------------------------------------------------------------------------------------------------- 通过对由超过50,000 万个变量和20 亿个词汇组成的方程进行计算,PageRank 能够对网页的重要性做出客观的评价。PageRank 并不计算直接链接的数量,而是将从网页A 指向网页 B 的链接解释为由网页 A 对网页 B 所投的一票。这样,PageRank 会根据网页 B 所收到的投票数量来评估该页的重要性。

此外,PageRank 还会评估每个投票网页的重要性,因为某些网页的投票被认为具有较高的价值,这样,它所链接的网页就能获得较高的价值。重要网页获得的PageRank(网页排名)较高,从而显示在搜索结果的顶部。Google 技术使用网上反馈的综合信息来确定某个网页的重要性。搜索结果没有人工干预或操纵,这也是为什么Google 会成为一个广受用户信赖、不受付费排名影响且公正客观的信息来源。

---------------

其实简单说就是民主表决。打个比方,假如我们要找李开复博士,有一百个人举手说自己是李开复。那么谁是真的呢?也许有好几个真的,但即使如此谁又是大家真正想找的呢?:-) 如果大家都说在Google 公司的那个是真的,那么他就是真的。

在互联网上,如果一个网页被很多其它网页所链接,说明它受到普遍的承认和信赖,那么它的排名就高。这就是Page Rank 的核心思想。当然Google 的Page Rank 算法实际上要复杂得多。比如说,对来自不同网页的链接对待不同,本身网页排名高的链接更可靠,于是给这些链接予较大的权重。Page Rank 考虑了这个因素,可是现在问题又来了,计算搜索结果的网页排名过程中需要用到网页本身的排名,这不成了先有鸡还是先有蛋的问题了吗?

Google 的两个创始人拉里·佩奇(Larry Page )和谢尔盖·布林(Sergey Brin) 把这个问题变成了一个二维矩阵相乘的问题,并且用迭代的方法解决了这个问题。他们先假定所有网页的排名是相同的,并且根据这个初始值,算出各个网页的第一次迭代排名,然后再根据第一次迭代排名算出第二次的排名。他们两人从理论上证明了不论初始值如何选取,这种算法都保证了网页排名的估计值能收敛到他们的真实值。值得一提的事,这种算法是完全没有

任何人工干预的。

理论问题解决了,又遇到实际问题。因为互联网上网页的数量是巨大的,上面提到的二维矩阵从理论上讲有网页数目平方之多个元素。如果我们假定有十亿个网页,那么这个矩阵就有一百亿亿个元素。这样大的矩阵相乘,计算量是非常大的。拉里和谢尔盖两人利用稀疏矩阵计算的技巧,大大的简化了计算量,并实现了这个网页排名算法。今天Google 的工程师把这个算法移植到并行的计算机中,进一步缩短了计算时间,使网页更新的周期比以前短了许多。

我来Google 后,拉里(Larry) 在和我们几个新员工座谈时,讲起他当年和谢尔盖(Sergey) 是怎么想到网页排名算法的。他说:"当时我们觉得整个互联网就像一张大的图(Graph),每个网站就像一个节点,而每个网页的链接就像一个弧。我想,互联网可以用一个图或者矩阵描述,我也许可以用这个发现做个博士论文。" 他和谢尔盖就这样发明了Page Rank 的算法。

网页排名的高明之处在于它把整个互联网当作了一个整体对待。它无意识中符合了系统论的观点。相比之下,以前的信息检索大多把每一个网页当作独立的个体对待,很多人当初只注意了网页内容和查询语句的相关性,忽略了网页之间的关系。

今天,Google 搜索引擎比最初复杂、完善了许多。但是网页排名在Google 所有算法中依然是至关重要的。在学术界, 这个算法被公认为是文献检索中最大的贡献之一,并且被很多大学引入了信息检索课程(Information Retrieval) 的教程。

如何提高你网页的PR 值?

什么是PR值呢? PR值全称为PageRank,PR是英文Pagerank 的缩写形式,Pagerank取自Google的创始人LarryPage,它是Google排名运算法则(排名公式)的一部分,Pagerank 是Google对网页重要性的评估,是Google用来衡量一个网站的好坏的唯一标准。PageRank(网页级别)是Google用于评测一个网页“重要性”的一种方法。在揉合了诸如Title 标识和Keywords标识等所有其它因素之后,Google通过PageRank来调整结果,使那些更具“重要性”的网页在搜索结果中另网站排名获得提升,从而提高搜索结果的相关性和质量。PR值的级别从1到10级,10级为满分。PR值越高说明该网页越受欢迎。Google把自己的网站的PR值定到10,这说明Google这个网站是非常受欢迎的,也可以说这个网站非常重要。Google大受青睐的另一个原因就是它的网站索引速度。向Google提交你的网站直到为Google收录,一般只需两个星期。如果你的网站已经为Google收录,那么通常Google会每月一次遍历和更新(重新索引)你的网站信息。不过对于那些PR值(Pagerank)较高的网站,

Google索引周期会相应的短一些。一个PR值为1的网站表明这个网站不太具有流行度,而PR值为7到10则表明这个网站非常受欢迎。PR值最高为10,一般PR值达到4,就算是一个不错的网站了。那么PR值都受那些因素影响呢?下面我们一起来看看。

第一:网站外部链接的数量和质量

在计算网站排名时,Pagerank会将网站的外部链接数考虑进去。并不能说一个网站的外部链接数越多其PR值就越高,如果这样的话,一个网站尽可能获得最多的外部链接就OK 了,有这种想法是错误的。Google对一个网站上的外部链接数的重视程度并不意味着你因此可以不求策略地与任何网站建立连接。这是因为Google并不是简单地由计算网站的外部链接数来决定其等级。Google的Pagerank系统不单考虑一个网站的外部链接质量,也会考虑其数量。这个问题看来很有复杂。首先让我们来解释一下什么是阻尼因数(damping factor)。阻尼因素就是当你投票或链接到另外一个站点时所获得的实际PR分值。阻尼因数一般是0.85。当然比起你网站的实际PR值,它就显得微不足道了。

现在让我们来看看这个PR分值的计算公式:PR(A)=(1- d)+d(PR(t1)/C(t1)+...+PR(tn)/C(tn)) 公式解释:其中PR(A)表示的是从一个外部链接站点t1上,依据Pagerank?系统给你的网站所增加的PR分值;PR(t1)表示该外部链接网站本身的PR分值;C(t1)则表示该外部链接站点所拥有的外部链接数量。大家要谨记:一个网站的投票权值只有该网站PR分值的0.85,那么,是不是说对一个网站而言,它所拥有的较高网站质量和较高PR分值的外部链接数量越多就越好呢?错,因为-Google的Pagerank系统不单考虑一个网站的外部链接质量,也会考虑其数量.比方说,对一个有一定PR值的网站X来说,如果你的网站Y是它的唯一一个外部链接,那么Google就相信网站X将你的网站Y视做它最好的一个外部链接,从而会给你的网站Y更多的分值。可是,如果网站X 上已经有49个外部链接,那么Google就相信网站X只是将你的网站视做它第50个好的网站。因而你的外部链接站点上的外部链接数越多,你所能够得到的PR分值反而会越低,它们呈反比关系。

说它对是因为-一般情况下,一个PR分值大于等于6的外部链接站点,可显著提升你的PR分值。但如果这个外部链接站点已经有100个其它的外部链接时,那你能够得到的PR 分值就几乎为零了。同样,如果一个外部链接站点的PR值仅为2,但你却是它的唯一一个外部链接,那么你所获得的PR值要远远大于那个PR值为6,外部链接数为100的网站。

而且这个0.85的权值平均分配给其链接的每个外部网站。

第二:Google在你的网站抓取的页面数

Google在你的网站抓取的页面数,数目越多,Pagerank值越高。但通常Google 并不会

数学建模笔记

数学模型按照不同的分类标准有许多种类: 1。按照模型的数学方法分,有几何模型,图论模型,微分方程模型.概率模型,最优控制模型,规划论模型,马氏链模型. 2。按模型的特征分,有静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型. 3.按模型的应用领域分,有人口模型,交通模型,经济模型,生态模型,资源模型。环境模型。 4.按建模的目的分,有预测模型,优化模型,决策模型,控制模型等。 5.按对模型结构的了解程度分,有白箱模型,灰箱模型,黑箱模型。 数学建模的十大算法: 1.蒙特卡洛算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法。) 2.数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具。) 3.线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lingo、lingdo软件实现) 4.图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。) 5.动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题时用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需谨慎使用) 7.网格算法和穷举法(当重点讨论模型本身而情史算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8.一些连续离散化方法(很多问题都是从实际来的,数据可以是连续的,而计算机只认得是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

机器学习10大算法-周辉

机器学习10大算法 什么是机器学习呢? 从广泛的概念来说,机器学习是人工智能的一个子集。人工智能旨在使计算机更智能化,而机器学习已经证明了如何做到这一点。简而言之,机器学习是人工智能的应用。通过使用从数据中反复学习到的算法,机器学习可以改进计算机的功能,而无需进行明确的编程。 机器学习中的算法有哪些? 如果你是一个数据科学家或机器学习的狂热爱好者,你可以根据机器学习算法的类别来学习。机器学习算法主要有三大类:监督学习、无监督学习和强化学习。 监督学习 使用预定义的“训练示例”集合,训练系统,便于其在新数据被馈送时也能得出结论。系统一直被训练,直到达到所需的精度水平。 无监督学习 给系统一堆无标签数据,它必须自己检测模式和关系。系统要用推断功能来描述未分类数据的模式。 强化学习 强化学习其实是一个连续决策的过程,这个过程有点像有监督学习,只是标注数据不是预先准备好的,而是通过一个过程来回调整,并给出“标注数据”。

机器学习三大类别中常用的算法如下: 1. 线性回归 工作原理:该算法可以按其权重可视化。但问题是,当你无法真正衡量它时,必须通过观察其高度和宽度来做一些猜测。通过这种可视化的分析,可以获取一个结果。 回归线,由Y = a * X + b表示。 Y =因变量;a=斜率;X =自变量;b=截距。 通过减少数据点和回归线间距离的平方差的总和,可以导出系数a和b。 2. 逻辑回归 根据一组独立变量,估计离散值。它通过将数据匹配到logit函数来帮助预测事件。 下列方法用于临时的逻辑回归模型: 添加交互项。 消除功能。 正则化技术。 使用非线性模型。 3. 决策树 利用监督学习算法对问题进行分类。决策树是一种支持工具,它使用树状图来决定决策或可能的后果、机会事件结果、资源成本和实用程序。根据独立变量,将其划分为两个或多个同构集。 决策树的基本原理:根据一些feature 进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

十大经典数学模型

1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)元胞自动机 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 以上为各类算法的大致介绍,下面的内容是详细讲解,原文措辞详略得当,虽然不是面面俱到,但是已经阐述了主要内容,简略之处还望大家多多讨论。 1、蒙特卡罗方法(MC)(Monte Carlo): 蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第二次世界大战进行研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。 可以把蒙特卡罗解题归结为三个主要步骤: 构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 例:蒲丰氏问题 为了求得圆周率π值,在十九世纪后期,有很多人作了这样的试验:将长为2l的一根针任意投到地面上,用针与一组相间距离为2a( l<a)的平行线相交的频率代替概率P,再利用准确的关系式:

数据挖掘领域的十大经典算法原理及应用

数据挖掘领域的十大经典算法原理及应用 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1.C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV 机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面

机器学习十大算法:CART

Chapter10 CART:Classi?cation and Regression Trees Dan Steinberg Contents 10.1Antecedents (180) 10.2Overview (181) 10.3A Running Example (181) 10.4The Algorithm Brie?y Stated (183) 10.5Splitting Rules (185) 10.6Prior Probabilities and Class Balancing (187) 10.7Missing Value Handling (189) 10.8Attribute Importance (190) 10.9Dynamic Feature Construction (191) 10.10Cost-Sensitive Learning (192) 10.11Stopping Rules,Pruning,Tree Sequences,and Tree Selection (193) 10.12Probability Trees (194) 10.13Theoretical Foundations (196) 10.14Post-CART Related Research (196) 10.15Software Availability (198) 10.16Exercises (198) References (199) The1984monograph,“CART:Classi?cation and Regression Trees,”coauthored by Leo Breiman,Jerome Friedman,Richard Olshen,and Charles Stone(BFOS),repre-sents a major milestone in the evolution of arti?cial intelligence,machine learning, nonparametric statistics,and data mining.The work is important for the compre-hensiveness of its study of decision trees,the technical innovations it introduces,its sophisticated examples of tree-structured data analysis,and its authoritative treatment of large sample theory for trees.Since its publication the CART monograph has been cited some3000times according to the science and social science citation indexes; Google Scholar reports about8,450citations.CART citations can be found in almost any domain,with many appearing in?elds such as credit risk,targeted marketing,?-nancial markets modeling,electrical engineering,quality control,biology,chemistry, and clinical medical research.CART has also strongly in?uenced image compression 179

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

十 大 经 典 排 序 算 法 总 结 超 详 细

数据挖掘十大经典算法,你都知道哪些? 当前时代大数据炙手可热,数据挖掘也是人人有所耳闻,但是关于数据挖掘更具体的算法,外行人了解的就少之甚少了。 数据挖掘主要分为分类算法,聚类算法和关联规则三大类,这三类基本上涵盖了目前商业市场对算法的所有需求。而这三类里又包含许多经典算法。而今天,小编就给大家介绍下数据挖掘中最经典的十大算法,希望它对你有所帮助。 一、分类决策树算法C4.5 C4.5,是机器学习算法中的一种分类决策树算法,它是决策树(决策树,就是做决策的节点间的组织方式像一棵倒栽树)核心算法ID3的改进算法,C4.5相比于ID3改进的地方有: 1、用信息增益率选择属性 ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(shang),一种不纯度度量准则,也就是熵的变化值,而 C4.5用的是信息增益率。区别就在于一个是信息增益,一个是信息增益率。 2、在树构造过程中进行剪枝,在构造决策树的时候,那些挂着几个元素的节点,不考虑最好,不然容易导致过拟。 3、能对非离散数据和不完整数据进行处理。 该算法适用于临床决策、生产制造、文档分析、生物信息学、空间数据建模等领域。 二、K平均算法

K平均算法(k-means algorithm)是一个聚类算法,把n个分类对象根据它们的属性分为k类(kn)。它与处理混合正态分布的最大期望算法相似,因为他们都试图找到数据中的自然聚类中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。 k-Means 算法常用于图片分割、归类商品和分析客户。 三、支持向量机算法 支持向量机(Support Vector Machine)算法,简记为SVM,是一种监督式学习的方法,广泛用于统计分类以及回归分析中。 SVM的主要思想可以概括为两点: (1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分; (2)它基于结构风险最小化理论之上,在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。 四、The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法,其核心是基于两阶段“频繁项集”思想的递推算法。其涉及到的关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支

数据挖掘十大待解决问题

数据挖掘领域10大挑战性问题与十大经典算法 2010-04-21 20:05:51| 分类:技术编程| 标签:|字号大中小订阅 作为一个数据挖掘工作者,点可以唔知呢。 数据挖掘领域10大挑战性问题: 1.Developing a Unifying Theory of Data Mining 2.Scaling Up for High Dimensional Data/High Speed Streams 3.Mining Sequence Data and Time Series Data 4.Mining Complex Knowledge from Complex Data 5.Data Mining in a Network Setting 6.Distributed Data Mining and Mining Multi-agent Data 7.Data Mining for Biological and Environmental Problems 8.Data-Mining-Process Related Problems 9.Security, Privacy and Data Integrity 10.Dealing with Non-static, Unbalanced and Cost-sensitive Data 数据挖掘十大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm

机器学习十大算法8:kNN

Chapter8 k NN:k-Nearest Neighbors Michael Steinbach and Pang-Ning Tan Contents 8.1Introduction (151) 8.2Description of the Algorithm (152) 8.2.1High-Level Description (152) 8.2.2Issues (153) 8.2.3Software Implementations (155) 8.3Examples (155) 8.4Advanced Topics (157) 8.5Exercises (158) Acknowledgments (159) References (159) 8.1Introduction One of the simplest and rather trivial classi?ers is the Rote classi?er,which memorizes the entire training data and performs classi?cation only if the attributes of the test object exactly match the attributes of one of the training objects.An obvious problem with this approach is that many test records will not be classi?ed because they do not exactly match any of the training records.Another issue arises when two or more training records have the same attributes but different class labels. A more sophisticated approach,k-nearest neighbor(k NN)classi?cation[10,11,21],?nds a group of k objects in the training set that are closest to the test object,and bases the assignment of a label on the predominance of a particular class in this neighborhood.This addresses the issue that,in many data sets,it is unlikely that one object will exactly match another,as well as the fact that con?icting information about the class of an object may be provided by the objects closest to it.There are several key elements of this approach:(i)the set of labeled objects to be used for evaluating a test object’s class,1(ii)a distance or similarity metric that can be used to compute This need not be the entire training set. 151

人工智能之机器学习常见算法

人工智能之机器学习常见算法 摘要机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里小编为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。 学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习: 在监督式学习下,输入数据被称为训练数据,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中垃圾邮件非垃圾邮件,对手写数字识别中的1,2,3,4等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与训练数据的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(LogisTIc Regression)和反向传递神经网络(Back PropagaTIon Neural Network) 非监督式学习: 在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means 算法。 半监督式学习: 在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预

数学建模十种常用算法

数学建模有下面十种常用算法, 可供参考: 1.蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问 题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2.数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数 据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3.线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多 数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4.图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算 法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5.动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算 法设计中比较常用的方法,很多场合可以用到竞赛中) 6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些 问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7.网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很 多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8.一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9.数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分 析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10.图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中 也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab 进行处理)

数学建模中常见的十大模型讲课稿

数学建模中常见的十 大模型

精品文档 数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的 收集于网络,如有侵权请联系管理员删除

机器学习的十种经典算法详解

机器学习的十种经典算法详解 毫无疑问,近些年机器学习和人工智能领域受到了越来越多的关注。随着大数据成为当下工业界最火爆的技术趋势,机器学习也借助大数据在预测和推荐方面取得了惊人的成绩。比较有名的机器学习案例包括Netflix根据用户历史浏览行为给用户推荐电影,亚马逊基于用户的历史购买行为来推荐图书。那么,如果你想要学习机器学习的算法,该如何入门呢?就我而言,我的入门课程是在哥本哈根留学时选修的人工智能课程。老师是丹麦科技大学应用数学和计算机专业的全职教授,他的研究方向是逻辑学和人工智能,主要是用逻辑学的方法来建模。课程包括了理论/核心概念的探讨和动手实践两个部分。我们使用的教材是人工智能的经典书籍之一:Peter Norvig教授的《人工智能——一种现代方法》,课程涉及到了智能代理、基于搜索的求解、对抗搜索、概率论、多代理系统、社交化人工智能,以及人工智能的伦理和未来等话题。在课程的后期,我们三个人还组队做了编程项目,实现了基于搜索的简单算法来解决虚拟环境下的交通运输任务。我从课程中学到了非常多的知识,并且打算在这个专题里继续深入学习。在过去几周内,我参与了旧金山地区的多场深度学习、神经网络和数据架构的演讲——还有一场众多知名教授云集的机器学习会议。最重要的是,我在六月初注册了Udacity的《机器学习导论》在线课程,并且在几天前学完了课程内容。在本文中,我想分享几个我从课程中学到的常用机器学习算法。机器学习算法通常可以被分为三大类——监督式学习,非监督式学习和强化学习。监督式学习主要用于一部分数据集(训练数据)有某些可以获取的熟悉(标签),但剩余的样本缺失并且需要预测的场景。非监督式学习主要用于从未标注数据集中挖掘相互之间的隐含关系。强化学习介于两者之间——每一步预测或者行为都或多或少有一些反馈信息,但是却没有准确的标签或者错误提示。由于这是入门级的课程,并没有提及强化学习,但我希望监督式学习和非监督式学习的十个算法足够吊起你的胃口了。监督式学习1.决策树:决策树是一种决策支持工具,它使用树状图或者树状模型来表示决策过程以及后续得到的结果,包括概率事件结果等。请观察下图来理解决策树的结构。 从商业决策的角度来看,决策树就是通过尽可能少的是非判断问题来预测决策正确的概

数据挖掘中十大经典算法

数据挖掘十大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。 5. 最大期望(EM)算法 在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。 6. PageRank PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里?佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个

数据挖掘算法

数据挖掘的10大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在 构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm

相关文档
最新文档