卡尔曼滤波算法
卡尔曼滤波算法步骤

卡尔曼滤波算法步骤
卡尔曼滤波算法是一种广泛应用于控制系统和信号处理中的优化算法,主要作用是根据过去的观测数据和预测数据对未来的状态进行估计,并对估计值进行优化。
下面是卡尔曼滤波算法的步骤:
1. 建立系统模型:用数学模型描述系统的状态变化过程,包括状态转移方程和观测方程。
2. 初始化:估计系统的初始状态和初始误差协方差矩阵。
3. 预测状态:根据系统模型和前一时刻的状态估计值预测当前时刻的状态值。
4. 预测误差协方差矩阵:根据系统模型和前一时刻的误差协方差矩阵计算当前时刻的误差协方差矩阵。
5. 更新状态:根据当前时刻的观测值和预测值,利用贝叶斯公式计算当前时刻的状态估计值。
6. 更新误差协方差矩阵:根据当前时刻的观测值和预测值,利用贝叶斯公式计算当前时刻的误差协方差矩阵。
7. 重复步骤3~6直到达到所需的时刻点。
以上就是卡尔曼滤波算法的步骤,通过不断迭代计算,可以得到更加准确的状态估计值和误差协方差矩阵,从而提高系统的精度和稳定性。
- 1 -。
卡尔曼滤波_卡尔曼算法

卡尔曼滤波_卡尔曼算法1.引言1.1 概述卡尔曼滤波是一种用于估计系统状态的技术,通过融合传感器测量值和系统模型的预测值,提供对系统状态的最优估计。
它的应用十分广泛,特别在导航、图像处理、机器人技术等领域中发挥着重要作用。
在现实世界中,我们往往面临着各种噪声和不确定性,这些因素会影响我们对系统状态的准确估计。
卡尔曼滤波通过动态调整系统状态的估计值,可以有效地抑制这些干扰,提供更加精确的系统状态估计。
卡尔曼滤波的核心思想是利用系统模型的预测和传感器测量值之间的线性组合,来计算系统状态的最优估计。
通过动态地更新状态估计值,卡尔曼滤波可以在对系统状态的准确估计和对传感器测量值的实时响应之间进行平衡。
卡尔曼滤波算法包括两个主要步骤:预测和更新。
在预测步骤中,通过系统模型和上一时刻的状态估计值,预测当前时刻的系统状态。
在更新步骤中,将传感器测量值与预测值进行比较,然后根据测量误差和系统不确定性的权重,计算系统状态的最优估计。
卡尔曼滤波具有很多优点,例如它对传感器噪声和系统模型误差具有鲁棒性,可以提供较为稳定的估计结果。
此外,卡尔曼滤波还可以有效地处理缺失数据和不完全的测量信息,具有较高的自适应性和实时性。
尽管卡尔曼滤波在理论上具有较好的性能,但实际应用中还需考虑诸如系统模型的准确性、测量噪声的特性等因素。
因此,在具体应用中需要根据实际情况进行算法参数的调整和优化,以提高估计的准确性和可靠性。
通过深入理解卡尔曼滤波的原理和应用,我们可以更好地应对复杂环境下的估计问题,从而在实际工程中取得更好的效果。
本文将介绍卡尔曼滤波的基本原理和算法步骤,以及其在不同领域的应用案例。
希望通过本文的阅读,读者们可以对卡尔曼滤波有一个全面的了解,并能够在实际工程中灵活运用。
1.2文章结构文章结构部分的内容可以按照以下方式编写:1.2 文章结构本文将围绕卡尔曼滤波和卡尔曼算法展开论述。
首先,我们会在引言部分对卡尔曼滤波和卡尔曼算法进行简要概述,介绍其基本原理和应用领域。
扩展卡尔曼滤波算法

扩展卡尔曼滤波算法1 卡尔曼滤波算法卡尔曼滤波(Kalman Filter,KF)是指根据系统过程的当前测量值来估计未来某时刻的状态参量值的算法。
它可以帮助我们进行最优估计和状态跟踪辨识,在实际应用中一般用于非线性系统的实时状态值的估计及系统的控制、导航定位和信号处理等密切相关的任务。
卡尔曼滤波算法根据观测结果及自身的建模,以多次观测水深数据为重点,将观测结果和系统估计值进行更新和修正,从而获得一种逐次改进的过程模型,从而得出更准确的系统状态估计值。
2 扩展卡尔曼滤波算法基于卡尔曼滤波算法的扩展技术,是普遍存在的技术,它集合了计算机、数据处理和系统建模的原理,可以更先进的估计数据和追踪目标,最常用的方法被称为扩展卡尔曼滤波(EKF)。
该算法包括线性和非线性估计,可以扩展表达能力,从而结合卡尔曼滤波算法带来的传感精度和稳定性,使物体行进轨迹推测、跟踪更准确。
3 应用扩展卡尔曼滤波算法的应用领域包括空气制动原理应用、机器视觉方位估计、太阳能机器人位置跟踪、磁测量器定位、自动攻击模块偏转角识别等,以及虚拟地铁位置估计和导航,用于智能领域的研究。
在机器人导航研究中,扩展卡尔曼滤波算法可以在环境变化较多或污染较大的条件下,快速实现机器人位置估计和路径规划,满足快速智能系统设计的需求。
4 小结扩展卡尔曼滤波算法是利用卡尔曼滤波算法所提供的精度、稳定性和可扩展性,发展出来的一种滤波技术。
它可以合理地估计和预测某系统的状态,并及时追踪物体行走的轨迹,有效的计算系统的位置,有利于智能系统、机器人导航系统以及虚拟实验系统的设计,从而使系统的优化以及最优化更贴近实际应用。
陀螺仪卡尔曼滤波算法

陀螺仪卡尔曼滤波算法1. 引言陀螺仪是一种用于测量角速度的传感器,广泛应用于惯性导航、无人机控制、姿态估计等领域。
然而,由于传感器噪声和误差的存在,陀螺仪输出的数据往往不够稳定和准确。
为了解决这个问题,人们提出了许多滤波算法,其中最常用且效果良好的就是卡尔曼滤波算法。
本文将介绍陀螺仪卡尔曼滤波算法的原理、实现过程以及应用场景,并对其优缺点进行讨论。
2. 陀螺仪陀螺仪是一种基于角动量守恒原理工作的传感器。
它通常由一个旋转部件和一个测量部件组成。
旋转部件可以是一个旋转的轴或者一个旋转的盘片,当外界施加力矩时,旋转部件会发生相应的转动。
测量部件通过测量旋转部件的角速度来获取外界施加力矩的信息。
陀螺仪输出的数据通常是角速度,单位为弧度/秒。
然而,由于制造工艺和环境因素的限制,陀螺仪的输出往往存在噪声和误差。
这些噪声和误差会对应用场景中的姿态估计、运动控制等任务产生不利影响。
3. 卡尔曼滤波算法卡尔曼滤波算法是一种递归滤波算法,通过利用系统模型和观测数据,对状态进行估计和预测。
它在估计过程中综合考虑了系统模型的预测值和观测数据的测量值,并通过最小均方误差准则来优化估计结果。
陀螺仪卡尔曼滤波算法主要包括以下几个步骤:3.1 状态空间模型首先,需要建立一个状态空间模型来描述陀螺仪系统。
状态空间模型通常由状态方程和观测方程组成。
状态方程描述了系统的演化规律,可以表示为:x(k) = F * x(k-1) + B * u(k-1) + w(k-1)其中,x(k)表示时刻k的系统状态,F是状态转移矩阵,B是控制输入矩阵,u(k)是控制输入,w(k)是过程噪声。
观测方程描述了系统的输出与状态之间的关系,可以表示为:z(k) = H * x(k) + v(k)其中,z(k)表示时刻k的观测值,H是观测矩阵,v(k)是观测噪声。
3.2 初始化在开始滤波之前,需要对滤波器进行初始化。
通常情况下,可以将初始状态和协方差矩阵设置为零向量和单位矩阵。
卡尔曼滤波算法应用领域

卡尔曼滤波算法应用领域
卡尔曼滤波算法是一种用于估计系统状态的优化算法,广泛应用于许多领域,包括但不限于以下几个方面:
1. 空间导航与定位:卡尔曼滤波算法在全球定位系统(GPS)中的应用非常广泛,用于提高定位精度与稳定性。
2. 机器人技术:卡尔曼滤波算法可以用于机器人的定位、导航与路径规划,实现准确的自主导航。
3. 信号处理与通信:卡尔曼滤波算法可用于信号的低通滤波、高通滤波、带通滤波等处理,以提取有用的信息。
4. 图像处理与计算机视觉:卡尔曼滤波算法可以用于图像的去噪、运动估计与跟踪,提高图像处理与计算机视觉的效果。
5. 金融与经济学:卡尔曼滤波算法被广泛应用于金融与经济学中的时间序列分析、股票预测与风险管理等领域。
6. 物联网与传感器网络:卡尔曼滤波算法可以用于传感器数据的融合与估计,提高传感器网络的数据质量与可靠性。
7. 飞行器与导弹控制:卡尔曼滤波算法可以用于飞行器与导弹的姿态控制与导航,提高飞行器的稳定性与精确性。
总的来说,卡尔曼滤波算法在许多需要进行系统状态估计的领
域都有应用,它通过对系统模型与测量数据的优化,能够准确地估计系统的状态,提高系统的性能与鲁棒性。
gps卡尔曼滤波算法

gps卡尔曼滤波算法摘要:I.引言- 介绍GPS 卡尔曼滤波算法- 阐述其在导航定位中的应用II.卡尔曼滤波算法的基本原理- 描述卡尔曼滤波算法的起源和发展- 解释卡尔曼滤波的基本思想- 介绍卡尔曼滤波算法的基本公式和参数III.GPS 信号的性质与误差来源- 介绍GPS 信号的组成和特性- 阐述GPS 定位中的主要误差来源IV.GPS 卡尔曼滤波算法的应用- 说明GPS 卡尔曼滤波算法在导航定位中的应用- 描述卡尔曼滤波算法如何处理GPS 信号中的误差- 解释卡尔曼滤波算法如何提高定位精度V.总结与展望- 总结GPS 卡尔曼滤波算法的主要优点和应用领域- 探讨未来卡尔曼滤波算法的发展趋势和挑战正文:I.引言GPS(全球定位系统)是一种基于卫星导航的技术,能够为全球范围内的用户提供精确的位置、速度和时间信息。
然而,由于GPS 信号在传输过程中会受到多种因素的影响,例如大气层延迟、多路径效应、卫星钟差等,导致接收机接收到的GPS 信号存在误差。
为了提高GPS 定位的精度和可靠性,需要对GPS 信号进行滤波处理。
GPS 卡尔曼滤波算法是一种常用的高精度滤波算法,被广泛应用于导航定位领域。
II.卡尔曼滤波算法的基本原理卡尔曼滤波算法起源于20 世纪60 年代,是一种最优递归数据处理算法。
其基本思想是在系统的状态方程和观测方程之间建立一种递推关系,通过对观测数据的不断更新,使得状态估计值逐渐逼近真实值。
卡尔曼滤波算法的基本公式如下:x(k+1) = (I - K(k))x(k) + K(k)y(k)其中,x(k) 表示状态向量,y(k) 表示观测向量,K(k) 表示卡尔曼增益,I 是单位矩阵。
III.GPS 信号的性质与误差来源GPS 信号由一组卫星发射的电磁波组成,经过大气层传播到接收机。
GPS 信号的特性包括频率、相位、幅度等。
在GPS 定位过程中,主要误差来源包括以下几个方面:1.大气层延迟:大气层对GPS 信号的传播产生延迟作用,导致接收机接收到的信号存在偏差。
yolo卡尔曼滤波跟踪算法

yolo卡尔曼滤波跟踪算法
Yolo和卡尔曼滤波是两种不同的算法,分别用于目标检测和运动预测。
Yolo是一种目标检测算法,全称You Only Look Once,通过一次前向传
递即可直接预测并得到准确的位置信息,相较于传统目标检测算法
RPN+CNN的迭代预测,速度快,检测框较准确,其它的诸如R-CNN系列,Fast R-CNN系列,Faster R-CNN系列等都需要多次迭代预测框位置。
卡尔曼滤波是一种线性递归滤波器,用于最优估计状态变量。
它使用状态方程和测量方程来描述动态系统的状态变量和观测值,通过递归算法更新状态变量的估计值,以最小化估计误差的平方和。
在计算机视觉和机器人领域中,卡尔曼滤波常用于目标跟踪和姿态估计等问题。
而Yolo-卡尔曼滤波跟踪算法则是将Yolo的目标检测算法与卡尔曼滤波的
运动预测算法相结合,通过Yolo算法检测目标并获取其位置信息,然后利
用卡尔曼滤波算法对目标的运动轨迹进行预测,从而实现更加准确的目标跟踪。
这种结合算法通常能够处理目标遮挡、目标快速移动等复杂情况,并提高目标跟踪的准确性和稳定性。
但同时也需要针对具体应用场景和数据进行参数调整和优化,以获得最佳的性能表现。
经典卡尔曼滤波算法公式

经典卡尔曼滤波算法公式
卡尔曼滤波算法是一种基于状态估计的控制算法,经常应用于机器人控制、航空导航、车辆导航等领域。
下面是经典的卡尔曼滤波算法公式:
1. 状态预测方程:
x(k|k-1) = Fx(k-1|k-1) + Bu(k)
其中,x(k|k-1)表示第k步的状态预测值,F表示状态转移矩阵,B表示输入矩阵,u(k)表示第k步的控制输入。
2. 误差预测方程:
P(k|k-1) = FP(k-1|k-1)F' + Q
其中,P(k|k-1)表示第k步的估计误差,Q表示系统噪声协方差矩阵。
3. 状态更新方程:
K(k) = P(k|k-1)H'/(HP(k|k-1)H' + R)
x(k|k) = x(k|k-1) + K(k)(z(k) - Hx(k|k-1))
P(k|k) = (I - K(k)H)P(k|k-1)
其中,K(k)表示卡尔曼增益,z(k)表示测量值,H表示测量矩阵,R表示测量噪声协方差矩阵。
以上就是经典的卡尔曼滤波算法公式,可以在实际应用中根据具体情况进行调整和优化。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卡尔曼滤波器的介绍为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。
但是,他的5条公式是其核心内容。
结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。
在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。
假设我们要研究的对象是一个房间的温度。
根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。
假设你对你的经验不是100%的相信,可能会有上下偏差几度。
我们把这些偏差看成是高斯白噪声,也就是这些偏差跟前后时间是没有关系的而且符合高斯分配。
另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。
我们也把这些偏差看成是高斯白噪声。
好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。
下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。
假如我们要估算k时刻的是实际温度值。
首先你要根据k-1时刻的温度值,来预测k时刻的温度。
因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。
然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。
由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。
究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance来判断。
因为Kg^2=5^2/(5^2+4^2)所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23)=24.56度。
可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。
现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。
到现在为止,好像还没看到什么自回归的东西出现。
对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。
算法如下:((1-Kg)*5^2)^0.5=2.35。
这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。
就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。
他运行的很快,而且它只保留了上一时刻的covariance。
上面的Kg,就是卡尔曼增益(Kalman Gain)。
他可以随不同的时刻而改变他自己的值,是不是很神奇!下面就要言归正传,讨论真正工程系统上的卡尔曼。
卡尔曼滤波器算法在这一部分,我们就来描述源于Dr Kalman的卡尔曼滤波器。
下面的描述,会涉及一些基本的概念知识,包括概率随即变量高斯或正态分配还有State-space Model等等。
但对于卡尔曼滤波器的详细证明,这里不能一一描述。
首先,我们先要引入一个离散控制过程的系统。
该系统可用一个线性随机微分方程(LinearStochastic Difference equation)来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。
A和B是系统参数,对于多模型系统,他们为矩阵。
Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。
W(k)和V(k)分别表示过程和测量的噪声。
他们被假设成高斯白噪声(WhiteGaussianNoise),他们的covariance分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。
下面我们来用他们结合他们的covariances来估算系统的最优化输出(类似上一节那个温度的例子)。
首先我们要利用系统的过程模型,来预测下一状态的系统。
假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=A X(k-1|k-1)+B U(k) (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。
到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。
我们用P表示covariance:P(k|k-1)=A P(k-1|k-1) A’+Q (2)式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。
式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。
现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。
结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) (3)其中Kg为卡尔曼增益(Kalman Gain):Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) (4)到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。
但是为了要另卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance:P(k|k)=(I-Kg(k) H)P(k|k-1) (5)其中I为1的矩阵,对于单模型单测量,I=1。
当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。
这样,算法就可以自回归的运算下去。
使用C语言编程实现(核心算法)。
程序1x_mid=x_last;//x_last=x(k-1|k-1),x_mid=x(k|k-1)p_mid=p_last+Q;//p_mid=p(k|k-1),p_last=p(k-1|k-1),Q=噪声kg=p_mid/(p_mid+R); //kg为kalman filter,R为噪声z_measure=z_real+frand()*0.03;//测量值x_now=x_mid+kg*(z_measure-x_mid);//估计出的最优值p_now=(1-kg)*p_mid;//最优值对应的covariancep_last = p_now;//更新covariance值x_last = x_now;//更新系统状态值#include "stdio.h"#include "stdlib.h"#include "math.h"double frand(){ return 2*((rand()/(double)RAND_MAX) - 0.5); //随机噪声} void main(){float x_last=0;float p_last=0.02;float Q=0.018;float R=0.542;float kg;float x_mid;float x_now;float p_mid;float p_now;float z_real=0.56;//0.56float z_measure;float sumerror_kalman=0;float sumerror_measure=0;int i;x_last=z_real+frand()*0.03;x_mid=x_last;for(i=0;i<20;i++){x_mid=x_last; //x_last=x(k-1|k-1),x_mid=x(k|k-1)p_mid=p_last+Q; //p_mid=p(k|k-1),p_last=p(k-1|k-1),Q=噪声kg=p_mid/(p_mid+R); //kg为kalman filter,R为噪声z_measure=z_real+frand()*0.03;//测量值x_now=x_mid+kg*(z_measure-x_mid);//估计出的最优值p_now=(1-kg)*p_mid;//最优值对应的covarianceprintf("Real position: %6.3f \n",z_real); //显示真值printf("Mesaured position:%6.3f[diff:%.3f]\n",z_measure,fabs(z_real-z_measure));//显示测量值以及真值与测量值之间的误差printf("Kalman position: %6.3f [diff:%.3f]\n",x_now,fabs(z_real - x_now)); //显示kalman估计值以及真值和卡尔曼估计值的误差sumerror_kalman += fabs(z_real - x_now); //kalman估计值的累积误差sumerror_measure += fabs(z_real-z_measure); //真值与测量值的累积误差p_last = p_now; //更新covariance值x_last = x_now; //更新系统状态值}printf("总体测量误差: %f\n",sumerror_measure); //输出测量累积误差printf("总体卡尔曼滤波误差: %f\n",sumerror_kalman); //输出kalman累积误差printf("卡尔曼误差所占比例: %d%% \n",100-(int)((sumerror_kalman/sumerror_measure)*100)); }其实作为应用我们只需知道卡尔曼输入的两个量,一个是测量值,一个是预测值,程序都是成型的,重点还是在参数的调试上。
整个算法中影响输出的就是Kg的值,可以简单的理解为一种加权行为,相信谁更多一点而已。
代码如下:说明:简化版卡尔曼滤波程序2volatile float QingJiao = 0; //最终准确角度输出变量定义volatile float Gyro_Data = 0; //陀螺仪float Q =1,R =3900; //调整卡尔曼的滞后3900static float RealData = 0,RealData_P =10000;float NowData = 0,NowData_P =0 ;float Kg = 0,gyroscope_rate = 0,gyroscope_rat = 0,accelerometer_angle;volatile float gyroscope_angle=0 ; //用卡尔曼滤波时不用此变量int Gyro1_zero=0;void kalman_update(void){if(zeroflag>1000) //与开机自检有关,没用到的可以删去{ zeroflag=1001; //确保zeroflag不会溢出//——————————————————————————————————————————-Acc_z = Acc_z –28850; //加速度计采集的AD值减去直立时的输出值Gyro1_zero=zerosub/1000; //陀螺仪开机自检累加1000次后取均值得到陀螺仪零偏值Gyro1 = Gyro1 –Gyro1_zero; //陀螺仪AD采集值减去陀螺仪零偏值Gyro_Data = Gyro1;accelerometer_angle= Acc_z*180/(47915.71-12843.7); //加速度计计算出的角度归一化到-90 到+90gyroscope_rate = Gyro1*0.0235*0.005; //0.0235 是转换角度的比例值0.005是控制周期gyroscope_rat =gyroscope_rat -Gyro1*0.0235*0.005; //积分角速度得到角度//卡尔曼五个公式的算法实现NowData = RealData -gyroscope_rate;NowData_P = Q+RealData_P;Kg = NowData_P/(NowData_P+R);RealData = NowData + Kg*(accelerometer_angle – NowData);RealData_P = (1-Kg)*NowData_P;QingJiao = RealData; //将准确角度结果给QingJiao}}程序3//float gyro_m:陀螺仪测得的量(角速度)//float incAngle:加计测得的角度值#define dt 0.02//卡尔曼滤波采样频率#define R_angle 0.5 //测量噪声的协方差(即是测量偏差)#define Q_angle 0.0001//过程噪声的协方差#define Q_gyro 0.0003 //过程噪声的协方差过程噪声协方差为一个一行两列矩阵float kalmanUpdate(const float gyro_m,constfloat incAngle){float K_0;//含有卡尔曼增益的另外一个函数,用于计算最优估计值float K_1;//含有卡尔曼增益的函数,用于计算最优估计值的偏差float Y_0;float Y_1;float Rate;//去除偏差后的角速度float Pdot[4];//过程协方差矩阵的微分矩阵float angle_err;//角度偏量float E;//计算的过程量static float angle = 0; //下时刻最优估计值角度static float q_bias = 0; //陀螺仪的偏差static float P[2][2] = {{ 1, 0 }, { 0, 1 }};//过程协方差矩阵|1 0||0 1| //计算过程协方差矩阵的微分矩阵Pdot[0] = Q_angle - P[0][1] - P[1][0];//??????| 0.0001 - 1 |Pdot[1] = - P[1][1]; // |- 1 0.0003 |Pdot[2] = - P[1][1];Pdot[3] = Q_gyro;//??????angle += Rate * dt; //角速度积分得出角度P[0][0] += Pdot[0] * dt; //计算协方差矩阵| 1.00002 -0.02 |P[0][1] += Pdot[1] * dt; // |- 0.02 1.00006 |P[1][0] += Pdot[2] * dt;P[1][1] += Pdot[3] * dt;Rate = gyro_m - q_bias;// 去除偏差后的角速度angle_err = incAngle - angle; //计算角度偏差E = R_angle + P[0][0];K_0 = P[0][0] / E; //计算卡尔曼增益K_1 = P[1][0] / E;Y_0 = P[0][0];Y_1 = P[0][1];P[0][0] -= K_0 * Y_0; //跟新协方差矩阵P[0][1] -= K_0 * Y_1;P[1][0] -= K_1 * Y_0;P[1][1] -= K_1 * Y_1;angle += K_0 * angle_err; //给出最优估计值q_bias += K_1 * angle_err;//跟新最优估计值偏差return angle;}。