基于机器视觉的尺寸测量应用综述

合集下载

基于机器视觉的机械零部件尺寸测量技术研究

基于机器视觉的机械零部件尺寸测量技术研究

基于机器视觉的机械零部件尺寸测量技术研究导言近年来,随着机械工业的不断发展,对机械零部件尺寸测量技术的要求也越来越高。

传统的人工测量虽然能够满足一定的需求,但其存在的主观性和不稳定性仍然是主要问题。

为了解决这一问题,基于机器视觉的机械零部件尺寸测量技术应运而生。

本文将探讨基于机器视觉的机械零部件尺寸测量技术的研究现状和未来发展趋势。

一、技术原理基于机器视觉的机械零部件尺寸测量技术是利用计算机和摄像设备对机械零部件进行图像采集和处理,通过图像处理算法获取零部件的尺寸信息。

其技术原理主要分为图像采集、图像处理和尺寸测量三个步骤。

图像采集是基于机器视觉的机械零部件尺寸测量技术的第一步。

通过高分辨率摄像设备对机械零部件进行拍摄,获取清晰的图像。

高分辨率的摄像设备能够提供更多的图像信息,有助于提高尺寸测量的准确性。

图像处理是基于机器视觉的机械零部件尺寸测量技术的核心步骤。

通过图像处理算法对采集到的图像进行分析和处理,去除图像中的噪声和干扰,提取出零部件的边缘特征。

常用的图像处理算法包括边缘检测、二值化、轮廓提取等。

尺寸测量是基于机器视觉的机械零部件尺寸测量技术的最终目标。

通过对图像处理后的图像数据进行尺寸计算,得到机械零部件的尺寸信息。

常用的尺寸测量方法包括长度测量、宽度测量、直径测量等。

二、研究现状基于机器视觉的机械零部件尺寸测量技术已经在工业领域得到广泛应用。

目前,研究人员主要集中在算法改进、设备优化和测量系统的智能化方面进行研究。

在算法改进方面,研究人员提出了许多新的图像处理算法和尺寸测量方法。

例如,基于边缘检测和霍夫变换的尺寸测量方法可以提高测量的准确性和稳定性。

另外,利用深度学习技术进行图像处理和尺寸测量也成为研究热点。

这些算法的出现极大地推动了基于机器视觉的机械零部件尺寸测量技术的发展。

在设备优化方面,研究人员致力于提高摄像设备的性能和精度。

高分辨率、高帧率的摄像设备能够提供更多的图像信息,从而提高尺寸测量的准确性。

基于机器视觉的尺寸测量应用综述

基于机器视觉的尺寸测量应用综述

基于机器视觉的尺寸测量应用综述机器视觉是指利用计算机和数字设备对图像或视频流进行处理和分析,从而实现自动检测、识别、分类、跟踪等各种功能。

在制造业中,机器视觉技术被广泛应用于产品的质量检测、尺寸测量、物料分类等方面。

尺寸测量是机器视觉应用中的一个重要领域。

传统的尺寸测量方法需要人工测量和记录,工作效率低下且精度难以保证。

而基于机器视觉的尺寸测量可以快速、准确地完成尺寸测量任务,有效提高生产效率。

1. 边缘检测法边缘检测法是一种基于图像处理的尺寸测量方法。

其过程是先通过图像处理算法提取出该物体或零件的特定区域,再通过边缘检测算法得到其边缘的位置,最终计算出其尺寸。

该方法适用于较规整、较简单的物体或零件,也适用于工件外形检测和表面检测。

2. 结构光扫描法结构光扫描法是一种三维扫描技术,通过投射特定光源的光线,获取不同角度下的物体或零件表面信息,进而实现三维测量。

该方法具有操作简单、测量快速、精度高等优点,广泛应用于汽车制造、电子制造、航空航天等领域。

相位检测法基于物体边缘处光源波形的相位差异,通过计算光源波形的相位差,得到物体的边缘信息,从而实现尺寸测量。

该方法具有测量精度高、适用范围广等优点,尤其适用于弯曲、复杂形状的物体测量。

4. 激光三角测量法激光三角测量法也是一种常见的三维测量方法,通过激光束和相机组成的测量系统,测量物体表面到激光发射源和相机的距离,根据三角函数原理,计算出物体表面各点的位置。

该方法精度高、测量范围广,适用于检测精度要求较高的工件。

总之,基于机器视觉的尺寸测量应用在制造业中具有重要的意义,它可以提高生产效率,缩短制造周期,保证产品质量。

在未来,随着机器视觉技术的不断发展和运用,基于机器视觉的尺寸测量应用将会得到更广泛的应用。

基于机器视觉的尺寸测量方法

基于机器视觉的尺寸测量方法

基于机器视觉的尺寸测量方法
机器视觉是一种通过摄像机、图像处理软件、计算机和人工智能技术来模拟人类视觉的技术。

在制造业中,机器视觉已经被广泛应用于尺寸测量,其高精度和高效率的特点使其成为自动化生产线上重要的测量手段。

基于机器视觉的尺寸测量方法是通过摄像机获取待测物体的影像,通过图像处理软件提取物体的轮廓或特征点,然后利用数学模型计算物体的尺寸。

这种方法不仅可以测量平面物体的尺寸,还可以对三维物体的长度、宽度、高度等尺寸参数进行测量。

在实际应用中,基于机器视觉的尺寸测量方法需要考虑以下几个方面:
1. 图像质量:图像质量直接影响测量精度,因此需要保证摄像机的分辨率、对比度、光线等条件都符合要求。

2. 物体表面的特征:在进行尺寸测量之前,需要对物体表面进行特征提取。

对于平面物体,可以直接提取物体的轮廓;对于三维物体,需要先通过立体匹配算法建立物体的三维模型,然后提取其特征点。

3. 计算模型:测量结果的精度和稳定性与计算模型密切相关。

因此需要根据实际应用场景选择适当的计算模型,并进行模型的优化和验证。

4. 测量环境:测量环境对测量精度也有一定的影响。

需要保证测量环境的稳定性和灰度均匀性,避免光照不均或者物体本身存在遮
挡等情况。

基于机器视觉的尺寸测量方法已经被广泛应用于汽车、航空、电子、医疗等领域。

随着机器视觉技术的不断发展和完善,基于机器视觉的尺寸测量方法将会更加精准和高效。

基于机器视觉的尺寸测量应用综述

基于机器视觉的尺寸测量应用综述

基于机器视觉的尺寸测量应用综述机器视觉是一种将图像处理和模式识别技术应用于自动化检测和测量的方法。

尺寸是指物体在空间中的长度、宽度、高度等物理量,尺寸的测量应用是机器视觉应用的重点之一。

本文就基于机器视觉的尺寸测量应用进行综述。

(1)尺寸测量应用的基础原理机器视觉的尺寸测量基本原理是通过像素和实际尺寸之间的比例关系实现测量。

在尺寸测量之前,首先需要进行像素和实际尺寸的转换。

通常的方法是通过摄像机标定来获得相机的内部参数,包括焦距、主点等参数。

尺寸测量应用的技术难点主要包括以下几个方面:①测量精度:对于工业生产中对尺寸要求较高的应用,需要达到高精度的尺寸测量。

而且由于图像采集过程中会出现噪声等因素的干扰,会对测量精度产生影响。

②特征提取: 尺寸的测量需要先提取出物体的边缘和其他特征,而不是整个物体。

特征提取的准确度和快速性直接影响到尺寸测量的精度和效率。

③测量环境: 尺寸的测量受到环境因素的影响。

例如,在强烈的光线下或反光的表面上,会降低测量的准确度。

随着机器视觉技术的发展,尺寸测量应用得到了很大的进展。

尺寸测量应用主要分为两个方向:精度和效率。

①提高测量精度: 在精度方面,为了提高尺寸测量的精度,人们使用了更高分辨率的摄像头和更好的图像算法。

例如,通常使用的算法是基于边缘检测和边缘匹配的算法,是目前精度比较高的一种算法。

②提高测量效率:在效率方面,人们不断尝试使用更快、更简单的算法来实现快速的尺寸测量。

例如,特征点提取法和物体模板匹配法,可以在短时间内快速地提取特征和匹配物体。

尺寸测量应用可以应用于各种不同领域。

以下是一些尺寸测量的应用领域:①制造业: 尺寸测量在制造业中使用广泛。

例如,测量机配合机器视觉可以完成工件尺寸的测量、质量检测和快速计算。

②医疗: 机器视觉尺寸测量可以用于医疗器械的设计和制造中,如人工关节和牙科器具。

③建筑: 在建筑领域中,机器视觉尺寸测量可以用于建筑结构的检测和量化,如土木工程、桥梁和隧道测量。

基于机器视觉的工件尺寸测量研究_1

基于机器视觉的工件尺寸测量研究_1

基于机器视觉的工件尺寸测量研究发布时间:2023-01-30T01:36:30.917Z 来源:《中国建设信息化》2022年第18期作者:许仕奇[导读] 在工件尺寸测量方面,当前大部分工厂会选择人工测量的方式许仕奇东莞市普密斯精密仪器有限公司广东东莞 523000摘要:在工件尺寸测量方面,当前大部分工厂会选择人工测量的方式,不仅浪费了大量的人力资源而且无法获得精准的测量结果。

为了避免这类事情的出现,本文提出了基于机器视觉的工件尺寸测量。

选择合适的系统硬件和系统软件设施,保证获取数据的准确性。

在测量方法的选择上利用系统图像预处理方法达成较好的去噪效果,基于Ramer算法进行轮廓分割,基于Tukey算法进行拟合,保证达成较好的机器视角下的工件尺寸测量效果。

以上工件测量方法不仅能够增加工件尺寸测量的效率和效果,还能够为自动化生产提供必要基础保障,不断提升我国工业生产的整体效果。

关键词:机器视觉;工件尺寸;测量研究;自动化引言:现代化生产过程中,常常需要测量工件尺寸判断产品和生产标准是否吻合。

特别是多工工件的尺寸测量,如果选择人工测量的方法则需要对圆孔、直线进行系统的测量,测量过程的效率和精度均得不到有效保障。

传统生产过程中往往会采用人工测量的方法,测量量程受测量工具限制、测量精度受到测量人员的主观能动性影响。

不能进行大批次的高强度和高精度测量,无法满足大量生产和高精度工业的测量需要。

随着计算机技术和图像处理技术的发展,机器视觉的识别和检测技术被广泛应用。

这一方法可以实现对测量目标的无接触实时自动检测效果,具备精度、效率较高,客观性和自动化明显的特征。

1基于机器视觉的工件尺寸测量方法1.1系统图像预处理图像预处理环节指的是识别并分析图像。

传统图像预处理环节指的是去除原图像中的无用信息,加快检测速度的方法。

采集的图像包括色彩信息内容,为了降低颜色对图像的干扰,需要将彩色的图像经过灰度化变为灰度图像。

此时的原始工件图像会被噪声所污染,对后续工件定位环节会造成不良影响。

基于机器视觉的测量系统开发与应用

基于机器视觉的测量系统开发与应用

基于机器视觉的测量系统开发与应用随着现代科技的不断发展,机器视觉作为其中的一个重要技术,已经得到广泛的应用。

利用机器视觉技术,可以对各种物体的形状、大小、颜色等参数进行精确测量和分析,从而实现很多现实生活中的应用。

基于机器视觉的测量系统开发可以说是机器视觉技术的重要应用之一,主要是指将机器视觉技术应用于测量领域,开发出一种可以对物体进行精确测量的系统。

在日常工作和生活中,很多领域都需要精确定量测量的数据,比如工业制造、医疗健康、体育竞技等。

而基于机器视觉的测量系统可以大大提高测量的效率和精度,为相关领域的发展提供了强有力的支持。

机器视觉技术是通过对物体的图像进行分析来实现测量的。

因此,对图像的识别和处理是机器视觉测量系统开发的重要部分。

首先,我们需要采集物体的图像,通常使用相机来完成。

一般来说,采集到的图像会包含很多干扰因素,比如光线、色彩、噪声等。

因此,在图像处理的时候,首先需要对图像进行预处理,把不必要的信息去掉,保留有用的信息,这样可以大大提高后续的处理效率。

在对图像进行处理后,我们需要对图像中的各个部分进行分析和识别,从而确定要测量的参数。

这里涉及到了机器视觉的核心技术——图像处理和模式识别。

通过对图像进行分割、特征提取、目标检测等处理,可以获得目标物体的形状、大小、位置等信息。

而这些信息就是我们需要测量的基本参数。

基于机器视觉的测量系统开发不仅需要掌握解析几何和图像处理等基础知识,还需要关注实际应用需求。

因为各个领域对测量系统的要求不尽相同,需要结合实际应用,定制相应的测量系统。

比如,在工业制造领域中,机器视觉测量系统需要具备高速、高精度、实时性等特点。

而在医疗健康领域中,机器视觉测量系统需要考虑到生物相容性、安全性等问题。

机器视觉测量系统的应用领域非常广泛。

下面列举几个典型的应用场景。

1. 工业制造。

机器视觉测量系统可以应用于工业自动化生产线上的质量检测、尺寸测量等工作中,提高生产效率和产品质量。

基于机器视觉的尺寸测量应用综述

基于机器视觉的尺寸测量应用综述

基于机器视觉的尺寸测量应用综述作者:韩茜茜耿世勇路向阳来源:《河南科技》2019年第05期摘要:随着机器视觉技术的不断发展以及工业智能化水平的不断提高,将机器视觉应用于尺寸测量中成为尺寸测量的发展趋势。

本文首先阐述了机器视觉的特点及方法研究,介绍了机器视觉尺寸测量系统的硬件部分主要由计算机、光源、图像传感器、镜头以及被测对象等组成,软件部分主要由图像预处理、图像滤波、边缘检测等图像处理算法组成,然后分析了国内外的研究现状以及机器视觉测量技术的发展趋势,指出从软件算法入手,不断开发更优的图像处理算法,使图像处理及分析每个流程所涉及的算法的准确性及鲁棒性更高。

关键词:机器视觉;尺寸测量;研究現状;测量精度中图分类号:TP391.41 文献标识码:A 文章编号:1003-5168(2019)05-0008-03Abstract: With the continuous development of machine vision technology and the continuous improvement of industrial intelligence level, the application of machine vision in dimension measurement has become the development trend of dimension measurement. Firstly, this paper expounded the characteristics and methods of machine vision, introduced that the hardware part of machine vision size measurement system was mainly composed of computer, light source, image sensor, lens and the object under test, and the software part was mainly composed of image preprocessing, image filtering, edge detection and other image processing algorithms. Then, it analysed the research status at home and abroad and machine vision. The development trend of perceptual measurement technology was pointed out. Beginning with software algorithms, better image processing algorithms were constantly developed to improve the accuracy and robustness of the algorithms involved in image processing and analysis of each process.Keywords: machine vision;dimension measurement;research status;measurement accuracy机器视觉是指通过计算机来模拟人的视觉功能。

基于机器视觉的车辆几何尺寸测量系统研究共3篇

基于机器视觉的车辆几何尺寸测量系统研究共3篇

基于机器视觉的车辆几何尺寸测量系统研究共3篇基于机器视觉的车辆几何尺寸测量系统研究1基于机器视觉的车辆几何尺寸测量系统研究车辆几何尺寸测量是评估车辆安全行驶的重要手段,精准测量车辆的长度、宽度、高度以及轮距、轴距等关键参数,对于车辆的设计、生产、运输、销售等环节都具有重要意义。

而传统的车辆几何尺寸测量方法通常需要借助专业的设备和工具,费用高、操作复杂,而且测量精度受到人为因素的影响较大。

针对这一问题,利用机器视觉技术实现车辆几何尺寸测量,成为了一种新的高效、准确、智能的解决方案。

基于机器视觉的车辆几何尺寸测量系统主要由图像采集、图像处理和计算分析三个部分组成。

首先,将针对车辆几何尺寸测量场景,选择合适的摄像机设备,通过对拍摄场景的光照、背景、角度等细节进行把控,确保图像的质量和清晰度。

其次,对采集到的车辆图像进行预处理,如图像去噪、图像增强、轮廓提取等处理,同时通过适当的颜色识别算法,可以有效识别车辆与背景之间的主体和轮廓。

最后,通过基于几何模型的计算方法,对车辆各个尺寸参数进行测量和计算,并输出最终的测量结果。

在机器视觉的车辆几何尺寸测量系统中,关键性能指标包括测量精度、测量速度、系统稳定性等。

不同的车辆几何尺寸测量任务所面临的场景、车型、尺寸、速度等因素不同,需要对机器视觉算法、硬件设备进行不同的优化和调整。

例如,在低光、复杂背景的环境下需要使用更高灵敏度的摄像机设备、更有效的图像处理算法,而高速公路上的车辆几何尺寸监测则需要快速响应、高帧率的摄像机设备和算法。

在实际应用中,基于机器视觉的车辆几何尺寸测量系统已经被广泛应用于停车场管理、交通监控、场馆管理、公安安保等领域。

例如,停车场管理人员可以通过该系统实现自助停车位置查找和车位的分配管理;公安交通管理人员可以通过该系统快速有效地识别并记录车辆的违法停放情况;场馆管理人员可以通过该系统准确统计车辆通行数目和通行时间,优化场内停车位分配和流量控制等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于机器视觉的尺寸测量应用综述
随着科学技术的发展,机器视觉技术也在不断地向前发展,同时得到了广泛的应用。

在工业生产中,尺寸测量一直是一个重要的环节,而基于机器视觉的尺寸测量应用正是针
对这一需求而发展起来的。

本文将对基于机器视觉的尺寸测量应用进行综述,介绍其原理、技术特点以及应用情况。

一、基于机器视觉的尺寸测量原理
基于机器视觉的尺寸测量是利用相机和图像处理技术来进行尺寸测量的一种方法。


原理是通过摄像头采集被测物体的图像,然后通过图像处理算法来提取出物体的边缘、角
点等特征,最终计算出物体的尺寸。

在这一过程中,需要考虑到相机的畸变、光照等因素
对图像质量的影响,同时需要对图像进行校正和增强处理,以提高尺寸测量的精度和稳定性。

1. 高精度:基于机器视觉的尺寸测量可以实现高精度的测量,可以满足很多高精度
测量的需求。

2. 非接触:与传统的尺寸测量方法相比,基于机器视觉的尺寸测量不需要接触被测
物体,可以避免由于接触导致的误差。

4. 适用范围广:基于机器视觉的尺寸测量可以适用于不同形状、大小的物体,具有
很强的通用性。

5. 灵活性强:基于机器视觉的尺寸测量可以对测量方法进行灵活的调整,适应不同
的测量需求。

1. 工业制造领域:基于机器视觉的尺寸测量在工业制造领域得到了广泛的应用,可
以用于对产品尺寸、形状的检测和测量,提高了生产线的自动化程度和产品质量。

2. 医疗领域:在医疗领域,基于机器视觉的尺寸测量可以用于医学影像的分析和测量,可以对各种病变进行定量的分析和评估。

3. 城市管理:在城市管理领域,基于机器视觉的尺寸测量可以用于交通监控、道路
施工等方面,帮助管理部门进行城市规划和管理。

基于机器视觉的尺寸测量应用在各个领域都有着广泛的应用前景,其高精度、非接触、高效性、适用范围广和灵活性强等特点,使得其在工业制造、医疗、城市管理和农业等领
域发挥了重要的作用。

随着科学技术的不断发展,相信基于机器视觉的尺寸测量应用将会
得到更多的技术突破和应用创新。

相关文档
最新文档