基于有限元极限上限法的含软弱夹层边坡稳定性分析
有软弱夹层岩体边坡稳定分析及安全系数的确定

亦可能形成边坡变形 , 严重时也会滑坡。( ) 5边坡高 、 , 陡 使 安 全系数为 0 5 , 土体就要发生快速滑动 。 . 时 黏性 9 () 2 滑动土体在下列情况下的安全系数为: 蠕动挤压阶
I】 下工程 固岩稳 定性 [ . I地 M] 北京: 出版社,95 地质 l 8
潮湿的地方 已经 干燥 经过 3 年 33 钻进检查孔 3个 , _ 进行 岩芯采样 , 通过 岩芯取样 检 渗水的地方已经停止 , 查泥浆对坝体裂缝填充 的密实情况 。
4 结论
的实践运行证明 , 黄土充填灌浆方案对 中川水上绿化工
程二号水库是适宜的 , 也为类似工程提供 了施 工方法和
经过 对右坝肩 进行灌浆 处理 , 治理效果 明显 , 原来 经验。_ I
@ 农 料 是 业 技5
弱夹层 、岩桥 ”混凝 土抗剪键 、 “ , 预应用锚 索 、 钢筋等 , 但
岩体边坡的稳定性问题 , 主要是指受各种性质的软弱 重 要的还是软弱夹层 强度指标 的确定。软弱夹层 的抗剪
结构面与岩体构造或裂隙面的切割 , 沿其最不利组合面剪 强度取值原则与土石坝的抗剪强度取值原 则一致 。当岩 切滑功。 因此, 在研究岩体边坡稳定问题时 , 首先要查清 、 分 体沿软弱夹层 曾经产生过 滑动时 ,一律取残余强度值 , 析各种结构面的性质 、 组合规模( 特别是形成边坡整体滑动 采 用比例极 限或峰值的 0 0 . ,黏聚力 c值 的取法 . 一O 5 8 8 的可能性 ) 等。构成边坡整体滑动的型式有以下几种 :
层或结构面验算稳定的方法 , 主要是采用刚体极限平衡法, 有限元法 、 地质力学模型试验等方法 , 后者一般用的较少 ,
有限元法在边坡稳定分析中的应用

西部探矿工程 �E � �-CH I NAE � P L O RA � I O NE N G I N E E R I NG
� � � � � �N � . 1 2 4 A � . 2 0 0 6 �
����������������������������������������������������� 文 章编 号 � 1 0 0 4-5 7 1 6( 2 0 0 6) 0 8-0 2 8 4-0 2 中 图分 类号 � � D 8 2 4 . 7 1 文献 标识 码 � B
K=
总第 1 2 4期 2 0 0 6 年第 8 期
� �=
D � � � � � � -P � � � � �屈服准则是一种经 过修正的 M � � � �屈 服准 则, 它 考虑了静水压力( 侧限压力 ) 分量的影响 , 静水压力越高 , 则 屈服强度越大 � � � � � 边坡稳定 性安全系数的定义 边坡的稳定性安全系 定 义为沿 滑移面的 抗剪强 度与滑 移 面的实际剪力的比值 , 公式表示为 � ( �+� � � � � A �) � � � A �
有 限 元 法 在 边 坡 稳 定 分 析 中的 应 用
贾 亚� 干腾君
� 重庆大学土木工程学院 � 重庆 4 � 0 0 0 4 5 摘 要� 将强度折减理论用于有限元法中 � 单元法 不需要 做任何 假
定� 计算模型不仅能满足了力的平衡方法 � 而且满足土 体的应 力应变关 系 � 并且可 以对边 坡进行 非线性弹 塑性分 析 � 计 算结果更精确 � 更可靠 � 关键词 � 边坡 � 稳定性分析 � 有限元 � 共同 作用 � 概论 边坡稳定性分 析的 主要 任务 是进 行边 坡稳 定性 计算 , 评价 当前边坡的稳定 状态和 可能 的变 化发 展趋 势 , 以便 作为 边坡 整 治工程设计的依据 � 目前应 用于边坡 稳定性 分析的 方法主 要有 基于极限平衡的传统法和 有限元 法 � 传统的 边坡稳 定性分 析方 法中 , 为了便于分析计算的进行 , 做了 许多近似假设 , 如假设一个 滑动面 , 不考虑土体内部的应力 - 应变 关系 , 不考虑 支挡结 构的 作用等等 � 因此 , 传统分析方法 不能得 到滑体内 的应力 , 变 形分 布状况 , 也不能求得 岩体本 身的 变形 和支 挡结 构对 边坡 变形 及 稳定性的影响 � 传统分析方 法的这些 先天缺 点使它 在应用 中受 到一定的限制 , 尤其在大型边坡 和重要 工程的 边坡整治 分析中 , 大多仅用它作为初步计算 和估计 � 而 有限元 法克服 了传统 分析 法的不足 , 不仅满足力的平衡条件 , 而 且还考虑了土体应力 , 变形 关系和支挡结构的作用 , 能够得 到边坡 在荷载作 用下的 应力 , 变 形分布 , 模拟出边坡 的实 际滑 移 面 � 正因 为有 限元 法的 这些 优 点, 近年来它已广泛应用于边坡稳定性分析 � � 毕肖普条分法简介 毕肖普法属于 条分 法中 得到 工程 界广 泛应 用的 一种 方法 , 假定滑动面及滑 动土体 为不 变形 的刚 体 , 考虑 了土 条两 侧面 上 的作用 , 将滑裂面以上的土体分 成若干 垂直土条 , 安 全系数 的公 式为 � 1 � � � ��+ ( � � � � �M � � �+ � �-� � +1 ) �� � � � F �= � �� � � � � � 式中 �� 为使问题得 解 , 毕 肖普又 假定各 土条 � 及 � � +1 是未知的 , 之间的切向条间力均略去不计 , 这样上式可简化为 � 1� � � � � � � �+� � �� � M� � F �= � � � �� � � � 式中 � - 土体凝聚力 � �� - 土体内摩擦角 � � - 第�个土条重量 � ��- 第 �土条宽度 � � �- 第�土条底面滑弧与圆心的连线的倾角 � � �强度折减技术 � �� � 基本概念 强度折减技术的要点是利 用以下 两个公式 来调整 土体的 强 度指标 � , 其中 F 然 后对土 坡进 行有 限元 分析 , � 为折 减系数 , �, 通过不断地增加折减系数 F 反复 分析土坡 , 直至其 达到临界 破 �, 坏, 此 时得到的折减系数即为安全系数 F �� 上述公式为 � � �= � F � ( � � � � � � � � � F �=� �) � � 强度折减法的优 点 是安 全系 数可 以直 接得 出 , 不需 要事 先 假设滑裂面的形式和位置 , 另外可 以考虑 土坡的 渐进破 坏过程 � 用强度折减有限元 法分 析边 坡的 稳定 性 , 采用 解的 不收 敛作 为 破坏标准 � 在指定的收敛准则下算法不能收敛 , 即表示应力分布 不能满足土体的破坏准则和总体平衡要求 , 意味着出现破坏 � � � � 屈服准则 采用 理 想 弹 塑 性 模 型 和 D � � � � � �- P � � � � � 屈 服 准 则� D � � � � � � -P � � � � �屈服准 则既考 虑了 中间 主应力 � 2 对屈 服强 度 的影响 , 又考虑了静水压力对屈服 强度的 影响 , 对土体 材料有 较 好的适用性 , 已广泛应用于土体分析 � D � � � � � � -P � � � � �屈服准则表达式如 下 � 1 �� � 1 2 � � F =3 � �+� � �� M� �� -� � =0 � 2 式中 � - 平均应力或静水压力 � � � � � - 偏应力差 � � - 材料常数 , � �= 2 � � � � � ( � 33 -� � � �) � -M M� � � � �准则中的相关参 数矩阵 � 6 � � � � � , 为内摩擦角 , � 为粘聚力 � ( )� � 33 -� � � �
基于极限平衡法及有限元法的边坡稳定性综合分析

基于极限平衡法及有限元法的边坡稳定性综合分析边坡稳定性是岩土工程中一个非常重要的问题,直接关系到边坡的安全运营和人民生命财产的安全。
为了研究边坡的稳定性,可以采用极限平衡法和有限元法进行综合分析。
极限平衡法是一种常用的边坡稳定性分析方法,它基于边坡在达到稳定状态时受到的平衡力原理。
其基本思想是,在边坡稳定过程中,边坡的抗滑力应该大于或等于外力作用在边坡上的附加抗滑力,从而实现边坡的稳定。
通过极限平衡法可以计算边坡的安全系数,如果安全系数大于1,则说明边坡稳定;否则,需要采取相应的加固措施。
有限元法是一种数值计算方法,可以对边坡进行力学分析。
有限元法将边坡划分成许多小的单元,通过对单元进行应力分析,然后再将各个单元的结果进行耦合,得到边坡整体的稳定性。
有限元法能够考虑材料的非线性、边坡的复杂形状以及边坡上的各种工况,具有较高的精确度和灵活性。
在边坡稳定性综合分析中,可以结合极限平衡法和有限元法的优点,进行更加精确的分析。
可以利用极限平衡法对边坡的整体稳定性进行初步评估,得到边坡的安全系数。
然后,可以使用有限元法对边坡进行更加详细的力学计算,考虑材料的非线性特性以及复杂的边界条件,得到边坡的应力、变形等参数。
将有限元法得到的结果与极限平衡法的结果进行对比,验证极限平衡法的合理性,并根据需要进行相应的修正。
综合分析可以更全面地评估边坡的稳定性,为边坡的设计和加固提供科学依据。
可以根据有限元法的分析结果,确定边坡上的最不稳定部位,并进行有针对性的加固措施,提高边坡的安全性。
基于极限平衡法和有限元法的边坡稳定性综合分析能够结合两种方法的优点,提高边坡稳定性分析的精确度和可靠性,对于岩土工程的设计和施工具有重要意义。
基于极限平衡法及有限元法的边坡稳定性综合分析

基于极限平衡法及有限元法的边坡稳定性综合分析随着城市建设的快速发展,边坡工程在现代土木工程中扮演着重要的角色。
边坡工程的稳定性分析是边坡设计的基础,对于预防边坡灾害和保障工程安全具有重要意义。
目前,常用的边坡稳定性分析方法主要有极限平衡法和有限元法。
本文将结合这两种方法,进行边坡稳定性的综合分析。
极限平衡法是一种经验法,它基于土体的界面平衡原理和力学基本原理,运用边坡倾覆和滑动的平衡条件,来判断边坡的稳定性。
极限平衡法根据土体的内摩擦角和抗剪强度,计算边坡的安全系数,并判断边坡的稳定性。
在进行极限平衡法分析时,需要确定土体的物理性质和工程参数,如土体重度、土体摩擦角和土体的抗剪强度等。
还需要确定边坡的几何参数,如边坡的高度和坡度等。
通过计算这些参数,可以得到边坡的稳定状态。
有限元法是一种数值分析方法,它基于土体的弹性力学和塑性力学原理,通过将边坡划分为无数个小单元,利用节点间的位移和应力关系,求解边坡的力学行为和变形情况。
有限元法需要建立边坡的有限元模型,并进行边界条件的设定,如边坡的支撑情况和外载荷等。
通过求解有限元模型的位移和应力场,可以得到边坡的力学行为和变形情况。
根据土体的破坏准则(如 Mohr-Coulomb准则),可以计算边坡的稳定系数,并判断边坡的稳定性。
与极限平衡法相比,有限元法可以更准确地描述边坡的力学行为和变形情况,同时考虑了土体的非线性和复杂边界条件。
有限元法需要建立复杂的有限元模型,并对模型的参数和边界条件进行合理的设定,需要较多的计算资源和时间。
在实际工程中,通常将极限平衡法作为快速预估和初步设计的工具,将有限元法作为精细分析和优化设计的工具。
基于极限平衡法和有限元法的边坡稳定性综合分析,可以充分考虑土体的力学行为和变形特性,得到较为准确和可靠的边坡稳定性评价结果。
在进行边坡工程的设计和施工中,可以根据不同的需求和精度要求,选择合适的分析方法,并结合实际工程经验,进行边坡稳定性的评估和优化设计,以确保工程的安全可靠性。
用ANSYS有限元法分析边坡稳定性的思考

用ANSYS有限元法分析边坡稳定性的思考发布时间:2021-07-08T07:42:19.893Z 来源:《防护工程》2021年7期作者:陈洁[导读] :提出了ANSYS有限元法分析边坡稳定性的优点,使用ANSYS软件模拟典型天然边坡,为了提高仿真模拟的准确性和求解结果的准确度,提出在ANSYS软件中实体建模时在材料模型、几何模型和安全系数求解方面的思考。
针对实际边坡工程的ANSYS稳定性分析提出了一些问题和想法。
陈洁重庆交通大学河海学院重庆 400041摘要:提出了ANSYS有限元法分析边坡稳定性的优点,使用ANSYS软件模拟典型天然边坡,为了提高仿真模拟的准确性和求解结果的准确度,提出在ANSYS软件中实体建模时在材料模型、几何模型和安全系数求解方面的思考。
针对实际边坡工程的ANSYS稳定性分析提出了一些问题和想法。
关键词:边坡稳定;ANSYS;有限元1.ANSYS有限元法分析边坡稳定性的优点研究边坡稳定性问题可以大体分为极限平衡理论、室内模型研究和数值分析。
极限平衡理论不能考虑土体内部应力-应变的非线性关系,所求出的安全系数只能是假定滑落面的平均安全度。
求出的内力和反力不能代表实际产生的滑移变形的力,因此这个方法对于处理边坡稳定问题存在很大缺陷。
随着分析理论的不断完善,加之计算水平的不断发展,使有限元法有了越来越大的用武之地[1-2]。
用有限元研究边坡稳定性的优点如下:(1)破坏面的形状和位置不需要假定。
(2)有限元法有变形协调的本构关系。
(3)有限元法求解建议获得完整的应力、位移。
(4)有限元法可以考虑岩土体的不连续性,即非线性应力-应变。
2.ANSYS有限元法模拟边坡典型示例该边坡考虑弹性和塑性两种材料,边坡尺寸如图1所示。
图1边坡模型示意图计算模型为二维几何模型,模型先后建立了9个关键点、10条直线和3个面。
如图2所示。
图2 边坡网格模型示意图3.ANSYS实体建模中的思考尽管数值分析方法功能强大,但将其用于边坡稳定性分析现在也存在一些问题。
基于极限平衡法及有限元法的边坡稳定性综合分析

基于极限平衡法及有限元法的边坡稳定性综合分析随着城市化进程的加快和土地资源的日益紧缺,地质灾害频繁发生成为了人们关注的焦点。
边坡稳定性分析作为地质灾害防治的重要内容之一,对于保障人民生命财产安全和城市发展具有重要意义。
本文将通过基于极限平衡法及有限元法的边坡稳定性综合分析,从两种不同的角度对边坡稳定性进行深入研究,以期为地质灾害防治提供理论支持和技术指导。
一、极限平衡法分析极限平衡法是指对于一定的边坡体系,在边坡体系受到外力作用时,通过平衡条件来确定边坡体系在达到稳定状态时,承受最大自重等荷载的状态。
具体步骤为:确定边坡的几何形状,计算边坡受力分布,确定边坡的抗滑稳定性和倾覆稳定性,得出边坡的稳定状态。
极限平衡法主要用于评估边坡在稳定状态下的安全系数,对于边坡的设计和监测具有重要意义。
二、有限元法分析有限元法是一种数值分析方法,将连续介质划分为有限个小单元,在每个小单元中建立方程,通过求解小单元之间的位移和应力关系来得出整个结构的位移和应力分布。
有限元法在地质灾害领域得到了广泛应用,能够较为准确地描述地质介质的力学行为,对复杂边坡体系的稳定性分析具有独特的优势。
基于有限元法的边坡稳定性分析首先要建立边坡的数值模型,将边坡体系划分为有限个小单元,然后确定边坡体系的边界条件和加载条件,进行有限元分析,计算得出边坡体系的位移和应力分布。
最后通过分析位移和应力的分布情况来评估边坡的稳定性。
三、综合分析将极限平衡法和有限元法两种分析方法相结合,可以更为全面地评估边坡的稳定性。
通过极限平衡法可以得到边坡在静态荷载下的稳定状态,而有限元法可以计算得出边坡在动态荷载下的位移和应力分布情况。
综合两种分析方法,可以较为全面地评估边坡的稳定性,为地质灾害防治提供更为可靠的技术支持。
基于极限平衡法及有限元法的边坡稳定性综合分析

基于极限平衡法及有限元法的边坡稳定性综合分析边坡稳定性是地质工程领域中的一个重要问题,涉及到人民群众的安全和生产经济的稳定。
在边坡设计和施工过程中,需要进行稳定性分析,并采取合适的措施来保证边坡的稳定性。
在本文中,我们将介绍基于极限平衡法(Limit Equilibrium Method,LEM)和有限元法(Finite Element Method,FEM)的边坡稳定性综合分析方法。
1. 极限平衡法极限平衡法是边坡稳定性分析中最常用的方法之一,其基本思想是假设边坡体为刚体,计算其在重力作用下的平衡状态。
极限平衡法在计算边坡稳定性参数时,通常考虑两个重要因素:倾覆和滑动。
在极限平衡法中,我们假设边坡底部的土体是一块刚性基础,且边坡面与土体之间的接触面为光滑面。
图1为极限平衡法的计算模型。
根据极限平衡法的分析方法,我们可以通过下列公式计算出边坡倾覆的稳定性系数Fs:Fs = Fg / Fr其中,Fg为作用于边坡体上的重力分量,Fr为抵抗倾覆的倾覆力矩。
在实际工程中,我们通常采用Bishop法和Janbu法来计算边坡倾覆稳定性系数。
2. 有限元法有限元法是一种基于数值计算的边坡稳定性分析方法,它能够考虑边坡非线性状态和边坡变形情况,并在一定程度上弥补了极限平衡法的不足。
有限元法将边坡体分割成有限个小单元,在每个小单元中计算出施加载荷时的变形和应力状态,最终得出边坡稳定性。
有限元法的应用需要进行边坡体模型的建立,具体步骤如下:(1) 根据工程设计要求,确定边坡体的几何形状和通过该边坡体的荷载类型。
(2) 使用CAD软件绘制出边坡体三维模型。
(3) 初步确定边坡体的材料属性,并将其转化为有限元法计算所需的几何参数和物理参数。
(4) 将边坡体离散化,即将其分成有限个等大小的小单元,并进行网格划分和节点编号。
基于极限平衡法及有限元法的边坡稳定性综合分析

基于极限平衡法及有限元法的边坡稳定性综合分析边坡稳定性的综合分析对于工程建设具有重要意义。
极限平衡法和有限元法是常用于边坡稳定性分析的两种方法。
本文将基于这两种方法,进行边坡稳定性的综合分析。
我们来介绍极限平衡法。
极限平衡法是边坡稳定性分析中常用的一种方法,其基本思想是在满足平衡条件的前提下,通过变换应力状态,找出使边坡发生稳定破坏的应力状态。
极限平衡法分析边坡稳定性的关键是确定初始滑动面,即通过分析土体的物理力学性质,选择一个合适的滑动面作为研究对象。
确定滑动面后,可以通过平衡条件,计算出边坡的抗滑力和抗倾覆力,进而判断边坡的稳定性。
在进行极限平衡法分析时,需要收集边坡所涉及的土体参数,如土体的黏聚力、内摩擦角等,这些参数可以通过室内实验或野外取样来获取。
还需要调查边坡所受的外荷载情况,如水压力、地震力等。
根据收集到的数据,可以通过相关的计算公式来计算边坡的稳定性指标,如安全系数等。
然后,我们来介绍有限元法。
有限元法是一种基于数值计算的方法,通过将边坡划分为离散的有限元单元,建立节点之间的联系,并在每个节点附近建立适当的求解方程,从而得到边坡的应力、应变和位移分布。
有限元法分析边坡稳定性的关键是选择合适的有限元单元,以及建立节点之间的边界条件和相应的求解方程。
通过求解这些方程,可以得到边坡的应力、应变和位移等信息,进而判断边坡的稳定性。
极限平衡法和有限元法是两种常用的边坡稳定性分析方法。
极限平衡法通过物理力学性质和平衡条件,计算边坡的抗滑力和抗倾覆力,进而判断边坡的稳定性。
而有限元法通过离散化边坡、建立节点之间的联系和求解方程,计算边坡的应力、应变和位移分布,进而判断边坡的稳定性。
这两种方法在边坡稳定性分析中有着各自的优势和适用范围,可以相互补充使用,提高边坡分析的准确性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中图分类号:TU435
文献标志码:A
文章编号:1672 − 7029(2019)02 − 0351 − 08
Stability analysis for soil slopes with weak interlayers using the finite element upper bound limit analysis
PI Xiaoqing, LI Liang, TANG Gaopeng, ZHANG Rui, ZHAO Lianheng
(School of Civil Engineering, Central South University, Changsha 410075, China)
Abstract: The existence of weak interlayers usually makes the slope more prone to instability. Based on this, by introducing the finite element upper bound limit analysis method considering the strength reduction technique, the nonlinear programming model for the stability analysis of slopes with a weak interlayer was constructed. And a feasible arc interior point algorithm, combined with adaptive mesh method, was adopted for optimization. The upper-bound solutions of safety factors and failure modes of slopes with different weak interlayer thicknesses, angles and depths and strength ratios of the weak interlayer and soil were obtained. The results show that the thickness, angle, depth and relative strength of the weak interlayer have significant influence on the safety factor of slope and the critical sliding surface, but when the depth and relative strength of the weak interlayer are increased to a certain value, the stability of the slope is no longer affected by it. The results in this paper are in good agreement with those in the literature. Key words: slope stability analysis; weak interlayer; upper bound limit analysis; safety factor
352
铁道科学与工程学报
2019 年 2 月
造成实际滑坡的主要因素之一[2−5]。因此,对含软 弱夹层边坡的变形机理、破坏特征及稳定性展开研 究具有重要的现实意义。目前含软弱夹层边坡稳定 性分析方法主要有:极限平衡法[4−5],弹−塑性有限 元法[4, 6]和极限分析法[8−13]等。其中极限分析方法, 由于其明确的物理意义和严格的解答范围[7],在边 坡稳定性分析方面得到了广泛的应用[2−13]。它的引 入为含软弱夹层边坡稳定性分析提供了较为严密 的理论依据,传统极限分析方法采用组合机构来构 建软弱夹层边坡破坏模型,这往往需要对组合破坏 模式进行假定[9−10],由于含软弱夹层边坡破坏的复 杂性,常造成破坏模型的假定不完全符合实际情 况。有限元极限分析方法可以弥补上述方法的不 足。其优势在于,极限分析方法的引入为边坡稳定 性分析提供了严密的理论基础;采用有限元的形 式,便于控制计算域内强度参数及外部荷载的分布 形式,使得非均质材料,复杂荷载条件和几何构造 下的边坡稳定问题研究更加简便[14]。对于含软弱夹 层边坡,刘小丽等[8]提出一种用于含软弱夹层边坡 降雨入渗稳定性极限分析上限法;黄茂松等[9]采用 极限分析上限法,基于转动−平动组合破坏机构, 进行含软弱夹层边坡的稳定性分析;汤祖平等[13] 提出改进的转动−平动组合破坏机构和便于工程应 用的直线滑动破坏机构进行稳定性研究。上述文献 均是研究简单含单一软弱薄夹层稳定性上限分析, 但是在破坏模式中假设软弱薄层为一条直线,没有 考虑软弱夹层厚度的影响。另外对含软弱夹层边坡 稳定性分析时也未考虑软弱夹层的倾角、其与土体 相对强度以及厚度的对边坡稳定性的影响。基于以 上原因,本文在文献[15]的基础上引入强度折减技 术,以获得通用的安全系数来对含软弱夹层边坡稳 定性进行评估分析,对比以往的经典案例,来验证 其有效性和适用性。进一步以含单一软弱夹层边坡 为例,探讨软弱夹层的厚度,倾角及其与土体相对 强度与深度变化对边坡安全系数及滑裂面位置的 影响规律。以期拓展该方法在含软弱夹层边坡稳定 性分析领域其物理力 学性质差,不论厚薄,都会给工程建设带来一系列
问题,常成为地下洞室、边坡稳定、坝基和坝肩抗 滑稳定等的控制性弱面[1]。边坡中的软弱夹层也是
收稿日期:2018−03−12 基金项目:国家自然科学基金资助项目(51478477);中南大学中央高校基本科研业务费专项资金资助项目(2017zzts746) 通信作者:唐高朋(1989−),男,湖南邵阳人,博士研究生,从事道路与铁道工程方面的研究与应用工作;E−mail:381588836@
的厚度、倾角、深度以及软弱夹层与周围土体的相对强度影响下的边坡安全系数及破坏模式。研究结果表明:软弱夹层的厚
度、倾角、深度以及相对强度对边坡安全系数及滑裂面位置的影响显著;但当软弱夹层的深度和相对强度增大到一定值时,
边坡稳定性不再受其影响。本文结果与已有文献的结果吻合较好。
关键词:边坡稳定性分析;软弱夹层;极限分析上限法;安全系数
第 16 卷 第 2 期 2019 年 2 月
铁道科学与工程学报 Journal of Railway Science and Engineering
DOI: 10.19713/ki.43−1423/u.2019.02.010
Volume 16 Number 2 February 2019
基于有限元极限上限法的 含软弱夹层边坡稳定性分析
皮晓清,李亮,唐高朋,张锐,赵炼恒
(中南大学 土木工程学院,湖南 长沙 410075)
摘 要:由于软弱夹层的存在通常会使得边坡更易发生失稳破坏,通过引入考虑强度折减法的有限元极限分析上限法,构建
含软弱夹层边坡稳定性分析的非线性规划模型,并采用可行弧内点算法与网格自适应方法进行优化求解,获得不同软弱夹层