常微分方程定性理论
1微分方程与差分方程稳定性理论

如果 tlim x(t ) x0 , 则称平衡点P0是稳定的.
t
lim y(t ) y0 ,
下面给出判别平衡点P0是否稳定的判别 准则. 设 f ( P0 ) f ( P0 ) f ( P0 ) g ( P0 ) x y p , q g ( P0 ) g ( P0 ) y x x y
微分方程定性分析
一般提法:不去积分给定的微分方程, 而根 据 方程右端的函数的性质确定方程的积分曲线在整 个区域内的分布状态. 基本任务:考虑在有限区域内积分曲线的形状, 或研究当时间无限增大时, 积分曲线的性态. 研究对象:驻定系统 若微分方程组
dxi fi ( x1 , x2 , , xn ), i 1, 2,, n dt
2 2
微分方程的定性分析
随着科学技术的发展,常微分方程定性分析 在各个学科领域已成为必不可少的数学工具, 也是数学建模的必备基础理论. 一. 微分方程定性理论的基本任务和 主要研究方法 极少情况下,能够用初等函数或初等函 数的积分表示微分方程的解. 解 求微分方程的数值解 决 方 对微分方程进行定性分析 法
二阶常系数线性差分方程 xn+2 + axn+1 + bxn = r, 其中a, b, r为常数.
当r = 0时, 它有一特解 x* = 0; 当r ≠ 0, 且a + b + 1≠ 0时, 它有一特解 x*=r/( a + b +1). 不管是哪种情形, x*是其平衡点. 设其特征方
程
2 + a + b = 0 的两个根分别为 =1, =2.
来代替.
dx f ( x0 )( x x0 ) dt
常微分方程定性与稳定性方法

谢谢观看
目录分析
第二部分是主体部分,详细介绍了常微分方程定性与稳定性的各种方法。其 中包括了稳定性理论、线性化与中心流形方法、Lyapunov第二方法、PoincaréBendixson定理等。这些方法都是解决常微分方程定性稳定性问题的关键工具, 通过学习这些方法,读者可以更好地理解和应用常微分方程。
目录分析
目录分析
目录分析
《常微分方程定性与稳定性方法》是一本关于常微分方程的学术著作,其目 录作为书籍内容的指引,具有重要意义。通过对目录的深入分析,我们可以了解 这本书的主要内容、结构以及编者的思路。
目录分析
从目录的结构来看,这本书大致可以分为三个部分。第一部分是引言,主要 介绍了常微分方程的基本概念、研究背景以及本书的目的和内容概述。这一部分 对于读者理解全书内容起到了很好的引导作用。
阅读感受
这本书从常微分方程的基本概念入手,逐步深入到其定性分析和稳定性方法。 让我印象深刻的是,作者不仅仅是在讲解理论知识,更是将理论与实践紧密结合。 例如,书中提到了极限环的概念,这是我之前未曾深入了解的领域。通过书中的 解释,我了解到极限环在很多实际问题中都有着广泛的应用,如生态系统的种群 动态、电路的振荡等。
内容摘要
还通过实例阐述了线性化方法在近似求解非线性问题中的应用。
Lyapunov第二方法涉及了中心流形定理和分岔理论。这一章通过深入浅出的方式,介绍了中心 流形定理的基本概念和计算方法,以及分岔理论的分类和应用。还结合实例探讨了非线性系统在 分岔点附近的动态行为。
本书的最后两章分别介绍了时滞微分方程的稳定性和混沌理论的相关内容。时滞微分方程在现代 科技领域中有着广泛的应用,如生态学、电路系统和控制系统等。这一章重点讨论了时滞微分方 程的稳定性条件和计算方法,以及与连续系统和离散系统的关系。也通过实例探讨了混沌理论在 时滞微分方程中的应用和意义。
常微分方程的发展史

常微分方程的发展史摘要:20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组).70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程. 从“求通解”到“求解定解问题”数学家们首先发现微分方程有无穷个解.常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数.偏微分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定.命方程的解含有的任意元素(即任意常数或任意函数)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元素的解称为“通解”.在很长一段时间里,人们致力于“求通解”.关键词:常微分方程,发展,起源正:常微分方程是由用微积分处理新问题而产生的,它主要经历了创立及解析理论阶段、定性理论阶段和深入发展阶段。
17 世纪,牛顿(I.Newton ,英国,1642-1727)和莱布尼兹(G.W.Leibniz ,德国,1646-1716)发明了微积分,同时也开创了微分方程的研究最初,牛顿在他的著作《自然哲学的数学原理机(1687年)中,主要研究了微分方程在天文学中的应用,随后微积分在解决物理问题上逐步显示出了巨大的威力。
但是,随着物理学提出日益复杂的问题,就需要更专门的技术,需要建立物理问题的数学模型,即建立反映该问题的微分方程。
1690 年,雅可比·伯努利(Jakob Bernouli,瑞士,1654-1705)提出了等时间题和悬链线问题.这是探求微分方程解的早期工作。
雅可比·伯努利自己解决了前者。
翌年,约翰伯努利(Johann Bernouli ,瑞士,1667-1748)、莱布尼兹和惠更斯(C.Huygens ,荷兰,1629-1695)独立地解决了后者。
有了微分方程,紧接着就是解微分方程,并对所得的结果进行物理解释,从而预测物理过程的特定性质.所以求解就成为微分方程的核心,但求解的困难很大,一个看似很简单的微分方程也没有普遍适用的方法能使我们在所有的情况下得出它的解。
常微分方程期末复习提要(1)

常微分方程期末复习提要中央电大 顾静相常微分方程是广播电视大学本科开放教育数学与应用数学专业的统设必修课程.本课程的主要任务是要使学生掌握常微分方程的基本理论和方法,增强运用数学手段解决实际问题的能力.本课程计划学时为54,3学分,主要讲授初等积分法、基本定理、线性微分方程组、线性微分方程、定性理论简介等内容。
本课程的文字教材是由潘家齐教授主编、中央电大出版社出版的主辅合一型教材《常微分方程》.现已编制了28学时的IP 课件供学生在网上学习.一、复习要求和重点第一章 初等积分法1.了解常微分方程、常微分方程的解的概念,掌握常微分方程类型的判别方法.常微分方程与解的基本概念主要有:常微分方程,方程的阶,线性方程与非线性方程,解,通解,特解,初值问题。
2.了解变量分离方程的类型,熟练掌握变量分离方程解法.(1)显式变量可分离方程为:)()(d d y g x f x y = ; 当0≠g 时,通过积分⎰⎰+=C x x f y g y d )()(d 求出通解。
(2)微分形式变量可分离方程为: y y N x M x y N x M d )()(d )()(2211=;当0)()(21≠x M y N 时,通过积分 ⎰⎰+=C x x M x M y y N y N d )()(d )()(2112求出通解。
3.了解齐次方程的类型,熟练掌握齐次方程(即第一类可化为变量可分离的方程)的解法.第一类可化为变量可分离方程的一阶齐次微分方程为:)(d d x y g x y = ; 令x y u =,代入方程得xu u g x u -=)(d d ,当0)(≠-u u g 时,分离变量并积分,得⎰=-uu g u x C )(d 1e ,即)(e u C x ϕ=,用x y u =回代,得通解)(e x y C x ϕ=. 4.了解一阶线性方程的类型,熟练掌握常数变易法,掌握伯努利方程的解法.(1)一阶线性齐次微分方程为:0)(d d =+y x p xy 通解为:⎰=-x x p C y d )(e 。
【精品】常微分方程解的稳定性修改

【关键字】精品常微分方程解的稳定性摘要本文简要介绍了常微分方程解的稳定性理论的相关概念及其在解决微分方程相关问题的重要意义。
最后,介绍用李雅普诺夫第二方法构造李雅普诺夫函数来判断常微分方程的稳定性及其在解决常微分方程的稳定性问题中的应用。
关键字:常微分方程稳定性李雅普诺夫函数V函数构造方法引言常微分方程在经历了长期的求精确解的努力后逐渐停滞,庞加莱在分析的基础上引入几何方法,开创了常微分方程定性理论, 同时在分析中引入几何方法,搭建起分析与几何之间的沟通桥梁,带来了微分方程研究的新突破。
李雅普诺夫则在庞加莱定性分析的基础上,转而进入了新的稳定性研究。
如今,李雅普诺夫稳定性理论被普遍认为是微分方程定性理论的基本成就之一。
不仅有精确的定义,更有严格的分析证明,将微分方程及稳定性理论的研究推向了新的高度。
本文论述常微分方程解的稳定性的定义及其研究常微分方程相关问题的重要思想,并用李雅普诺夫第二方法构造李雅普诺夫函数来判断常微分方程的稳定性及其在解决常微分方程的稳定性问题中的应用。
1、常微分方程稳定性微分方程自诞生以来就一直以微分方程解的求法为研究中心。
数学家在微分方程求解过程中进行了不懈的努力,但始终没有从根本上摆脱求确定解的桎梏,致使研究的道路越来越窄。
此时单纯的定量分析已不能解决问题,必须用一种综合化、整体化的思想加以考虑. 躲开微分方程求精确解的定量方法,转向运用稳定性方法探求解的性质,从而解决常微分方程(组)的解的问题.考虑微分方程组(2.1)其中函数对和连续,对满足局部利普希茨条件。
设方程(2.1)对初值存在唯一解, 而其他解记作. 本文中向量的范数取.如果所考虑的解的存在区间是有限闭区间,那么这是解对初值的连续依赖性。
现在要考虑的是解的存在区间是无穷区间,那么解对初值不一定有连续依赖性,这就产生的李雅普诺夫意义下的稳定性概念。
如果对于任意给定的和都存在,使得只要就有对一切成立,则称(2.1)的解是稳定的,否则是不稳定的。
《常微分方程》课程大纲

《常微分方程》课程大纲一、课程简介课程名称:常微分方程学时/学分:3/54先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。
面向对象:本科二年级或以上学生教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。
二、教学内容和要求常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。
(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数)第一章基本概念(2,0)(一)本章教学目的与要求:要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方向场),定解问题等基本概念。
本章教学重点解释常微分方程解的几何意义。
(二)教学内容:1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。
2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。
3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。
4.常微分方程所讨论的基本问题。
第二章初等积分法(4,2)(一)本章教学目的与要求:要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。
本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。
并通过习题课进行初步解题训练,提高解题技巧。
(二)教学内容:1. 恰当方程(积分因子法); 2. 分离变量法3. 一阶线性微分方程(常数变易法)4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)5.应用举例第三章常微分方程基本定理(10,2)(一)本章教学目的与要求:要求学生正确掌握存在和唯一性定理及解的延伸的含义,熟记初值问题的解存在唯一性条件,正确理解解对初值和参数的连续依赖性和可微性的几何含意。
07-08A卷 常微分方程定性理论

a
0
时,
A
0 b
1 0
,
此时原点为线性近似方程的中心,而此时原系统为线性方程,则此时原点
为原系统的中心。
得分 评阅人
四.计算题:(共 10 分)
四.画出下面系统的相图。
dx
dt
y
x(x2
y2 ) sin
1 x2 y2
dy
x
y(x2
y2 ) sin
1
dt
x2 y2
解:令 x r cos , y r sin ,作极坐标变换,则原系统变为:
dy
x2 y x y
,其中 a a
是一个参数。求系统的分支值,并讨论可能的分支现象。
dt
解: 讨论平衡点个数随参数的变化,以及平衡点的双曲性的变化。
第 3 页(共 3 页)
数,并且可证 F(x, y) 沿着原系统的轨线对时间 t 的导数 dF 恒为零。故知此时 dt
(k , 0) (k 为偶数)为原系统的中心。
( 2 ) 先 求 其 平 衡 点 为 ( 0 , 0 ), 则 原 系 统 在 原 点 附 近 的 线 性 近 似 方 程 的 系 数 矩 阵 为
A
0 b
x y yx2
2
y2x y3
dt
3
dx
(5)
dt dy
x( y 1) x y 2y2
dt
dx
(6)
dt dy
y x
y
x2
y2
dt
解:(1)容易看出原系统无平衡点,故原系统无闭轨,则当然无极限环。
(2)考虑 Px Qy 3(x 1)2 4y2 1 0 ,故由 Bendixson 判据知原系统无极限环。
庞加莱微分方程定性理论分析初探

中文摘要数学分析从一开始就是求解微分方程。
而非线性微分方程没有普遍解法以及一些天体力学问题的未决,促使庞加莱在微分方程求解过程中引入定性思想,创立了常微分方程实域定性理论这一新分支,突破了原有的微分方程求解的思维束缚,是微分方程研究历史上的一次重大飞跃。
本文简要阐明了19世纪庞加莱定性理论产生的思想背景和根源,重点介绍了庞加莱定性理论的创新之处,并进一步比较了与恩里克斯研究思想的异同,探讨了与李雅普诺夫运动稳定性理论的联系。
这些不仅对于全面了解和掌握庞加莱定性理论具有一定的参考价值,而且还可以使我们对科学历程中新思想、新理论的产生和发展规律有所启悟。
关键词:庞加莱定性理论定性分析李雅普诺夫运动稳定性ABSTRACTMathematicalanalysisbeganwithsearchingforthesolutionstodifferentialequations.Atthattime,however,nonlineardifferentialequationshadnouniversalsolutionsandsomeproblemsofcelestialmechanicswere.stillrequiredtoberesolved.ItinspiredPoincartointroducetheideaofqualitativeinsolvingdifferentialequationsandinitiateanewbranchofthequalitativetheoryofordinarydifferentialequationsinrealfieldThistheorybrokethroughtheobstaclesinthetraditionalthoughtsofdifferentialequations’solution.Itwasanimportantadvancementinthehistoryofdifferentialequations’researchThispaperbrieflyrecountsthebackgroundandoriginofPoincar’Squalitativetheoryinthe19也century,andemphasizestheinnovationsinhisthoughts.ItalsoanalysesthedifferencebetweenhisthoughtsandEnriques’,anddiscussestherelationsbetweenhistheoryandLiapunov’Sstabilitytheoryofmotion.Itnotonlyhassomevalueofreferencetounderstandandgraspqualitativetheoryofdifferentialequationscomprehensively,butalsoinspiresUStoponderoverthe订ackoftheemergencyanddevelopmentofnewthoughtsandtheoriesinthecourseofscience.Keywords:Poincar4,qualitativetheory,quslitativeanalysisILiaptmov,stabilityofmotion.3微分方程是伴随微积分一起发展起来的数学分支,是微积分在数学物理研究领域最重要的应用之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程号
00130410
学分
3
英文名称
Qualitative Theory of Ordinary Differential Equations
先修课程
常微分方程、偏微分方程、泛函分析
中文简介
在本课程中,我们将要讲授定性理论的基本内容,包括:相平面分析,分支理论初步,周期解的存在性,Poincare-Bendixson定理,圆周上同胚的Denjoy定理,映射和向量场的规范性理论。
开课院系
数学科学学院
通选课领域
是否属于艺术与美育
否
平台课性质
平台课类型
授课语言
中文
教材
微分方程几何理论和分支问题,微分方程定性理论;
参考书
教学大纲
介绍微分方程定性理论的基本内容和基本思想,尽快引领学生进入科研阶段。
第一章 基本概念
(1) 动力系统的定义和一般概念
(2)平面系统的奇点、闭轨与极限环,Poincare-Bedixson环域定理
第四章 平面向量场的常见分岔现象
(1)奇点分岔
(2)Hopf分岔
(3)闭轨分岔
(4)同宿分岔与异宿分岔
(5)Poincare分岔
(6)Bogdanov-Takens分岔"
课堂讲授
期末80,平时20
教学评估
甘少波:
(3)平面系统的无穷远奇点,全局拓扑结构
(4)空间系统的奇点、闭轨,稳定与非稳定流形定理
(5)动力系统的结构稳定与分岔的基本概念
第二章 中心流形定理
(1)全局中心流形定理
(2)局部中心流形定理
第三章 正规形理论
(1)向量场在奇点附近的正规形
(2)微分同胚在不动点附近的正规形
(3)共振条件与向量场的光滑等价分类
英文简介
In this course, the students will learn the main contents in qualitative theory of ordinary differential equations, including the phase plane analysis, bifurcation theory, the existence of periodic solutions, Poincare-Bendixson Theorem, Denjoy Theorem for homeomorphisms on the circle, normal form theory for mappings and for vectorfields.