筏形基础设计中的问题探讨

合集下载

筏形基础质量通病及防治措施

筏形基础质量通病及防治措施

筏形基础质量通病及防治措施筏形基础是把柱下独立基础或者条形基础全部用联系梁联系起来,下面再整体浇筑底板,由底板、梁等整体组成。

当建筑物荷载较大,地基承载力较弱时,常采用混凝土底板,承受建筑物荷载,形成筏基,其整体性好,能很好地抵抗地基不均匀沉降。

当筏板厚度较大,达到或接近1m时,就会和大体积混凝土施工联系起来,浇筑前的准备工作、浇筑过程中的工艺要求、混凝土的水化热、施工裂缝,再加上基础施工本身的难题,大型筏形基础施工会出现质量问题。

质量通病1、大体积混凝土施工的质量通病大型筏形基础施工是典型的大体积混凝土浇筑施工,会出现大体积混凝土施工的质量通病,主要表现在混凝土泌水,上、下浇筑层施工间隔时间较长,各分层之间产生泌水层,将导致混凝土强度降低、脱皮、起砂等不良后果;混凝土表面水泥浆过厚,因大体积混凝土的量大,且多数是用泵送,在混凝土表面的水泥浆会产生过厚现象,最关键的问题是裂缝问题。

大体积混凝土内出现的裂缝按深度的不同,分为贯穿裂缝、深层裂缝及表面裂缝3种;形成原因上主要是温度裂缝和沉降裂缝。

当大体积混凝土浇筑后,当地基之间出现不均匀沉降及应力时,又没有及时采取措施消除或根本无法消除约束应力时,就可能导致拉应力超过混凝土的极限抗拉强度而产生裂缝,甚至会贯穿整个表面产生贯穿性裂缝。

大体积混凝土浇筑前准备不充分,混凝土原材料选用不合理,配合比设计不当,浇筑方案不科学,混凝土养护不当,地基产生应力等原因都可能导致上述质量通病的产生。

2、土方开挖时的土体扰动大型筏形基础的施工,一般意味着高层建筑和深基坑的开挖,开挖深度过大,开挖时间长,开挖时施工机械使用多,将会对土体造成很大的扰动,当采用的土方开挖方案不够科学,开挖周期过长,土方加固措施不当或土方开挖时遇到恶劣天气都会导致产生一系列的土方开挖问题,如边坡扰动、塌陷,严重时酿成质量事故,甚至危及建筑物结构安全及周边建(构)筑物的使用。

3、施工易形成混凝土施工冷缝混凝土施工冷缝就是由于施工不当,在施工过程中由于某种原因使前浇筑混凝土在已经初凝,后浇筑混凝土继续浇筑,使前后混凝土连接处出现一个软弱的结合面。

浅谈筏型基础混凝土裂缝成因

浅谈筏型基础混凝土裂缝成因

浅谈筏型基础混凝土裂缝成因引言:随着我国社会经济建设步伐的加快,城市建设规模不断扩大,各种类型的建筑数量日益增加。

当建筑物上部荷载较大而地基承载能力又比较弱时,用简单的独立基础或条形基础已不能适应地基变形的需要,这时常将墙或柱下基础连成一片,使整个建筑物的荷载承受在一块整板上,即称为筏形基础。

筏形基础由于其底面积大,故可减小基底压强,同时也可提高地基土的承载力,并能更有效地增强基础的整体性,调整不均匀沉降。

鉴于其独特的优越性,在超高层建筑工程中得到广泛的应用。

然而,与很多混凝土工程一样,裂缝始终是施工中普遍存在、难以彻底根除的质量通病,影响着结构的整体性和耐久性。

1.裂缝成因1.1温度裂缝超高层筏形基础体积大,混凝土在浇筑后,由于水泥水化热造成内部温度上升,按常规方法估算,水泥水化热引起混凝土内部最高温度可达到60℃左右。

由于筏型基础混凝土内部温度高、外部温度低,而会形成内部混凝土膨胀、外部混凝土收缩的形势,内外相互制约而使外表面混凝土产生拉应力,该拉应力过大,就会导致混凝土开裂。

1.2结构裂缝当筏型基础产生不均匀沉降,而沉降变形量过大,混凝土强度不足以抵挡变形时,就会导致混凝土破坏而开裂。

这种情况常见于设计结构尺寸偏小、地基承载力不足、地基处理方法不当、混凝土强度不足、外力作用等。

2.温度裂缝控制措施2.1材料选择为了控制混凝土温度上升,常选从选用水泥、粗细骨料、外加剂方面入手。

2.1.1水泥的选择理论研究表明,混凝土温度裂缝产生的主要原因就是水泥水化过程中释放大量的热量,水泥孰料矿物中发热速率最快和发热量最大的是铝酸三钙,其他成分依次为硅酸三钙、硅酸二钙和铁铝四钙。

另外,水泥越细发热速率也就越快,但不影响最终发热量。

因此,在筏型基础混凝土施工中应尽量选用低热或者中热的矿渣硅酸盐水泥、火山灰水泥,并尽量降低混凝土中的水泥用量,以降低混凝土的温升,提高混凝土终凝后的体积稳定性。

为保证减少水泥用量后混凝土的强度和坍落度,可适量增加活性细掺料。

筏板基础设计的若干问题

筏板基础设计的若干问题

筏板基础设计的若干问题基础重心校核⑴“筏板重心校核”中的荷载值为什么与“基础人机交互”退出时显示的值不一样?产生此种情况的原因主要有以下两种:①对于梁板式基础,由于有些轴线上没有布置梁或板带,造成荷载导算时没有分配到梁或板带上,从而使两种方式所产生的重心校核值不一致。

②地下水的影响:“筏板重心校核”中的荷载值没有考虑地下水的影响,而“基础人机交互”退出时显示的值考虑了地下水的影响。

⑵对于带裙房的主体结构,筏板重心校核该如何计算?对于带裙房的主体结构,“筏板重心校校”主体应该与裙房分开计算,而且主要是验算主体结构的重心校核。

弹性地基梁结构5种计算模式的选择弹性地基梁结构在进行计算时,程序给出了5种计算模式,现对这5种模式的计算和选择进行一些简单介绍。

⑴按普通弹性地基梁计算:这种计算方法不考虑上部刚度的影响,绝大多数工程都可以采用此种方法,只有当该方法时基础设计不下来时才考虑其他方法。

⑵按考虑等代上部结构刚度影响的弹性地基梁计算:该方法实际上是要求设计人员人为规定上部结构刚度是地基梁刚度的几倍。

该值的大小直接关系到基础发生整体弯曲的程度。

而上部结构刚度到底是地基梁刚度的几倍并不好确定。

因此,只有当上部结构刚度较大、荷载分布不均匀,并且用模式1算不下来时方可采用,一般情况可不用选它。

⑶按上部结构为刚性的弹性地基梁计算:模式3与模式2的计算原理实际上最一样的,只不过模式3自动取上部结构刚度为地基梁刚度的200倍。

采用这种模式计算出来的基础几乎没有整体弯矩,只有局部弯矩。

其计算结果类似传统的倒楼盖法。

该模式主要用于上部结构刚度很大的结构,比如高层框支转换结构、纯剪力墙结构等。

⑷按SATWE或TAT的上部刚度进行弹性地基架计算:从理论上讲,这种方法最理想,因为它考虑的上部结构的刚度最真实,但这也只对纯框架结构而言。

对于带剪力墙的结构,由于剪力墙的刚度凝聚有时会明显地出现异常,尤其是采用薄壁柱理论的TAT软件,其刚度只能凝聚到离形心最近的节点上,因此传到基础的刚度就更有可能异常。

浅析筏板基础优化设计

浅析筏板基础优化设计

浅析筏板基础优化设计筑空间内不允许设置太多的内墙,这就限制了箱型基础的使用。

筏板基础不但能够充分发挥地基的承载能力,避免出现不均匀沉降,还能满足地下空间的使用要求,所以筏板基础成为当前最理想的基础形式。

下文中,笔者将从筏板基础设计分析、优化设计方案两方面进行分析和总结。

关键词:筏板基础设计分析;优化设计筏板基础本身是地下室的底板,厚度较大,有良好的抗渗性能。

由于筏板刚度大,可以调节基础不均匀沉降。

加之筏板基础不必设置很多内部墙体,可以形成较大的自由空间,便于地下室的多种用途,因而能较好地满足建筑功能的要求。

一.筏板基础设计分析在进行基础设计时,必须满足以下要求:一是基础所承受的荷重,必须小于地基允许的承载力,以保证工程的安全;二是要对基础的总沉降量和差异沉降量进行控制,将其控制在一定的限值内,避免上部结构出现损坏;三是在新建房屋时,要分析对自身和周围房屋的影响,及时采取相应的保护措施。

四是以安全为前提,考虑建筑的经济效果。

此外,要想建筑工期短、费用低,就不能够仅考虑基础,还要充分考虑建筑物的监造和运行。

在基础选形时,必须全面考虑、分析地基、基础、上部结构的强度和施工顺序,对在施工和使用过程中可能出现的基础沉降和差异沉降做出准确的评估。

1.桩筏基础桩筏基础是桩基础和筏板基础的合称,属于混合基础形式,桩不是结构基础,是人工地基,而筏板是结构的组成部分,是基础。

桩在筏板的下面,桩和筏板共同承受上部结构传来的荷载。

筏板基础可成片覆盖于建筑物地基的较大面积,整体刚度大,满足软弱地基承载力的要求,减少地基的附加应力和不均匀沉降,增强建筑物的整体抗震性能。

桩具有竖向承载力高、沉降量小、稳定性好、便于机械化施工、适应性强等特点。

将二者结合起来,能保证在承担上部建筑结构荷载的同时,更能有效的控制基础沉降,同时可以承受风荷载和地震荷载引起的巨大水平力,抗倾覆能力强,因此桩筏基础作为承担大荷载结构一种基础形式具备较突出的优势。

平板式筏形基础分析与探讨

平板式筏形基础分析与探讨

平板式筏形基础分析与探讨[摘要]目前筏板基础计算常采用弹性基础板计算方法,但在计算时,往往忽略了混凝土开裂、徐变等因素对变形产生内力的影响,计算结果偏大。

本文引入了折算板厚的概念,并介绍了折算板厚的计算方法。

在实际工程中,当采用弹性基础板计算方法,筏板基础实际板厚可用折算板厚代替,这种替换板厚方法考虑了混凝土在受拉区开裂后,筏板基础实际截面刚度的减小,计算结果更符合实际情况。

该方法简单、可靠,可在实际工程中应用。

[关键词]筏板基础;折算板厚;实际板厚;截面刚度Analysis and disscussion of slab foundationJiang xinli(Shanghai Jiuteng Design Inc., Shanghai China)Abstract: At present, the influences of concrete cracks and concrete creep doesn’t thought with calculational method of elastic slad foundation, the calculation is bigger. In this paper, Converted slab thickness and it’s calculational method was introduced. In factual project, when we analyze and calculate elastic slad foundation ,converted slab thickness can be used instead of actual slab thickness. The result is closed to factual condition,because the slab cracked foundation and the reduced section rigidity was thinked. The method is simple, reliable and useful.Keywords: slab foundation; converted slab thickness; actual slab thickness; section rigidity引言钢筋混凝土平板式筏形基础(以下简称筏板基础)是多高层建筑常用的基础形式。

浅谈筏板基础设计的方法及注意事项

浅谈筏板基础设计的方法及注意事项

浅谈筏板基础设计的方法及注意事项摘要:建筑物地基土的类别和地基土层的分布情况决定了建筑物所采用哪一种类型的基础形式。

而筏板基础能很好的将地基承载力充分的发挥的同时,又能使沉降不均匀得到良好的调整,因此筏板基础被广泛应用于诸多的结构类型中。

本文就筏板基础设计的方法及筏板基础设计中的相关注意事项进行了一些浅析。

关键字:筏形基础;筏形基础设计;筏板;基础随着我们国家经济水平的不断提高,近些年来,国家的建筑行业也蓬勃发展起来。

建筑设计的推陈出新和建筑使用性能的不断扩大,无论是从建筑的数量上还是质量上都对建筑行业提出了新的要求。

筏板基础也理所当然的成为人们关注的对象,越来越多的被人们所认识和研究。

筏板基础从传统的应用于大型高层的建筑开始,到现今在一些纷繁复杂的小型建筑中也得到重视,其地位和分量也不断增加,所以,我们非常有必要对筏板基础设计的方法进行探讨。

一、筏板基础由于建筑物的地基土的类别和地基土层的分布情况决定了建筑物所采用哪一种类型的基础形式。

而筏板基础不仅充分发挥了地基的承载力,也使沉降不均匀得到良好的校正,这也是筏板基础能够广泛应用于诸多结构类型之中的原因。

筏板基础刚度大,整体性好,根据上部结构形式划分,筏板基础的构造形式主要可分为两种:平板式筏板基础和肋梁式筏板基础。

在柱网相对较大的大型商业建筑施工中,往往建筑的上部所要承受的荷载最大,所以我们通常会选择肋梁式筏板基础。

而平板式筏板基础则被广泛的应用在小型公共建筑或者是低层住宅建筑。

而近些年来,平板式筏板基础因其施工简单的特点,在高层建筑中也得到广泛的应用。

高层建筑的地下室通常被拿来建造地下的车库,因为此,这样的建筑是不被允许过多的设置内墙的,从而对箱型基础,限制了其使用。

而筏板基础因其能满足停车库对空间的使用要求,而成为较理想的基础型式。

二、筏板基础埋深及承载力的确定在城市区域,基础筏板的预埋深度取决于所需建造的建筑物地下室的层数多少和每层的高度。

浅谈筏形基础设计与构造

浅谈筏形基础设计与构造

浅谈筏形根底设计与构造摘要:筏形根底分为平板式和梁板式二类。

平板型筏基使用较普遍,其优点是施工简便,且有利于地下室空间的利用。

其缺点是当柱荷载很大、地基不均匀即差异沉降较大时板的厚度较大。

梁板型筏基与平板型相比具有材耗低、刚度大的优点。

关键词:筏形根底设计1、筏板厚度1.1平板式筏基的板厚应满足受冲切承载力及作用在冲切临界面重心上的不平衡力矩产生的附加剪刀的要求,而筏板弯曲对板厚不起控制作用,对高层建筑伐板的最小厚度不应小于400mm,尚应验算距内筒边缘或距柱边缘(计算截面处筏板有效高度)处筏板的受剪承载力及筏板变厚度处的受剪承载力。

根据模型试验说明,筏板的裂缝首先出现在板的角部,向附近边处开展,由于板角点附近土反力的集中效应,等厚度板的边角处是强度的薄弱区,即使筏板面积已满足地基承载力与沉降要求,宜从柱(墙)边外伸1~1.5倍筏板厚度或局部增加筏板角隅板厚等有效措施。

1.2当个别柱的轴力较大,筏板厚度缺乏以满足该柱的冲切力,可将该柱下的板局部加厚,或配置抗冲切钢筋来提高受冲切承载力。

1.3高层建筑平板式筏板的厚跨比不小1/6,柱距及相邻柱荷载的变化不超过28%时,筏形根底可仅考虑局部弯曲作用。

内力按净基底反力直线分布,倒楼盖法进行计算。

当不符合上述条件时筏板内力应按弹性地基板理论进行计算。

试验说明,按倒楼盖法与考虑上部结构作用的整体分析法计算结果的弯矩值是一致的且略不大于后者。

1.4多层、小高层建筑墙下平板式筏基的板厚,应满足受冲切承载力要求,板厚度与最大双向板格的短边净跨之比不宜小于1/20;可按楼层层数每层50mm的经验计算,且不宜小于300mm,不应小于250mm,小高层平筏厚度一般不宜大于600mm。

2、平板式筏板的配筋构造要求2.1、多高层建筑墙下筏板受力钢筋直径不宜小于12mm,钢筋网不多于两层时直径不宜大于25mm,间距不应小半150mm,不宜大于250mm,当筏板长度大于30m或厚筏收缩温度应力较大时,钢筋间距不宜大于200mm,且钢筋连接按受拉钢筋要求搭接头或机械连接。

浅论筏形基础的设计

浅论筏形基础的设计

浅论筏形基础的设计摘要:对筏板基础选型和设计中的地基承载力确定、变形控制计算、筏板结构计算、防渗等问题,结合工程实例作一介绍及探讨,供类似工程参考。

关键词:筏板基础;承载力;筏板计算Abstract: the raft foundation selection and design of the bearing capacity of the determination, deformation control calculation, raft structure calculation, seepage control, combined with engineering example this paper and discusses, reference for other similar projects.Keywords: raft foundation; Bearing capacity; Raft calculation一、筏形基础的适用情况1.基础底标高处存在较理想的持力层(例如埋深较浅的岩层),而竖向构件的轴力较大,当采用柱下独立基础或条形基础时,相邻基础已相互交错重叠,这时可考虑采用筏形基础。

2.建设场地内存在岩溶或其他不适合采用预应力管桩、夯扩桩、人工挖孔桩等技术经济指标较优的桩基础形式的地区,而浅层又存在承载力较高且厚度足够的理想持力层,且建筑物荷载较大,独立基础或条形基础不满足地基承载力要求时,可考虑采用筏形基础。

二、筏形基础的种类筏形基础有平板式和肋梁式两种,详见图1。

钢筋混凝土等厚平板是最常见和最简单的筏形基础,当柱荷载较大时,可加大柱下局部区域的板厚,以满足该处冲切和抗弯的要求;肋梁式筏板的肋梁可以向上设置,也可向下设置。

平板式筏基与肋梁式筏基的优缺点比较,类同于地下室顶板无梁楼盖和梁板楼盖的比较,按工程经验,平板式筏基的技术经济综合指标较优,故一般优先考虑采用平板式筏基。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

筏形基础设计中的问题探讨
作者:宋子收
来源:《城市建设理论研究》2013年第08期
摘要:主要对高层建筑基础的选型及平板式筏形基础的结构设计进行了介绍,并重点阐述运用上部结构、基础和地基共同作用的分析原理,对高层建筑筏形基础的地基承载力验算、筏形基础底板厚度的确定、筏形基础埋深确定、筏形基础的变形控制、筏形基础的抗浮等进行了分析。

【关键词】:高层建筑筏形基础地基承载力刚度
Abstract:
Mainly introduces the base selection of high-rise buildings and flatbed structural design of raft foundations, And focuses on the use of the upper part of the structures, the bases and foundation interaction analysis principle. the foundation bearing capacity for high-rise buildings of raft foundations, the determination of slab thickness for the raft foundation, the raft foundation depth’s determination and the deformation of raft foundations are carried out, and also anti-floating analysis.
Key Words:high-rise buildingraft foundation Bearing capacitystiffness
中图分类号: TU97文献标识码:A文章编号:
1概述
高层建筑采用的基础型式与地基土类别及土层分布情况密切相关,工程设计中,地下室底板下的岩土层若为风化残积土层、全风化岩层、强风化岩层或中风化软岩层,有可能采用天然基础。

高层建筑地下室通常作为地下车库,不允许设置过多的剪力墙,从而限制了箱型基础的使用;筏板基础整体刚度大,既能充分发挥地基承载力,调整不均匀沉降,又能满足停车库的空间使用要求,因而成为较合理的基础型式。

2基础选型
筏形基础主要有平板式和梁板式筏形基础两种类型,其选型要根据地基土质、上部结构体系、荷载大小、柱距、使用要求以及施工条件等因素确定。

平板式筏板基础的施工简单,在高层建筑基础中得到广泛的应用[1]。

3筏形基础的结构设计
3.1筏形基础的平面布置
尽量使建筑物竖向永久荷载重心与筏形基础底板平面的形心重合。

筏基边缘宜外挑,挑出宽度应由地基条件、柱距及柱荷载大小、尽量减少偏心等因素确定,一般情况下,挑出宽度为边跨柱距的1/4~1/3[2]。

3.2筏形基础厚度的确定
筏板基础的厚度由抗冲切和抗剪强度确定,同时要满足抗渗要求,板厚不宜小于
400mm,局部柱距及柱荷载较大时,可在柱下板底加墩或设置暗梁且配置抗冲切箍筋,来增加板的局部抗剪能力,避免因部分柱而加厚整个筏板。

除强度验算外,还要求筏板基础有较强的整体刚度。

常用经验是按地上楼层数估算筏板厚度,每层约取板厚50mm。

3.3筏形基础埋深及承载力的确定
高层建筑的基础应有一定的埋深,在确定建筑物的埋深时应综合考虑建筑的地基土质、高度、体型、抗震设防烈度等因素。

基础埋深应从室外地坪算至筏板底面,天然基础或者复合地基可取房屋高度的1/15[3]。

天然筏板基础属于补偿性基础,因此地基的确定有两种方法,一是地基承载力设计值的直接确定法,它是根据地基承载力标准值按照有关规范通过深度和宽度的修正得到承载力设计值,并采用原位试验与室内土工试验相结合的综合判断法来确定岩土的特性;二是按照补偿性基础分析地基承载力,如某栋地上26 层、地下2 层(底板埋深10m ) 的高层建筑,由于将原地面下10m 厚的原土挖除,则卸土土压力达180kpa,约相当于11 层楼的荷载重量;如果地下水位为地面下2m,则水的浮托力为80kpa,约相当于5 层楼的荷载重量,因此实际需要的地基承载力为12层楼的荷载,即当地基承载力标准值f ≥ 250kpa 时就能满足设计要求。

3.4筏形基础的内力分析
筏板基础的内力分析常用简化计算方法,最基本的特点是将由上部结构、基础和地基三部分构成的一个完整的静力平衡体系,分割成三部分并独立求解。

倒楼盖法是一种简化计算方法,倒楼盖法适用于地基土层比较均匀、筏板基础和上部结构刚度相对较大、柱轴力及柱距相差不大;其不足点是完全不能考虑基础的整体作用,也无法计算挠曲变形,加大上部结构刚度的影响。

把上部结构、基础和地基三者作为一个共同工作的整体的计算方法,其最基本的假定是上部结构与基础、基础与地基连接处变形协调,整个体系符合静力平衡。

对于基础,由于考虑了上部结构的贡献,使其整体弯曲变形和内力减小;对于上部结构,由于考虑了因基础变形引起的变形,这种变形将使上部结构产生次应力,考虑了次应力,计算会偏安全。

随着计算软件的开发,上部结构、基础和地基共同作用分析法在筏板基础内力计算中得到应用,基础按弹性地基上板考虑,地基模型采用文克尔地基、弹性半空间地基和压缩层地基等地基模型,常用数值分析方法为有限元法。

根据共同作用的分析原理,由节点平衡条件有如下方程:
( [ Kb ] + [ Ks ] ) {δ} = { F }
其中:[ Kb ] ── 整个结构(包括基础)的刚度矩阵
[ Ks ] ── 地基刚度矩阵
{δ}──节点位移列向量
{ F }──荷载列向量
求解上述方程,得到节点位移,由节点位移求得筏板基础基底反力和内力。

根据计算结果,按有关规范可验算筏板基础的地基承载力、变形及计算构件的配筋。

运用上述设计原理,计算筏板基础的内力及验算地基变形,关键在于选择合理的地基基床系数。

地基基床系数与土的类型及下卧土层类别、基础面积的大小和形状、基础的埋置深度等因素有关。

3.5筏形基础的配筋构造
筏形基础的混凝土强度等级不宜低于C30,有地下室时采用防水混凝土。

筏板板筋宜双向双层配置,局部柱距较大及内力较大处钢筋间距可适当加密,配筋率不宜小于0.2%。

筏板厚度变化处或标高变化处,宜采用放斜角平滑过渡,避免应力集中。

4天然筏形基础的变形控制
地基的验算应包括地基承载力和变形两个方面,对于高层或超高层建筑,变形起着重要的控制作用。

目前的理论水平计算结果误差较大,使设计人员很难把握,有时由于沉降量计算偏大,导致原来可以采用天然地基的高层建筑,不适当地采用了桩基础,使基础设计过于保守,造价提高。

为协调各部分的变形,使其趋于一致,还可通过变形验算调整独立柱基的面积.既满足结构使用要求,又达到相当可观的经济效益,常采用的措施:
一将地质较差的土层挖出一部分,换填成低等级强度的素混凝土形成素混凝土厚垫块,以改变和调整地基的不均匀变形;。

相关文档
最新文档