机器学习十大算法:CART

机器学习十大算法:CART
机器学习十大算法:CART

Chapter10

CART:Classi?cation and Regression Trees Dan Steinberg

Contents

10.1Antecedents (180)

10.2Overview (181)

10.3A Running Example (181)

10.4The Algorithm Brie?y Stated (183)

10.5Splitting Rules (185)

10.6Prior Probabilities and Class Balancing (187)

10.7Missing Value Handling (189)

10.8Attribute Importance (190)

10.9Dynamic Feature Construction (191)

10.10Cost-Sensitive Learning (192)

10.11Stopping Rules,Pruning,Tree Sequences,and Tree Selection (193)

10.12Probability Trees (194)

10.13Theoretical Foundations (196)

10.14Post-CART Related Research (196)

10.15Software Availability (198)

10.16Exercises (198)

References (199)

The1984monograph,“CART:Classi?cation and Regression Trees,”coauthored by Leo Breiman,Jerome Friedman,Richard Olshen,and Charles Stone(BFOS),repre-sents a major milestone in the evolution of arti?cial intelligence,machine learning, nonparametric statistics,and data mining.The work is important for the compre-hensiveness of its study of decision trees,the technical innovations it introduces,its sophisticated examples of tree-structured data analysis,and its authoritative treatment of large sample theory for trees.Since its publication the CART monograph has been cited some3000times according to the science and social science citation indexes; Google Scholar reports about8,450citations.CART citations can be found in almost any domain,with many appearing in?elds such as credit risk,targeted marketing,?-nancial markets modeling,electrical engineering,quality control,biology,chemistry, and clinical medical research.CART has also strongly in?uenced image compression

179

180CART:Classi?cation and Regression Trees

via tree-structured vector quantization.This brief account is intended to introduce CART basics,touching on the major themes treated in the CART monograph,and to encourage readers to return to the rich original source for technical details,discus-sions revealing the thought processes of the authors,and examples of their analytical style.

10.1Antecedents

CART was not the?rst decision tree to be introduced to machine learning,although it is the?rst to be described with analytical rigor and supported by sophisticated statistics and probability theory.CART explicitly traces its ancestry to the auto-matic interaction detection(AID)tree of Morgan and Sonquist(1963),an automated recursive method for exploring relationships in data intended to mimic the itera-tive drill-downs typical of practicing survey data analysts.AID was introduced as a potentially useful tool without any theoretical foundation.This1960s-era work on trees was greeted with profound skepticism amidst evidence that AID could radically over?t the training data and encourage profoundly misleading conclusions(Einhorn, 1972;Doyle,1973),especially in smaller samples.By1973well-read statisticians were convinced that trees were a dead end;the conventional wisdom held that trees were dangerous and unreliable tools particularly because of their lack of a theoretical foundation.Other researchers,however,were not yet prepared to abandon the tree line of thinking.The work of Cover and Hart(1967)on the large sample properties of nearest neighbor(NN)classi?ers was instrumental in persuading Richard Olshen and Jerome Friedman that trees had suf?cient theoretical merit to be worth pursu-ing.Olshen reasoned that if NN classi?ers could reach the Cover and Hart bound on misclassi?cation error,then a similar result should be derivable for a suitably constructed tree because the terminal nodes of trees could be viewed as dynami-cally constructed NN classi?ers.Thus,the Cover and Hart NN research was the immediate stimulus that persuaded Olshen to investigate the asymptotic properties of trees.Coincidentally,Friedman’s algorithmic work on fast identi?cation of nearest neighbors via trees(Friedman,Bentley,and Finkel,1977)used a recursive partition-ing mechanism that evolved into CART.One predecessor of CART appears in the 1975Stanford Linear Accelerator Center(SLAC)discussion paper(Friedman,1975), subsequently published in a shorter form by Friedman(1977).While Friedman was working out key elements of CART at SLAC,with Olshen conducting mathemat-ical research in the same lab,similar independent research was under way in Los Angeles by Leo Breiman and Charles Stone(Breiman and Stone,1978).The two separate strands of research(Friedman and Olshen at Stanford,Breiman and Stone in Los Angeles)were brought together in1978when the four CART authors for-mally began the process of merging their work and preparing to write the CART monograph.

10.3A Running Example181

10.2Overview

The CART decision tree is a binary recursive partitioning procedure capable of pro-cessing continuous and nominal attributes as targets and predictors.Data are handled in their raw form;no binning is required or recommended.Beginning in the root node,the data are split into two children,and each of the children is in turn split into grandchildren.Trees are grown to a maximal size without the use of a stopping rule; essentially the tree-growing process stops when no further splits are possible due to lack of data.The maximal-sized tree is then pruned back to the root(essentially split by split)via the novel method of cost-complexity pruning.The next split to be pruned is the one contributing least to the overall performance of the tree on training data(and more than one split may be removed at a time).The CART mechanism is intended to produce not one tree,but a sequence of nested pruned trees,each of which is a candidate to be the optimal tree.The“right sized”or“honest”tree is identi?ed by evaluating the predictive performance of every tree in the pruning sequence on inde-pendent test data.Unlike C4.5,CART does not use an internal(training-data-based) performance measure for tree selection.Instead,tree performance is always measured on independent test data(or via cross-validation)and tree selection proceeds only af-ter test-data-based evaluation.If testing or cross-validation has not been performed, CART remains agnostic regarding which tree in the sequence is best.This is in sharp contrast to methods such as C4.5or classical statistics that generate preferred models on the basis of training data measures.

The CART mechanism includes(optional)automatic class balancing and auto-matic missing value handling,and allows for cost-sensitive learning,dynamic feature construction,and probability tree estimation.The?nal reports include a novel at-tribute importance ranking.The CART authors also broke new ground in showing how cross-validation can be used to assess performance for every tree in the pruning sequence,given that trees in different cross-validation folds may not align on the number of terminal nodes.It is useful to keep in mind that although BFOS addressed all these topics in the1970s,in some cases the BFOS treatment remains the state-of-the-art.The literature of the1990s contains a number of articles that rediscover core insights?rst introduced in the1984CART monograph.Each of these major features is discussed separately below.

10.3A Running Example

To help make the details of CART concrete we illustrate some of our points using an easy-to-understand real-world example.(The data have been altered to mask some of the original speci?cs.)In the early1990s the author assisted a telecommunications company in understanding the market for mobile phones.Because the mobile phone

182CART:Classi?cation and Regression Trees

TABLE10.1Example Data Summary Statistics

Attribute N N Missing%Missing N Distinct Mean Min Max AGE81318 2.29 5.05919 CITY830005 1.76915 HANDPRIC830004145.360235 MARITAL8229 1.13 1.901513 PAGER82560.7220.07636401 RENTHOUS830003 1.790613 RESPONSE8300020.151801 SEX81912 1.42 1.443212 TELEBILC768637.6654.1998116 TRA VTIME651180225 2.31815 USEPRICE83000411.1511030 MARITAL=Marital Status(Never Married,Married,Divorced/Widowed)

TRA VTIME=estimated commute time to major center of employment

AGE is recorded as an integer ranging from1to9

was a new technology at that time,we needed to identify the major drivers of adoption of this then-new technology and to identify demographics that might be related to price sensitivity.The data consisted of a household’s response(yes/no)to a market test offer of a mobile phone package;all prospects were offered an identical package of a handset and service features,with one exception that the pricing for the package was varied randomly according to an experimental design.The only choice open to the households was to accept or reject the offer.

A total of830households were approached and126of the households agreed to subscribe to the mobile phone service plan.One of our objectives was to learn as much as possible about the differences between subscribers and nonsubscribers.A set of summary statistics for select attributes appear in Table10.1.HANDPRIC is the price quoted for the mobile handset,USEPRIC is the quoted per-minute charge,and the other attributes are provided with common names.

A CART classi?cation tree was grown on these data to predict the RESPONSE attribute using all the other attributes as predictors.MARITAL and CITY are cate-gorical(nominal)attributes.A decision tree is grown by recursively partitioning the training data using a splitting rule to identify the split to use at each node.Figure10.1 illustrates this process beginning with the root node splitter at the top of the tree. The root node at the top of the diagram contains all our training data,including704 nonsubscribers(labeled with a0)and126subscribers(labeled1).Each of the830 instances contains data on the10predictor attributes,although there are some missing values.CART begins by searching the data for the best splitter available,testing each predictor attribute-value pair for its goodness-of-split.In Figure10.1we see the results of this search:HANDPRIC has been determined to be the best splitter using a threshold of130to partition the data.All instances presented with a HANDPRIC less than or equal to130are sent to the left child node and all other instances are sent to the right.The resulting split yields two subsets of the data with substantially different

10.4The Algorithm Brie?y Stated183

Figure10.1Root node split.

response rates:21.9%for those quoted lower prices and9.9%for those quoted the higher prices.Clearly both the root node splitter and the magnitude of the difference between the two child nodes are plausible.Observe that the split always results in two nodes:CART uses only binary splitting.

To generate a complete tree CART simply repeats the splitting process just described in each of the two child nodes to produce grandchildren of the root.Grand-children are split to obtain great-grandchildren and so on until further splitting is impossible due to a lack of data.In our example,this growing process results in a “maximal tree”consisting of81terminal nodes:nodes at the bottom of the tree that are not split further.

10.4The Algorithm Brie?y Stated

A complete statement of the CART algorithm,including all relevant technical details, is lengthy and complex;there are multiple splitting rules available for both classi?ca-tion and regression,separate handling of continuous and categorical splitters,special handling for categorical splitters with many levels,and provision for missing value handling.Following the tree-growing procedure there is another complex procedure for pruning the tree,and?nally,there is tree selection.In Figure10.2a simpli?ed algorithm for tree growing is sketched out.Formal statements of the algorithm are provided in the CART monograph.Here we offer an informal statement that is highly simpli?ed.

Observe that this simpli?ed algorithm sketch makes no reference to missing values, class assignments,or other core details of CART.The algorithm sketches a mechanism for growing the largest possible(maximal)tree.

184CART:Classi?cation and Regression Trees

Figure10.2Simpli?ed tree-growing algorithm sketch.

Having grown the tree,CART next generates the nested sequence of pruned sub-trees.A simpli?ed algorithm sketch for pruning follows that ignores priors and costs. This is different from the actual CART pruning algorithm and is included here for the sake of brevity and ease of reading.The procedure begins by taking the largest tree grown(T max)and removing all splits,generating two terminal nodes that do not improve the accuracy of the tree on training data.This is the starting point for CART pruning.Pruning proceeds further by a natural notion of iteratively removing the weakest links in the tree,the splits that contribute the least to performance of the tree on test data.In the algorithm presented in Figure10.3the pruning action is restricted to parents of two terminal nodes.

DEFINE: r(t)= training data misclassification rate in node t

p(t)= fraction of the training data in node t

R(t)= r(t)*p(t)

t_left=left child of node t

t_right=right child of node t

|T| = number of terminal nodes in tree T

BEGIN: Tmax=largest tree grown

Current_Tree=Tmax

For all parents t of two terminal nodes

Remove all splits for which R(t)=R(t_left) + R(t_right)

Current_tree=Tmax after pruning

PRUNE: If |Current_tree|=1 then goto DONE

For all parents t of two terminal nodes

Remove node(s) t for which R(t)-R(t_left) - R(t_right)

is minimum

Current_tree=Current_Tree after pruning

Figure10.3Simpli?ed pruning algorithm.

10.5Splitting Rules185 The CART pruning algorithm differs from the above in employing a penalty on nodes mechanism that can remove an entire subtree in a single pruning action.The monograph offers a clear and extended statement of the procedure.We now discuss major aspects of CART in greater detail.

10.5Splitting Rules

CART splitting rules are always couched in the form

An instance goes left if CONDITION,and goes right otherwise

where the CONDITION is expressed as“attribute X i<=C”for continuous at-tributes.For categorical or nominal attributes the CONDITION is expressed as mem-bership in a list of values.For example,a split on a variable like CITY might be expressed as

An instance goes left if CITY is in{Chicago,Detroit,Nashville)and goes right otherwise

The splitter and the split point are both found automatically by CART with the op-timal split selected via one of the splitting rules de?ned below.Observe that because CART works with unbinned data the optimal splits are always invariant with respect to order-preserving transforms of the attributes(such as log,square root,power trans-forms,and so on).The CART authors argue that binary splits are to be preferred to multiway splits because(1)they fragment the data more slowly than multiway splits and(2)repeated splits on the same attribute are allowed and,if selected,will eventually generate as many partitions for an attribute as required.Any loss of ease in reading the tree is expected to be offset by improved predictive performance. The CART authors discuss examples using four splitting rules for classi?cation trees(Gini,twoing,ordered twoing,symmetric gini),but the monograph focuses most of its discussion on the Gini,which is similar to the better known entropy (information-gain)criterion.For a binary(0/1)target the“Gini measure of impurity”of a node t is

G(t)=1?p(t)2?(1?p(t))2

where p(t)is the(possibly weighted)relative frequency of class1in the node.Spec-ifying G(t)=?p(t)ln p(t)?(1?p(t))ln(1?p(t))instead yields the entropy rule. The improvement(gain)generated by a split of the parent node P into left and right children L and R is

I(P)=G(P)?qG(L)?(1?q)G(R)

186CART:Classi?cation and Regression Trees

Here,q is the(possibly weighted)fraction of instances going left.The CART authors favored the Gini over entropy because it can be computed more rapidly,can be readily extended to include symmetrized costs(see below),and is less likely to generate“end cut”splits—splits with one very small(and relatively pure)child and another much larger child.(Later versions of CART have added entropy as an optional splitting rule.) The twoing rule is based on a direct comparison of the target attribute distribution in

two child nodes:

I(split)=

.25(q(1?q))u

k

|p L(k)?p R(k)|

2

where k indexes the target classes,pL()and pR()are the probability distributions of the target in the left and right child nodes,respectively.(This splitter is a mod-i?ed version of Messenger and Mandell,1972.)The twoing“improvement”mea-sures the difference between the left and right child probability vectors,and the leading[.25(q(1?q)]term,which has its maximum value at q=.5,implicitly penalizes splits that generate unequal left and right node sizes.The power term u is user-controllable,allowing a continuum of increasingly heavy penalties on unequal splits;setting u=10,for example,is similar to enforcing all splits at the median value of the split attribute.In our practical experience the twoing criterion is a su-perior performer on multiclass targets as well as on inherently dif?cult-to-predict (e.g.,noisy)binary targets.BFOS also introduce a variant of the twoing split criterion that treats the classes of the target as ordered.Called the ordered twoing splitting rule,it is a classi?cation rule with characteristics of a regression rule as it attempts to separate low-ranked from high-ranked target classes at each split.

For regression(continuous targets),CART offers a choice of least squares(LS,sum of squared prediction errors)and least absolute deviation(LAD,sum of absolute prediction errors)criteria as the basis for measuring the improvement of a split.As with classi?cation trees the best split yields the largest improvement.Three other splitting rules for cost-sensitive learning and probability trees are discussed separately below. In our mobile phone example the Gini measure of impurity in the root node is 1?(.84819)∧2?(.15181)∧2;calculating the Gini for each child and then subtracting their sample share weighted average from the parent Gini yields an improvement score of.00703(results may vary slightly depending on the precision used for the calculations and the inputs).CART produces a table listing the best split available using each of the other attributes available.(We show the?ve top competitors and their improvement scores in Table10.2.)

TABLE10.2Main Splitter Improvement=0.007033646

Competitor Split Improvement

1TELEBILC500.006883

2USEPRICE9.850.005961

3CITY1,4,50.002259

4TRA VTIME 3.50.001114

5AGE7.50.000948

10.6Prior Probabilities and Class Balancing187

10.6Prior Probabilities and Class Balancing

Balancing classes in machine learning is a major issue for practitioners as many data mining methods do not perform well when the training data are highly unbalanced. For example,for most prime lenders,default rates are generally below5%of all accounts,in credit card transactions fraud is normally well below1%,and in Internet advertising“click through”rates occur typically for far fewer than1%of all ads displayed(impressions).Many practitioners routinely con?ne themselves to training data sets in which the target classes have been sampled to yield approximately equal sample sizes.Clearly,if the class of interest is quite small such sample balancing could leave the analyst with very small overall training samples.For example,in an insurance fraud study the company identi?ed about70cases of documented claims fraud.Con?ning the analysis to a balanced sample would limit the analyst to a total sample of just140instances(70fraud,70not fraud).

It is interesting to note that the CART authors addressed this issue explicitly in 1984and devised a way to free the modeler from any concerns regarding sample balance.Regardless of how extremely unbalanced the training data may be,CART will automatically adjust to the imbalance,requiring no action,preparation,sampling, or weighting by the modeler.The data can be modeled as they are found without any preprocessing.

To provide this?exibility CART makes use of a“priors”mechanism.Priors are akin to target class weights but they are invisible in that they do not affect any counts reported by CART in the tree.Instead,priors are embedded in the calculations undertaken to determine the goodness of splits.In its default classi?cation mode CART always calculates class frequencies in any node relative to the class frequencies in the root.This is equivalent to automatically reweighting the data to balance the classes,and ensures that the tree selected as optimal minimizes balanced class error. The reweighting is implicit in the calculation of all probabilities and improvements and requires no user intervention;the reported sample counts in each node thus re?ect the unweighted data.For a binary(0/1)target any node is classi?ed as class1if,and only if,

N1(node) N1(root)>N0(node)

N0(root)

Observe that this ensures that each class is assigned a working probability of1/K in the root node when there are K target classes,regardless of the actual distribution of the classes in the data.This default mode is referred to as“priors equal”in the monograph.It has allowed CART users to work readily with any unbalanced data, requiring no special data preparation to achieve class rebalancing or the introduction of manually constructed weights.To work effectively with unbalanced data it is suf?-cient to run CART using its default settings.Implicit reweighting can be turned off by selecting the“priors data”option.The modeler can also elect to specify an arbitrary set of priors to re?ect costs,or potential differences between training data and future data target class distributions.

188CART:Classi?cation and Regression Trees

Figure10.4Red Terminal Node=Above Average Response.Instances with a value of the splitter greater than a threshold move to the right.

Note:The priors settings are unlike weights in that they do not affect the reported counts in a node or the reported fractions of the sample in each target class.Priors do affect the class any node is assigned to as well as the selection of the splitters in the tree-growing process.

(Being able to rely on priors does not mean that the analyst should ignore the topic of sampling at different rates from different target classes;rather,it gives the analyst a broad range of?exibility regarding when and how to sample.)

We used the“priors equal”settings to generate a CART tree for the mobile phone data to better adapt to the relatively low probability of response and obtained the tree schematic shown in Figure10.4.

By convention,splits on continuous variables send instances with larger values of the splitter to the right,and splits on nominal variables are de?ned by the lists of values going left or right.In the diagram the terminal nodes are color coded to re?ect the relative probability of response.A red node is above average in response probability and a blue node is below average.Although this schematic displays only a small fraction of the detailed reports available it is suf?cient to tell this fascinating story:Even though they are quoted a high price for the new technology,households with higher landline telephone bills who use a pager(beeper)service are more likely to subscribe to the new service.The schematic also reveals how CART can reuse an

10.7Missing Value Handling189 attribute multiple times.Again,looking at the right side of the tree,and considering households with larger landline telephone bills but without a pager service,we see that the HANDPRIC attribute reappears,informing us that this customer segment is willing to pay a somewhat higher price but will resist the highest prices.(The second split on HANDPRIC is at200.)

10.7Missing Value Handling

Missing values appear frequently in the real world,especially in business-related databases,and the need to deal with them is a vexing challenge for all modelers. One of the major contributions of CART was to include a fully automated and ef-fective mechanism for handling missing values.Decision trees require a missing value-handling mechanism at three levels:(a)during splitter evaluation,(b)when moving the training data through a node,and(c)when moving test data through a node for?nal class assignment.(See Quinlan,1989for a clear discussion of these points.)Regarding(a),the?rst version of CART evaluated each splitter strictly on its performance on the subset of data for which the splitter is not https://www.360docs.net/doc/078373687.html,ter versions of CART offer a family of penalties that reduce the improvement measure to re?ect the degree of missingness.(For example,if a variable is missing in20%of the records in a node then its improvement score for that node might be reduced by20%,or alter-natively by half of20%,and so on.)For(b)and(c),the CART mechanism discovers “surrogate”or substitute splitters for every node of the tree,whether missing values occur in the training data or not.The surrogates are thus available,should a tree trained on complete data be applied to new data that includes missing values.This is in sharp contrast to machines that cannot tolerate missing values in the training data or that can only learn about missing value handling from training data that include missing values.Friedman(1975)suggests moving instances with missing splitter attributes into both left and right child nodes and making a?nal class assignment by taking a weighted average of all nodes in which an instance appears.Quinlan opts for a variant of Friedman’s approach in his study of alternative missing value-handling methods. Our own assessments of the effectiveness of CART surrogate performance in the presence of missing data are decidedly favorable,while Quinlan remains agnostic on the basis of the approximate surrogates he implements for test purposes(Quinlan). In Friedman,Kohavi,and Yun(1996),Friedman notes that50%of the CART code was devoted to missing value handling;it is thus unlikely that Quinlan’s experimental version replicated the CART surrogate mechanism.

In CART the missing value handling mechanism is fully automatic and locally adaptive at every node.At each node in the tree the chosen splitter induces a binary partition of the data(e.g.,X1<=c1and X1>c1).A surrogate splitter is a single attribute Z that can predict this partition where the surrogate itself is in the form of a binary splitter(e.g.,Z<=d and Z>d).In other words,every splitter becomes a new target which is to be predicted with a single split binary tree.Surrogates are

190CART:Classi?cation and Regression Trees

TABLE10.3Surrogate Splitter Report Main

Splitter TELEBILC Improvement=0.023722

Surrogate Split Association Improvement

1MARITAL10.140.001864

2TRA VTIME 2.50.110.006068

3AGE 3.50.090.000412

4CITY2,3,50.070.004229

ranked by an association score that measures the advantage of the surrogate over the default rule,predicting that all cases go to the larger child node(after adjustments for priors).To qualify as a surrogate,the variable must outperform this default rule (and thus it may not always be possible to?nd surrogates).When a missing value is encountered in a CART tree the instance is moved to the left or the right according to the top-ranked surrogate.If this surrogate is also missing then the second-ranked surrogate is used instead(and so on).If all surrogates are missing the default rule assigns the instance to the larger child node(after adjusting for priors).Ties are broken by moving an instance to the left.

Returning to the mobile phone example,consider the right child of the root node, which is split on TELEBILC,the landline telephone bill.If the telephone bill data are unavailable(e.g.,the household is a new one and has limited history with the company),CART searches for the attributes that can best predict whether the instance belongs to the left or the right side of the split.

In this case(Table10.3)we see that of all the attributes available the best predictor of whether the landline telephone is high(greater than50)is marital status(never-married people spend less),followed by the travel time to work,age,and,?nally,city of residence.Surrogates can also be seen as akin to synonyms in that they help to interpret a splitter.Here we see that those with lower telephone bills tend to be never married,live closer to the city center,be younger,and be concentrated in three of the ?ve cities studied.

10.8Attribute Importance

The importance of an attribute is based on the sum of the improvements in all nodes in which the attribute appears as a splitter(weighted by the fraction of the training data in each node split).Surrogates are also included in the importance calculations, which means that even a variable that never splits a node may be assigned a large importance score.This allows the variable importance rankings to reveal variable masking and nonlinear correlation among the attributes.Importance scores may op-tionally be con?ned to splitters;comparing the splitters-only and the full(splitters and surrogates)importance rankings is a useful diagnostic.

10.9Dynamic Feature Construction191

TABLE10.4Variable Importance(Including Surrogates)

Attribute Score

TELEBILC100.00||||||||||||||||||||||||||||||||||||||||||

HANDPRIC68.88|||||||||||||||||||||||||||||

AGE55.63|||||||||||||||||||||||

CITY39.93||||||||||||||||

SEX37.75|||||||||||||||

PAGER34.35||||||||||||||

TRA VTIME33.15|||||||||||||

USEPRICE17.89|||||||

RENTHOUS11.31||||

MARITAL 6.98||

TABLE10.5Variable Importance(Excluding Surrogates)

Variable Score

TELEBILC100.00||||||||||||||||||||||||||||||||||||||||||

HANDPRIC77.92|||||||||||||||||||||||||||||||||

AGE51.75|||||||||||||||||||||

PAGER22.50|||||||||

CITY18.09|||||||

Observe that the attributes MARITAL,RENTHOUS,TRA VTIME,and SEX in Table10.4do not appear as splitters but still appear to have a role in the tree.These attributes have nonzero importance strictly because they appear as surrogates to the other splitting variables.CART will also report importance scores ignoring the sur-rogates on request.That version of the attribute importance ranking for the same tree is shown in Table10.5.

10.9Dynamic Feature Construction

Friedman(1975)discusses the automatic construction of new features within each node and,for the binary target,suggests adding the single feature

x×w

where x is the subset of continuous predictor attributes vector and w is a scaled dif-ference of means vector across the two classes(the direction of the Fisher linear dis-criminant).This is similar to running a logistic regression on all continuous attributes

192CART:Classi?cation and Regression Trees

in the node and using the estimated logit as a predictor.In the CART monograph,the authors discuss the automatic construction of linear combinations that include feature selection;this capability has been available from the?rst release of the CART soft-ware.BFOS also present a method for constructing Boolean combinations of splitters within each node,a capability that has not been included in the released software. While there are situations in which linear combination splitters are the best way to uncover structure in data(see Olshen’s work in Huang et al.,2004),for the most part we have found that such splitters increase the risk of over?tting due to the large amount of learning they represent in each node,thus leading to inferior models. 10.10Cost-Sensitive Learning

Costs are central to statistical decision theory but cost-sensitive learning received only modest attention before Domingos(1999).Since then,several conferences have been devoted exclusively to this topic and a large number of research papers have appeared in the subsequent scienti?c literature.It is therefore useful to note that the CART monograph introduced two strategies for cost-sensitive learning and the entire mathematical machinery describing CART is cast in terms of the costs of misclassi?cation.The cost of misclassifying an instance of class i as class j is C(i,j) and is assumed to be equal to1unless speci?ed otherwise;C(i,i)=0for all i.The complete set of costs is represented in the matrix C containing a row and a column for each target class.Any classi?cation tree can have a total cost computed for its terminal node assignments by summing costs over all misclassi?cations.The issue in cost-sensitive learning is to induce a tree that takes the costs into account during its growing and pruning phases.

The?rst and most straightforward method for handling costs makes use of weight-ing:Instances belonging to classes that are costly to misclassify are weighted upward, with a common weight applying to all instances of a given class,a method recently rediscovered by Ting(2002).As implemented in CART,weighting is accomplished transparently so that all node counts are reported in their raw unweighted form.For multiclass problems BFOS suggested that the entries in the misclassi?cation cost ma-trix be summed across each row to obtain relative class weights that approximately re?ect costs.This technique ignores the detail within the matrix but has now been widely adopted due to its simplicity.For the Gini splitting rule,the CART authors show that it is possible to embed the entire cost matrix into the splitting rule,but only after it has been symmetrized.The“symGini”splitting rule generates trees sensitive to the difference in costs C(i,j)and C(i,k),and is most useful when the symmetrized cost matrix is an acceptable representation of the decision maker’s problem.By con-trast,the instance weighting approach assigns a single cost to all misclassi?cations of objects of class i.BFOS observe that pruning the tree using the full cost matrix is essential to successful cost-sensitive learning.

10.11Stopping Rules,Pruning,Tree Sequences,and Tree Selection193 10.11Stopping Rules,Pruning,Tree Sequences,

and Tree Selection

The earliest work on decision trees did not allow for pruning.Instead,trees were grown until they encountered some stopping condition and the resulting tree was considered?nal.In the CART monograph the authors argued that no rule intended to stop tree growth can guarantee that it will not miss important data structure (e.g.,consider the two-dimensional XOR problem).They therefore elected to grow trees without stopping.The resulting overly large tree provides the raw material from which a?nal optimal model is extracted.

The pruning mechanism is based strictly on the training data and begins with a cost-complexity measure de?ned as

Ra(T)=R(T)+a|T|

where R(T)is the training sample cost of the tree,|T|is the number of terminal nodes in the tree and a is a penalty imposed on each node.If a=0,then the minimum cost-complexity tree is clearly the largest possible.If a is allowed to progressively increase,the minimum cost-complexity tree will become smaller because the splits at the bottom of the tree that reduce R(T)the least will be cut away.The parameter a is progressively increased in small steps from0to a value suf?cient to prune away all splits.BFOS prove that any tree of size Q extracted in this way will exhibit a cost R(Q)that is minimum within the class of all trees with Q terminal nodes. This is practically important because it radically reduces the number of trees that must be tested in the search for the optimal tree.Suppose a maximal tree has|T| terminal nodes.Pruning involves removing the split generating two terminal nodes and absorbing the two children into their parent,thereby replacing the two terminal nodes with one.The number of possible subtrees extractable from the maximal tree by such pruning will depend on the speci?c topology of the tree in question but will sometimes be greater than.5|T|!But given cost-complexity pruning we need to examine a much smaller number of trees.In our example we grew a tree with81 terminal nodes and cost-complexity pruning extracts a sequence of28subtrees,but if we had to look at all possible subtrees we might have to examine on the order of 25!=15,511,210,043,330,985,984,000,000trees.

The optimal tree is de?ned as that tree in the pruned sequence that achieves min-imum cost on test data.Because test misclassi?cation cost measurement is subject to sampling error,uncertainty always remains regarding which tree in the pruning sequence is optimal.Indeed,an interesting characteristic of the error curve(misclas-si?cation error rate as a function of tree size)is that it is often?at around its minimum for large training data sets.BFOS recommend selecting the“1SE”tree that is the smallest tree with an estimated cost within1standard error of the minimum cost(or “0SE”)tree.Their argument for the1SE rule is that in simulation studies it yields a stable tree size across replications whereas the0SE tree size can vary substantially across replications.

194CART:Classi?cation and Regression Trees

Figure10.5One stage in the CART pruning process:the17-terminal-node subtree. Highlighted nodes are to be pruned next.

Figure10.5shows a CART tree along with highlighting of the split that is to be removed next via cost-complexity pruning.

Table10.6contains one row for every pruned subtree obtained starting with the maximal81-terminal-node tree grown.The pruning sequence continues all the way back to the root because we must allow for the possibility that our tree will demonstrate no predictive power on test data.The best performing subtree on test data is the SE 0tree with40nodes,and the smallest tree within a standard error of the SE0tree is the SE1tree(with35terminal nodes).For simplicity we displayed details of the suboptimal10-terminal-node tree in the earlier dicussion.

10.12Probability Trees

Probability trees have been recently discussed in a series of insightful articles elu-cidating their properties and seeking to improve their performance(see Provost and Domingos,2000).The CART monograph includes what appears to be the?rst detailed discussion of probability trees and the CART software offers a dedicated splitting rule for the growing of“class probability trees.”A key difference between classi?cation trees and probability trees is that the latter want to keep splits that generate two termi-nal node children assigned to the same class as their parent whereas the former will not.(Such a split accomplishes nothing so far as classi?cation accuracy is concerned.)

A probability tree will also be pruned differently from its counterpart classi?cation tree.Therefore,building both a classi?cation and a probability tree on the same data in CART will yield two trees whose?nal structure can be somewhat different(although the differences are usually modest).The primary drawback of probability trees is that the probability estimates based on training data in the terminal nodes tend to be biased (e.g.,toward0or1in the case of the binary target)with the bias increasing with the depth of the node.In the recent ML literature the use of the Laplace adjustment has been recommended to reduce this bias(Provost and Domingos,2002).The CART monograph offers a somewhat more complex method to adjust the terminal node

10.12Probability Trees195 TABLE10.6Complete Tree Sequence for CART Model:All Nested Subtrees Reported

Tree Nodes Test Cost Train Cost Complexity

1810.635461+/-0.0464510.1979390

2780.646239+/-0.0466080.2004420.000438

3710.640309+/-0.0464060.2103850.00072

4670.638889+/-0.0463950.2174870.000898

5660.632373+/-0.0462490.2194940.001013

6610.635214+/-0.0462710.231940.001255

7570.643151+/-0.0464270.2421310.001284

8500.639475+/-0.0463030.2620170.00143

9420.592442+/-0.0449470.2892540.001709

10400.584506+/-0.0446960.2963560.001786

11350.611156+/-0.0454320.3176630.002141

12320.633049+/-0.0454070.3318680.002377

13310.635891+/-0.0454250.3369630.002558

14300.638731+/-0.0454420.3423070.002682

15290.674738+/-0.0462960.3479890.002851

16250.677918+/-0.0458410.3741430.003279

17240.659204+/-0.0453660.3812450.003561

18170.648764+/-0.0444010.4315480.003603

19160.692798+/-0.0445740.4429110.005692

20150.725379+/-0.045850.4556950.006402

21130.756539+/-0.0468190.4862690.007653

22100.785534+/-0.0467520.539750.008924

2390.784542+/-0.0450150.5638980.012084

2470.784542+/-0.0450150.6205360.014169

2560.784542+/-0.0450150.6502530.014868

2640.784542+/-0.0450150.710430.015054

2720.907265+/-0.0479390.7713290.015235

2811+/-010.114345 estimates that has rarely been discussed in the literature.Dubbed the“Breiman ad-justment,”it adjusts the estimated misclassi?cation rate r×(t)of any terminal node upward by

r×(t)=r(t)+e/(q(t)+S)

where r(t)is the training sample estimate within the node,q(t)is the fraction of the training sample in the node,and S and e are parameters that are solved for as a function of the difference between the train and test error rates for a given tree.In contrast to the Laplace method,the Breiman adjustment does not depend on the raw predicted probability in the node and the adjustment can be very small if the test data show that the tree is not over?t.Bloch,Olshen,and Walker(2002)discuss this topic in detail and report very good performance for the Breiman adjustment in a series of empirical experiments.

196CART:Classi?cation and Regression Trees

10.13Theoretical Foundations

The earliest work on decision trees was entirely atheoretical.Trees were proposed as methods that appeared to be useful and conclusions regarding their properties were based on observing tree performance on empirical examples.While this approach remains popular in machine learning,the recent tendency in the discipline has been to reach for stronger theoretical foundations.The CART monograph tackles theory with sophistication,offering important technical insights and proofs for key results. For example,the authors derive the expected misclassi?cation rate for the maximal (largest possible)tree,showing that it is bounded from above by twice the Bayes rate.The authors also discuss the bias variance trade-off in trees and show how the bias is affected by the number of attributes.Based largely on the prior work of CART coauthors Richard Olshen and Charles Stone,the?nal three chapters of the monograph relate CART to theoretical work on nearest neighbors and show that as the sample size tends to in?nity the following hold:(1)the estimates of the regression function converge to the true function and(2)the risks of the terminal nodes converge to the risks of the corresponding Bayes rules.In other words,speaking informally, with large enough samples the CART tree will converge to the true function relating the target to its predictors and achieve the smallest cost possible(the Bayes rate). Practically speaking,such results may only be realized with sample sizes far larger than in common use today.

10.14Post-CART Related Research

Research in decision trees has continued energetically since the1984publication of the CART monograph,as shown in part by the several thousand citations to the mono-graph found in the scienti?c literature.For the sake of brevity we con?ne ourselves here to selected research conducted by the four CART coauthors themselves after 1984.In1985Breiman and Friedman offered ACE(alternating conditional expecta-tions),a purely data-based driven methodology for suggesting variable transforma-tions in regression;this work strongly in?uenced Hastie and Tibshirani’s generalized additive models(GAM,1986).Stone(1985)developed a rigorous theory for the style of nonparametric additive regression proposed with ACE.This was soon followed by Friedman’s recursive partitioning approach to spline regression(multivariate adaptive regression splines,MARS).The?rst version of the MARS program in our archives is labeled Version2.5and dated October1989;the?rst published paper appeared as a lead article with discussion in the Annals of Statistics in1991.The MARS algo-rithm leans heavily on ideas developed in the CART monograph but produces models

10.14Post-CART Related Research197 that are readily recognized as regressions on recursively partitioned(and selected) predictors.Stone,with collaborators,extended the spline regression approach to haz-ard modeling(Kooperberg,Stone,and Truong,1995)and polychotomous regression (1997).

Breiman was active in searching for ways to improve the accuracy,scope of ap-plicability,and compute speed of the CART tree.In1992Breiman was the?rst to introduce the multivariate decision tree(vector dependent variable)in software but did not write any papers on the topic.In1995,Spector and Breiman implemented a strategy for parallelizing CART across a network of computers using the C-Linda parallel programming environment.In this study the authors observed that the gains from parallelization were primarily achieved for larger data sets using only a few of the available processors.By1994Breiman had hit upon“bootstrap aggregation”: creating predictive ensembles by growing a large number of CART trees on boot-strap samples drawn from a?xed training data set.In1998Breiman applied the idea of ensembles to online learning and the development of classi?ers for very large databases.He then extended the notion of randomly sampling rows in the training data to random sampling columns in each node of the tree to arrive at the idea of the random forest.Breiman devoted the last years of his life to extending random forests with his coauthor Adele Cutler,introducing new methods for missing value imputation,outlier detection,cluster discovery,and innovative ways to visualize data using random forests outputs in a series of papers and Web postings from2000 to2004.

Richard Olshen has focused primarily on biomedical applications of decision trees. He developed the?rst tree-based approach to survival analysis(Gordon and Olshen, 1984),contributed to research on image compression(Cosman et al.,1993),and has recently introduced new linear combination splitters for the analysis of very high dimensional data(the genetics of complex disease).

Friedman introduced stochastic gradient boosting in several papers beginning in 1999(commercialized as TreeNet software)which appears to be a substantial ad-vance over conventional boosting.Friedman’s approach combines the generation of very small trees,random sampling from the training data at every training cycle, slow learning via very small model updates at each training cycle,selective rejection of training data based on model residuals,and allowing for a variety of objective functions,to arrive at a system that has performed remarkably well in a range of real-world applications.Friedman followed this work with a technique for compressing tree ensembles into models containing considerably fewer trees using novel methods for regularized regression.Friedman showed that postprocessing of tree ensembles to compress them may actually improve their performance on holdout data.Taking this line of research one step further,Friedman then introduced methods for reexpressing tree ensemble models as collections of“rules”that can also radically compress the models and sometimes improve their predictive accuracy.

Further pointers to the literature,including a library of applications of CART,can be found at the Salford Systems Web site:https://www.360docs.net/doc/078373687.html,.

198CART:Classi?cation and Regression Trees

10.15Software Availability

CART software is available from Salford Systems,at https://www.360docs.net/doc/078373687.html,;no-cost evaluation versions may be downloaded on request.Executables for Windows operating systems as well as Linux and UNIX may be obtained in both32-bit and64-bit versions.Academic licenses for professors automatically grant no-cost licenses to their registered students.CART source code,written by Jerome Friedman,has remained a trade secret and is available only in compiled binaries from Salford Systems.While popular open-source systems(and other commercial proprietary systems)offer decision trees inspired by the work of Breiman,Friedman, Olshen,and Stone,these systems generate trees that are demonstrably different from those of true CART when applied to real-world complex data sets.CART has been used by Salford Systems to win a number of international data mining competitions; details are available on the company’s Web site.

10.16Exercises

1.(a)To the decision tree novice the most important variable in a CART tree should

be the root node splitter,yet it is not uncommon to see a different variable listed as most important in the CART summary output.How can this be?(b)If you run a CART model for the purpose of ranking the predictor variables in your data set and then you rerun the model excluding all the0-importance variables, will you get the same tree in the second run?(c)What if you rerun the tree keeping as predictors only variables that appeared as splitters in the?rst run?

Are there conditions that would guarantee that you obtain the same tree?

2.Every internal node in a CART tree contains a primary splitter,competitor

splits,and surrogate splits.In some trees the same variable will appear as both

a competitor and a surrogate but using different split points.For example,as a

competitor the variable might split the node with x j<=c,while as a surrogate the variable might split the node as x j<=d.Explain why this might occur.

3.Among its six different splitting rules CART offers the Gini and twoing splitting

rules for growing a tree.Explain why an analyst might prefer the results of the twoing rule even if it yielded a lower accuracy.

4.For a binary target if two CART trees are grown on the same data,the?rst

using the Gini splitting rule and the second using the class probability rule, which one is likely to contain more nodes?Will the two trees exhibit the same accuracy?Will the smaller tree be contained within the larger one?Explain the differences between the two trees.

5.Suppose you have a data set for a binary target coded0/1in which80%of the

records have a target value of0and you grow a CART tree using the default

数学建模笔记

数学模型按照不同的分类标准有许多种类: 1。按照模型的数学方法分,有几何模型,图论模型,微分方程模型.概率模型,最优控制模型,规划论模型,马氏链模型. 2。按模型的特征分,有静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型. 3.按模型的应用领域分,有人口模型,交通模型,经济模型,生态模型,资源模型。环境模型。 4.按建模的目的分,有预测模型,优化模型,决策模型,控制模型等。 5.按对模型结构的了解程度分,有白箱模型,灰箱模型,黑箱模型。 数学建模的十大算法: 1.蒙特卡洛算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法。) 2.数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具。) 3.线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lingo、lingdo软件实现) 4.图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。) 5.动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题时用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需谨慎使用) 7.网格算法和穷举法(当重点讨论模型本身而情史算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8.一些连续离散化方法(很多问题都是从实际来的,数据可以是连续的,而计算机只认得是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

机器学习10大算法-周辉

机器学习10大算法 什么是机器学习呢? 从广泛的概念来说,机器学习是人工智能的一个子集。人工智能旨在使计算机更智能化,而机器学习已经证明了如何做到这一点。简而言之,机器学习是人工智能的应用。通过使用从数据中反复学习到的算法,机器学习可以改进计算机的功能,而无需进行明确的编程。 机器学习中的算法有哪些? 如果你是一个数据科学家或机器学习的狂热爱好者,你可以根据机器学习算法的类别来学习。机器学习算法主要有三大类:监督学习、无监督学习和强化学习。 监督学习 使用预定义的“训练示例”集合,训练系统,便于其在新数据被馈送时也能得出结论。系统一直被训练,直到达到所需的精度水平。 无监督学习 给系统一堆无标签数据,它必须自己检测模式和关系。系统要用推断功能来描述未分类数据的模式。 强化学习 强化学习其实是一个连续决策的过程,这个过程有点像有监督学习,只是标注数据不是预先准备好的,而是通过一个过程来回调整,并给出“标注数据”。

机器学习三大类别中常用的算法如下: 1. 线性回归 工作原理:该算法可以按其权重可视化。但问题是,当你无法真正衡量它时,必须通过观察其高度和宽度来做一些猜测。通过这种可视化的分析,可以获取一个结果。 回归线,由Y = a * X + b表示。 Y =因变量;a=斜率;X =自变量;b=截距。 通过减少数据点和回归线间距离的平方差的总和,可以导出系数a和b。 2. 逻辑回归 根据一组独立变量,估计离散值。它通过将数据匹配到logit函数来帮助预测事件。 下列方法用于临时的逻辑回归模型: 添加交互项。 消除功能。 正则化技术。 使用非线性模型。 3. 决策树 利用监督学习算法对问题进行分类。决策树是一种支持工具,它使用树状图来决定决策或可能的后果、机会事件结果、资源成本和实用程序。根据独立变量,将其划分为两个或多个同构集。 决策树的基本原理:根据一些feature 进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

十大经典数学模型

1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)元胞自动机 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 以上为各类算法的大致介绍,下面的内容是详细讲解,原文措辞详略得当,虽然不是面面俱到,但是已经阐述了主要内容,简略之处还望大家多多讨论。 1、蒙特卡罗方法(MC)(Monte Carlo): 蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第二次世界大战进行研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。 可以把蒙特卡罗解题归结为三个主要步骤: 构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 例:蒲丰氏问题 为了求得圆周率π值,在十九世纪后期,有很多人作了这样的试验:将长为2l的一根针任意投到地面上,用针与一组相间距离为2a( l<a)的平行线相交的频率代替概率P,再利用准确的关系式:

数据挖掘领域的十大经典算法原理及应用

数据挖掘领域的十大经典算法原理及应用 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1.C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV 机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面

机器学习十大算法:CART

Chapter10 CART:Classi?cation and Regression Trees Dan Steinberg Contents 10.1Antecedents (180) 10.2Overview (181) 10.3A Running Example (181) 10.4The Algorithm Brie?y Stated (183) 10.5Splitting Rules (185) 10.6Prior Probabilities and Class Balancing (187) 10.7Missing Value Handling (189) 10.8Attribute Importance (190) 10.9Dynamic Feature Construction (191) 10.10Cost-Sensitive Learning (192) 10.11Stopping Rules,Pruning,Tree Sequences,and Tree Selection (193) 10.12Probability Trees (194) 10.13Theoretical Foundations (196) 10.14Post-CART Related Research (196) 10.15Software Availability (198) 10.16Exercises (198) References (199) The1984monograph,“CART:Classi?cation and Regression Trees,”coauthored by Leo Breiman,Jerome Friedman,Richard Olshen,and Charles Stone(BFOS),repre-sents a major milestone in the evolution of arti?cial intelligence,machine learning, nonparametric statistics,and data mining.The work is important for the compre-hensiveness of its study of decision trees,the technical innovations it introduces,its sophisticated examples of tree-structured data analysis,and its authoritative treatment of large sample theory for trees.Since its publication the CART monograph has been cited some3000times according to the science and social science citation indexes; Google Scholar reports about8,450citations.CART citations can be found in almost any domain,with many appearing in?elds such as credit risk,targeted marketing,?-nancial markets modeling,electrical engineering,quality control,biology,chemistry, and clinical medical research.CART has also strongly in?uenced image compression 179

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

十 大 经 典 排 序 算 法 总 结 超 详 细

数据挖掘十大经典算法,你都知道哪些? 当前时代大数据炙手可热,数据挖掘也是人人有所耳闻,但是关于数据挖掘更具体的算法,外行人了解的就少之甚少了。 数据挖掘主要分为分类算法,聚类算法和关联规则三大类,这三类基本上涵盖了目前商业市场对算法的所有需求。而这三类里又包含许多经典算法。而今天,小编就给大家介绍下数据挖掘中最经典的十大算法,希望它对你有所帮助。 一、分类决策树算法C4.5 C4.5,是机器学习算法中的一种分类决策树算法,它是决策树(决策树,就是做决策的节点间的组织方式像一棵倒栽树)核心算法ID3的改进算法,C4.5相比于ID3改进的地方有: 1、用信息增益率选择属性 ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(shang),一种不纯度度量准则,也就是熵的变化值,而 C4.5用的是信息增益率。区别就在于一个是信息增益,一个是信息增益率。 2、在树构造过程中进行剪枝,在构造决策树的时候,那些挂着几个元素的节点,不考虑最好,不然容易导致过拟。 3、能对非离散数据和不完整数据进行处理。 该算法适用于临床决策、生产制造、文档分析、生物信息学、空间数据建模等领域。 二、K平均算法

K平均算法(k-means algorithm)是一个聚类算法,把n个分类对象根据它们的属性分为k类(kn)。它与处理混合正态分布的最大期望算法相似,因为他们都试图找到数据中的自然聚类中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。 k-Means 算法常用于图片分割、归类商品和分析客户。 三、支持向量机算法 支持向量机(Support Vector Machine)算法,简记为SVM,是一种监督式学习的方法,广泛用于统计分类以及回归分析中。 SVM的主要思想可以概括为两点: (1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分; (2)它基于结构风险最小化理论之上,在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。 四、The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法,其核心是基于两阶段“频繁项集”思想的递推算法。其涉及到的关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支

数据挖掘十大待解决问题

数据挖掘领域10大挑战性问题与十大经典算法 2010-04-21 20:05:51| 分类:技术编程| 标签:|字号大中小订阅 作为一个数据挖掘工作者,点可以唔知呢。 数据挖掘领域10大挑战性问题: 1.Developing a Unifying Theory of Data Mining 2.Scaling Up for High Dimensional Data/High Speed Streams 3.Mining Sequence Data and Time Series Data 4.Mining Complex Knowledge from Complex Data 5.Data Mining in a Network Setting 6.Distributed Data Mining and Mining Multi-agent Data 7.Data Mining for Biological and Environmental Problems 8.Data-Mining-Process Related Problems 9.Security, Privacy and Data Integrity 10.Dealing with Non-static, Unbalanced and Cost-sensitive Data 数据挖掘十大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm

机器学习十大算法8:kNN

Chapter8 k NN:k-Nearest Neighbors Michael Steinbach and Pang-Ning Tan Contents 8.1Introduction (151) 8.2Description of the Algorithm (152) 8.2.1High-Level Description (152) 8.2.2Issues (153) 8.2.3Software Implementations (155) 8.3Examples (155) 8.4Advanced Topics (157) 8.5Exercises (158) Acknowledgments (159) References (159) 8.1Introduction One of the simplest and rather trivial classi?ers is the Rote classi?er,which memorizes the entire training data and performs classi?cation only if the attributes of the test object exactly match the attributes of one of the training objects.An obvious problem with this approach is that many test records will not be classi?ed because they do not exactly match any of the training records.Another issue arises when two or more training records have the same attributes but different class labels. A more sophisticated approach,k-nearest neighbor(k NN)classi?cation[10,11,21],?nds a group of k objects in the training set that are closest to the test object,and bases the assignment of a label on the predominance of a particular class in this neighborhood.This addresses the issue that,in many data sets,it is unlikely that one object will exactly match another,as well as the fact that con?icting information about the class of an object may be provided by the objects closest to it.There are several key elements of this approach:(i)the set of labeled objects to be used for evaluating a test object’s class,1(ii)a distance or similarity metric that can be used to compute This need not be the entire training set. 151

人工智能之机器学习常见算法

人工智能之机器学习常见算法 摘要机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里小编为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。 学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习: 在监督式学习下,输入数据被称为训练数据,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中垃圾邮件非垃圾邮件,对手写数字识别中的1,2,3,4等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与训练数据的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(LogisTIc Regression)和反向传递神经网络(Back PropagaTIon Neural Network) 非监督式学习: 在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means 算法。 半监督式学习: 在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预

数学建模十种常用算法

数学建模有下面十种常用算法, 可供参考: 1.蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问 题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2.数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数 据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3.线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多 数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4.图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算 法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5.动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算 法设计中比较常用的方法,很多场合可以用到竞赛中) 6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些 问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7.网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很 多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8.一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9.数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分 析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10.图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中 也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab 进行处理)

数学建模中常见的十大模型讲课稿

数学建模中常见的十 大模型

精品文档 数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的 收集于网络,如有侵权请联系管理员删除

机器学习的十种经典算法详解

机器学习的十种经典算法详解 毫无疑问,近些年机器学习和人工智能领域受到了越来越多的关注。随着大数据成为当下工业界最火爆的技术趋势,机器学习也借助大数据在预测和推荐方面取得了惊人的成绩。比较有名的机器学习案例包括Netflix根据用户历史浏览行为给用户推荐电影,亚马逊基于用户的历史购买行为来推荐图书。那么,如果你想要学习机器学习的算法,该如何入门呢?就我而言,我的入门课程是在哥本哈根留学时选修的人工智能课程。老师是丹麦科技大学应用数学和计算机专业的全职教授,他的研究方向是逻辑学和人工智能,主要是用逻辑学的方法来建模。课程包括了理论/核心概念的探讨和动手实践两个部分。我们使用的教材是人工智能的经典书籍之一:Peter Norvig教授的《人工智能——一种现代方法》,课程涉及到了智能代理、基于搜索的求解、对抗搜索、概率论、多代理系统、社交化人工智能,以及人工智能的伦理和未来等话题。在课程的后期,我们三个人还组队做了编程项目,实现了基于搜索的简单算法来解决虚拟环境下的交通运输任务。我从课程中学到了非常多的知识,并且打算在这个专题里继续深入学习。在过去几周内,我参与了旧金山地区的多场深度学习、神经网络和数据架构的演讲——还有一场众多知名教授云集的机器学习会议。最重要的是,我在六月初注册了Udacity的《机器学习导论》在线课程,并且在几天前学完了课程内容。在本文中,我想分享几个我从课程中学到的常用机器学习算法。机器学习算法通常可以被分为三大类——监督式学习,非监督式学习和强化学习。监督式学习主要用于一部分数据集(训练数据)有某些可以获取的熟悉(标签),但剩余的样本缺失并且需要预测的场景。非监督式学习主要用于从未标注数据集中挖掘相互之间的隐含关系。强化学习介于两者之间——每一步预测或者行为都或多或少有一些反馈信息,但是却没有准确的标签或者错误提示。由于这是入门级的课程,并没有提及强化学习,但我希望监督式学习和非监督式学习的十个算法足够吊起你的胃口了。监督式学习1.决策树:决策树是一种决策支持工具,它使用树状图或者树状模型来表示决策过程以及后续得到的结果,包括概率事件结果等。请观察下图来理解决策树的结构。 从商业决策的角度来看,决策树就是通过尽可能少的是非判断问题来预测决策正确的概

数据挖掘中十大经典算法

数据挖掘十大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。 5. 最大期望(EM)算法 在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。 6. PageRank PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里?佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个

数据挖掘算法

数据挖掘的10大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在 构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm

相关文档
最新文档