浙教版八年级数学下册平行四边形全章复习讲义设计

合集下载

2023八年级数学下册第4章平行四边形4.1多边形(1)教案(新版)浙教版

2023八年级数学下册第4章平行四边形4.1多边形(1)教案(新版)浙教版
在教学过程中,我将注重培养学生的空间想象能力,通过引导学生观察、分析多边形的性质,使其能够运用几何直观的方法理解和解决问题。同时,我将引导学生运用逻辑推理的方法,从已知条件出发,推导出多边形的性质和结论,从而提升其逻辑推理能力。
此外,我还将引导学生将多边形的知识应用于实际问题中,使其能够运用数学建模的方法,将实际问题抽象为多边形模型,并运用多边形的性质解决问题,从而提升其数学建模的能力。总之,通过本章节的教学,我希望学生能够提升其几何直观、逻辑推理和数学建模的核心素养。
目标:培养学生的合作能力和解决问题的能力。
过程:
将学生分成若干小组,每组选择一个与多边形相关的主题进行深入讨论。
小组内讨论该主题的现状、挑战以及可能的解决方案。
每组选出一名代表,准备向全班展示讨论成果。
5.课堂展示与点评(15分钟)
目标:锻炼学生的表达能力,同时加深全班对多边形的认识和理解。
过程:
各组代表依次上台展示讨论成果,包括主题的现状、挑战及解决方案。
布置课后作业:让学生撰写一篇关于多边形的短文或报告,以巩固学习效果。
学生学习效果
1.知识与技能:
-学生能够准确地定义多边形,理解多边形的概念和基本性质。
-学生能够识别和分类不同类型的多边形,并掌握它们的特征。
-学生能够运用多边形的性质解决一些实际问题,如计算多边形的面积、周长等。
2.过程与方法:
-学生能够通过观察、分析和推理,探索多边形的性质和规律。
重点难点及解决办法
本章节的重点是理解并掌握多边形的概念、性质及其分类,以及能够运用多边形的知识解决实际问题。难点主要是学生对于多边形的性质的理解和运用,以及如何将多边形的知识应用于实际问题的解决中。
为了解决这些重点难点,我将采用以下方法:

4.2.2 平行四边形的性质 浙教版八年级数学下册教案

4.2.2 平行四边形的性质 浙教版八年级数学下册教案

4.2.2 平行四边形的性质1.回顾平行四边形的性质:几何语言:2.小张从B点到D点上班,地图如图所示,已知BC//AD//EG,AB//FH//DC .红色和绿色两条路线距离一样远吗?1.如图,l1 // l2, AB, A'B'是夹在l1与l2之间的平行线段. AB与A'B'相等吗?请说明理由.归纳:夹在两条平行线间的平行线段相等。

几何语言∵l1 ∥l2,AB∥A'B'.∴AB=A'B'.2.若m // n,AB、CD、EF垂直于n,交n于B、D、F,交m于A、C、E.归纳总结两条平行线间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离数学语言:a//b,A是a上的任意一点,AB⊥b,B 是垂足,线段AB的长就是a、b之间的距离.性质:如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等,即平行线间的距离处处相等.数学语言:如图所示,A、C是直线l1上的任意两点.∵l1 // l2,AB⊥l2,CD⊥l2,∴AB=CD.典例精析例2 如图,放在墙角的立柜的上、下底面是一个等腰直角三角形,腰长为1.4 m.现要将这个立柜搬过宽为1.2 m的通道,能通过吗?解:因为腰长1.4m大于通道宽1.2m,所以在搬这个立柜时,如果沿立柜上、下底面任一条直角边方学生试着归纳性质,老师板书。

学生试着解答,书写步骤老师订正。

教师参与讨论,帮助学生获取正确认知.让学生体验数学活动充满探索和解决问题。

向平移,都不能通过.如图,作立柜底面三角形ABC 斜边上的高线CD.∵AC=BC=1.4,AB=AC 2+BC 2= 1.42+1.42=1.42CD ⊥AB∴CD 是AB 边上的中线CD=12AB =12×1.42=0.72∵0.72<1.2,即CD 小于通道的宽,所以使AB 边平行通道两边来平移立柜就可以通过。

课堂练习1.如图,在△ABC 中,DE ∥AB ,FD ∥BC ,EF ∥CA ,则下列说法中错误的是()A .AD =EFB .DF =DEC .DF =CED .AF =DE2.如图,线段a ,b ,c 的端点分别在直线l 1,l 2上,则下列说法正确的是()A .若l 1∥l 2,则a =bB .若l 1∥l 2,则a =cC .若a ∥b ,则a =bD .若l 1∥l 2且a ∥b ,则a =b3.如图,AE ,CF 是▱ABCD 的两条高,则图中全学生自主完成习题,老师订正让学生巩固已学知识,加深对知识的理解与运用等的三角形有( )A.1对B.2对C.3对D.4对4.在平面直角坐标系中,▱ABCD的顶点A,B,D 的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是( )A.(3,7) B.(5,3)C.(7,3) D.(8,2)5、如图,E是直线CD上的一点。

浙教版数学八年级下册4.2《平行四边形》(平行四边形及其性质)教学设计3

浙教版数学八年级下册4.2《平行四边形》(平行四边形及其性质)教学设计3

浙教版数学八年级下册4.2《平行四边形》(平行四边形及其性质)教学设计3一. 教材分析浙教版数学八年级下册4.2《平行四边形》是学生在学习了四边形的性质后,进一步研究平行四边形的特性和性质。

本节课的内容包括平行四边形的定义、性质和判定,以及平行四边形的应用。

教材通过丰富的图片和实例,引导学生探索平行四边形的性质,培养学生的观察、思考和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了四边形的性质,具备了一定的观察和推理能力。

但平行四边形的性质和判定较为抽象,需要学生在教师的引导下,通过观察、操作和思考,逐步理解和掌握。

三. 教学目标1.理解平行四边形的定义和性质。

2.学会用平行四边形的性质解决实际问题。

3.培养学生的观察能力、推理能力和解决问题的能力。

四. 教学重难点1.平行四边形的性质和判定。

2.平行四边形性质在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作法,引导学生观察、思考和探索,培养学生的观察能力、推理能力和解决问题的能力。

六. 教学准备1.准备相关的图片和实例,用于引导学生观察和理解平行四边形的性质。

2.准备练习题,用于巩固学生对平行四边形性质的掌握。

七. 教学过程1.导入(5分钟)通过展示一些生活中常见的平行四边形,如教室的黑板、滑梯等,引导学生观察并提问:这些图形有什么共同的特点?引出平行四边形的定义和性质。

2.呈现(10分钟)展示平行四边形的性质,引导学生观察并思考:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等;(3)平行四边形的对边角相等;(4)平行四边形的对角线互相平分。

3.操练(10分钟)让学生分组进行讨论,每组选择一个性质,通过实际操作和推理,验证所选性质的正确性。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些判断题,让学生判断题目中给出的图形是否为平行四边形,并说明理由。

教师选取部分题目进行讲解,巩固学生对平行四边形性质的掌握。

浙教版八年级下第四章平行四边形教案

浙教版八年级下第四章平行四边形教案

第4章平行四边形目录多边形(1) (2)多边形(2) (4)多边形(3) (7)…平行四边形 (11)中心对称 (17)平行四边形的判定(1) (19)平行四边形的判定(2) (23)三角形的中位线 (26)、逆命题和逆定理(1) (29)逆命题和逆定理(2) (31)多边形(1)【教学目标】1.使学生理解四边形的有关概念2.】3.使学生掌握四边形内角和定理及外角和定理的证明及简单应用3.体验把四边形问题转化为三角形问题来解决的化归思想【教学重点、难点】重点:四边形内角和定理.难点:四边形内角和定理的证明思路.!【教学过程】1.复习引入目前,整个社会的经济有了很大发展,许多家庭的地面都铺上了地砖、木板,不知同学们有没有仔细看过这些地砖的图形是如何构造,它们有什么特征。

这一章我们将学习多边形的有关性质。

在小学已经对四边形的知识有所了解,今天我们将更系统的学习它的性质,并运用性质解决一些新问题。

2.讲解新课(1)四边形的有关概念。

·结合图形讲解四边形、四边形的边、顶点、角。

强调四边形的表示方法,一定要按顶点顺序书写。

如图,可表示为四边形ABCD或四边形ADCB(2)四边形内角和定理让学生在一张纸上任意画一个四边形,剪下它的四个角,把它们拼在一起(四个角的顶点重合)。

通过实验、观察、猜想得到:四边形的内角和为3600 。

]让学生根据猜想得到的命题,画图、写出已知、求证。

已知:四边形ABCD求证:∠A+∠B+∠C+∠D=360°证明:连结BD∵∠A+∠ABD+∠ADB=180°>∠C+∠CBD+∠CDB=180°(理由)∴∠A+∠ABD+∠ADB+∠C+∠CBD+∠CDB=180°+180°即:∠A+∠ABC+∠C+∠CDA=360°对这个命题的证明可作如下启发:①我们已经知道哪一种图形的内角和内角和为多少②…③能否把问题化归为三角形来解决证明过程由学生来完成,教师板书得四边形内角和定理:四边形的内角和等于360°(板书)练习:如图(1)、(2),分别求∠a、∠1的度数。

浙教版八年级数学下册平行四边形全章复习讲义

浙教版八年级数学下册平行四边形全章复习讲义

浙教版八年级数学下册平行四边形全章复习讲义(总29页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--平行四边形全章复习巩固讲义1.平行四边形的概念定义:两组对边分别__________的四边形叫做平行四边形.平行四边形的定义既是性质,又是判定.(1)由定义知平行四边形的两组对边分别平行;(2)由定义可以得出只要四边形中的两组对边分别平行,那么这个四边形就是平行四边形.平行四边形的基本元素:边、角、对角线.典型例题(2019秋﹒新泰市期末)如图,在平行四边形ABCD中,AB⊥AC,若AB=8,AC=12,则BD的长是()A.22 B.16 C.18 D.20【考点】平行四边形的性质.平行四边形【专题】计算题;运算能力;推理能力.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,可得OA的长,然后由AB⊥AC,AB=8,OA=6,根据勾股定理可求得OB的长,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,AC=12,∴OA=12AC=6,BD=2OB,∵AB⊥AC,AB=8,∴OB=8+6=10,∴BD=2OB=20.故选:D.【点评】此题考查了平行四边形的性质以及勾股定理的运用.熟记握平行四边形的对角线互相平分这一性质是解题的关键.2.平行四边形的性质(1)平行四边形的对边相等;(2)平行四边形的对角__________;(3)平行四边形的对角线互相__________.【归纳】(1)平行四边形的性质为证明线段平行或相等、角相等提供了新的理论依据;(2)平行四边形的两条对角线将平行四边形分成的四个三角形中,相对的两个三角形全等,且四个三角形的面积相等,相邻两个三角形的周长差等于平行四边形相应的邻边之差;(3)利用对角线互相平分可以解决对角线或边的取值范围问题,在解答时应联系“三角形的两边之和大于第三边,两边之差小于第三边”来解决.典型例题(2019秋﹒新泰市期末)如图,在平行四边形ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G.下列结论,其中正确的有()个①DE=DF;②AG=GF:③AF=DF:④BG=GC;⑤BF=EF,【考点】全等三角形的判定与性质;平行四边形的性质.平行四边形【专题】多边形与平行四边形;推理能力.【分析】由AAS证明△ABF≌△DEF,得出对应边相等AF=DF,BF=EF,即可得出结论,对于①②④不一定正确.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,即AB∥CE,∴∠ABF=∠E,∵DE=CD,∴AB =DE ,在△ABF 和△DEF 中, ∵⎩⎪⎨⎪⎧∠ABF =∠E∠AFB =∠DFE AB =DE, ∴△ABF ≌△DEF (AAS ), ∴AF =DF ,BF =EF ; 可得③⑤正确, 故选:B .【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.3.两条平行线之间的距离定义:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.性质:(1)两条平行线之间的距离处处__________; (2)夹在两条平行线间的平行线段相等. 4.平行四边形的判定(1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)一组对边平行且__________的四边形是平行四边形; (4)两组对角分别相等的四边形是平行四边形; (5)对角线互相平分的四边形是平行四边形.【注意】(1)判定方法可作为“画平行四边形”的依据.(2)一组对边平行,另一组对边相等的四边形不一定是平行四边形,有可能是等腰梯形.(3)一组对边相等,一组对角相等的四边形也不一定是平行四边形.(4)两组邻边分别相等或两组邻角分别相等都不能判定四边形是平行四边形.5.三角形的中位线及其定理定义:连接三角形两边中点的线段(任意一个三角形都有三条中位线).定理:三角形的中位线平行于三角形的第三边,并且等于第三边的__________.【注意】(1)三角形有三条中位线,每一条中位线与第三边都有相应的位置关系与数量关系.三角形的中位线定义为证明两条直线平行、两条线段之间的数量关系提供了一个重要依据.(2)三角形的中位线与中线的区别:三角形的中位线是连接三角形两边中点的线段,三角形的中线是连接三角形顶点与其对边中点的线段.(3)当遇到中点时,可考虑构造三角形的中位线来解决问题,这种思路方法就是我们常说的“遇到中点想中位线”;相应地,知道三角形的中位线也就等于知道了三角形两边的中点.知识参考答案:1.平行 2.相等;平分 3.相等 4.相等 5.一半一、平行四边形的定义两组对边分别平行的四边形叫做平行四边形.【例1】将两个全等的不等边三角形拼成平行四边形,可拼成的不同的平行四边形的个数为__________.【答案】3【解析】如图所示:可以拼成3个平行四边形.分别是:DBCA,BACF,AECB.故答案为:3.二、平行四边形的性质平行四边形的对边平行且相等,对角相等,邻角互补,对角线互相平分.【例2】如图,在平行四边形ABCD中,AE垂直于CD,E是垂足.如果∠B=55°,那么∠DAE的角度为A.25°B.35°C.45°D.55°【答案】B【解析】∵平行四边形ABCD,∴∠D=∠B=55°,∵AE⊥CD,∴∠AED=90°,∴∠DAE=90°–55°=35°.故选B.【名师点睛】本题主要利用平行四边形对角相等解题.【例3】在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是A.2cm<OA<5cm B.2cm<OA<8cmC.1cm<OA<4cm D.3cm<OA<8cm【答案】C【解析】∵AB=3,BC=5,∴2<AC<8.∵四边形ABCD是平行四边形,∴OA=12AC,∴1<OA<4.故选C.【例4】如图,在ABCD中,AB=4,BC=5,对角线相交于点O,过点O的直线分别交AD,BC于点E,F,且OE=,则四边形EFCD的周长为A.10 B.12 C.14D.16【答案】B【解析】∵四边形ABCD是平行四边形,∴CD=AB=4,AD=BC=5,OA=OC,AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,∴△AOE≌△COF(AAS),∴OF=OE=,CF=AE.故四边形EFCD的周长为CD+EF+AD=12.故选B.三、两条平行线之间的距离两条平行间的距离处处相等.【例5】如图,已知l1∥l2,AB∥CD,CE⊥l2,FG⊥l2,下列说法错误的是A.l1与l2之间的距离是线段FG的长度B.CE=FGC.线段CD的长度就是l1与l2两条平行线间的距离D.AC=BD【答案】C【解析】A、∵FG⊥l2于点G,∴l1与l2两平行线间的距离就是线段FG的长度,故本选项正确;B、∵l1∥l2,CE⊥l2于点E,FG⊥l2于点G,∴CE∥FG,∴四边形CEGF是平行四边形,∴CE=FG,故本选项正确;C、∵CE⊥l2于点E,∴l1与l2两平行线间的距离就是线段CE的长度,故本选项错误;D、∵l1∥l2,AB∥CD,∴四边形ABDC是平行四边形,∴AC=BD,故本选项正确;故选C.四、平行四边形的判定平行四边形的判定有:①两组对边分别相等的四边形是平行四边形;②两组对边分别平行的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤有一组对边平行且相等的四边形是平行四边形.【例6】如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是A.OA=OC,AD∥BC B.∠ABC=∠ADC,AD∥BC C.AB=DC,AD=BC D.∠ABD=∠ADB,∠BAO=∠DCO 【答案】D五、平行四边形性质与判定的综合平行四边形的性质的条件和结论正好与判定的条件和结论相反,它们构成互逆的关系.由平行四边形这一条件,得到边、角或对角线的关系,这是平行四边形的性质;反之,由边、角或对角线的关系,得到平行四边形的结论,这是平行四边形的判定.【例7】如图,在ABCD中,过点A作AM⊥BC于点M,交BD于点E,过点C作CN⊥AD于点N,交BD于点F,连接AF,CE.求证:四边形AECF为平行四边形.【解析】∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠ABC=∠ADC,∴∠ABD=∠CDB,又∵AM⊥BC,CN⊥AD,∴∠BAM=∠DCN,∴△ABE≌△CDF(ASA),∴AE=CF,∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∴四边形AECF为平行四边形.六、三角形的中位线及其定理利用三角形的中位线不仅可以证明直线平行,也可以证明线段的倍分关系.【例8】如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N 是AB的中点.请判断△PMN的形状,并说明理由.【解析】△PMN是等腰三角形.理由如下:∵点P是BD的中点,点M是CD的中点,∴PM=12 BC,同理:PN=12 AD,∵AD=BC,∴PM=PN,∴△PMN是等腰三角形.基础1.在ABCD中,对角线AC,BD相交于点O,若△AOB的面积为3,则ABCD的面积为A.6 B.9 C.12 D.182.若平行四边形中两个内角的度数比为1∶2,则其中较小的内角是A.90°B.60°C.120°D.45°3.如果四边形ABCD是平行四边形,AB=6,且AB的长是四边形ABCD周长的316,那么BC的长是A.6 B.8 C.10 D.164.如图,在四边形ABCD中,∠DAC=∠ACB,要使四边形ABCD成为平行四边形,则应增加的条件不能是A.AD=BC B.OA=OCC.AB=CD D.∠ABC+∠BCD=180°5.如图,AB∥CD,AD不平行于BC,AC与BD相交于点O,写出三对面积相等的三角形是__________.6.如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=22 m,则AB=__________m.7.如图,在△ABC中,AD⊥BC于点D,E,F,G分别是BC,AC,AB的中点.若AB=23BC=3DE=12,DG=12AB,求四边形DEFG的周长.8.如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD方向以每秒1个单位长度的速度运动,同时点Q从点C 出发沿射线CB方向以每秒2个单位长度的速度运动,在线段QC上取点E,使得QE=2,连接PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长;(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.能力9.已知ABCD的对角线AC,BD的长分别为10,6,则AB长的范围是A.AB>2 B.AB<8 C.2<AB<8 D.2≤AB≤810.平行四边形ABCD与等边三角形AEF按如图所示的方式摆放,如果∠B=45°,则∠BAE的大小是A.75°B.80°C.100°D.120°11.如图,已知四边形ABCD中,AD∥BC,∠A=∠BCD=∠ABD,DE平分∠ADB,下列说法:①AB∥CD;②ED⊥CD;③∠DFC=∠ADC–∠DCE;④S△EDF=S△BCF,其中正确的结论是A.①②③B.①②④C.①③④D.①②③④12.如图,点A ,B 为定点,定直线l ∥AB ,P 是l 上一动点.点M ,N 分别为PA ,PB 的中点,对于下列各值:①线段MN 的长;②△PMN 的面积;③△PAB 的周长;④∠APB 的大小;⑤直线MN ,AB 之间的距离.其中会随点P 的移动而不改变的是A .①②③B .①②⑤C .②③④D .②④⑤13.如图,在△ABC 中,∠ACB =90°,AC =3,BC =4,点D 是边AB 的中点,将△ABC 沿着AB 平移到△DEF 处,那么四边形ACFB 的面积等于__________.14.如图,DE 是ABC △的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,:DMN CEM S S △△等于_________.15.如图,在ABCD 中,对角线AC ,BD 相交于点O ,OA =5cm ,E ,F 为直线BD 上的两个动点(点E ,F 始终在ABCD 的外面),且DE =12OD ,BF =12OB ,连接AE ,CE ,CF ,AF . (1)求证:四边形AFCE 为平行四边形.(2)若DE =13OD ,BF =13OB ,上述结论还成立吗由此你能得出什么结论(3)若CA 平分∠BCD ,∠AEC =60°,求四边形AECF 的周长.真题16.(2019·贵州黔东南、黔南、黔西南)如图在ABCD 中,已知AC =4 cm ,若△ACD 的周长为13 cm ,则ABCD 的周长为A .26 cmB .24 cmC .20 cmD .18 cm17.(2019·甘肃兰州)如图,将ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若48ABD ∠=︒,40CFD ∠=︒,则E ∠为A .102︒B .112︒C .122︒D .92︒18.(2019·黑龙江绥化)下列选项中,不能判定四边形ABCD 是平行四边形的是A .AD BC ∥,AB CD ∥ B .AB CD ∥,AB CD =C .AD BC ∥,AB DC = D .AB DC =,AD BC =19.(2019·内蒙古呼和浩特)顺次连接平面上A 、B 、C 、D 四点得到一个四边形,从①AB ∥CD ②BC =AD ③∠A =∠C ④∠B =∠D 四个条件中任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况共有 A .5种B .4种C .3种D .1种20.(2019·广西玉林)在四边形ABCD 中:①AB ∥CD ;②AD ∥BC ;③AB =CD ;④AD =BC ,从以上选择两个条件使四边形ABCD 为平行四边形的选法共有 A .3种B .4种C .5种D .6种21.(2019·四川德阳)如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO 至点C ,使3FO OC =,连接AB 、AC 、BC ,则在ABC ∆中::ABO AOC BOC S S S △△△A .621∶∶B .321∶∶C .632∶∶ D .432∶∶ 22.(2019·安徽)ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是 A .BE =DF B .AE =CF C .AF ∥CED .∠BAE =∠DCF23.(2019·广西梧州)如图,已知在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =6 cm ,则DE 的长度是__________cm .24.(2019·湖北十堰)如图,已知ABCD的对角线AC,BD交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为__________.25.(2019·江苏泰州)如图,ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为__________.26.(2019·辽宁抚顺)如图,ABCD中,AB=7,BC=3,连接AC,分别以点A和点C为圆心,大于12AC的长为半径作弧,两弧相交于点M,N,作直线MN,交CD于点E,连接AE,则△AED的周长是__________.学科=网27.(2019·山东淄博)在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于__________.28.(2019·福建)如图,ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.29.(2019·广西梧州)如图,在ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.30.(2019·辽宁大连)如图,ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.∥,31.(2019·湖北孝感)如图,B,E,C,F在一条直线上,已知AB DE∥,AC DF ,连接AD.求证:四边形ABED是平行四边形.BE CF32.(2019·江苏无锡)如图,平行四边形ABCD中,E、F分别是边BC、AD的中点,求证:∠ABF=∠CDE.33.(2019·湖北恩施州)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.34.(2019·浙江衢州)如图,在ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.35.(2019·江苏宿迁)如图,在ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H,求证:AG=CH.36.(2019·青海)如图,在平行四边形ABCD中,E为AB边上的中点,连接DE并延长,交CB的延长线于点F.(1)求证:AD BF;(2)若平行四边形ABCD的面积为32,试求四边形EBCD的面积.37.(2019·云南曲靖)如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.38.(2019·黑龙江大庆)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25 cm,AC的长为5 cm,求线段AB的长度.参考答案1.【答案】C【解析】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴S△AOD=S△COD=S△BOC=S△AOB.∵△AOB的面积为3,∴ABCD的面积为4×3=12.故选C.2.【答案】B【解析】如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B∶∠C=1∶2,∴∠B=13×180°=60°,故选B.3.【答案】C【解析】∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵AB=6,且AB的长是四边形ABCD周长的316,∴四边形ABCD周长为:6÷316=32,∴AB+BC=12×32=16,∴BC=10.故选C.5.【答案】△ADC和△BDC;△ADO和△BCO;△DAB和△CAB【解析】根据AB∥CD可得:△ABC和△ABD的面积相等,△ACD和△BCD的面积相等,则△ACD的面积减去△OCD的面积等于△BCD的面积减去△OCD的面积,即△AOD和△BOC的面积相等.6.【答案】44【解析】∵E、F是AC,CB的中点,∴EF是△ABC的中位线,∴EF=12AB,∵EF=22m,∴AB=44m,故答案为44.7.【解析】∵AB=23BC=3DE=12,∴BC=18,DE=4,∴DG=12AB=6,∵E,F,G分别是BC,AC,AB的中点,∴FG=12BC=9,EF=12AB=6,∴四边形DEFG的周长为4+6+9+6=25.8.【解析】(1)作AM⊥BC于M,如图所示:∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AM=12BC=5,∵AD∥BC,∴∠PAN=∠C=45°,∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,∴PN=AP=t,CE=NE=5–t,∵CE=CQ–QE=2t–2,∴5–t=2t–2,解得:t=73,BQ=BC–CQ=10–2×71633;(2)存在,t=4;理由如下:若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,∴t=10–2t+2,解得:t=4,∴存在t的值,使以A,B,E,P为顶点的四边形为平行四边形,t=4.9.【答案】C【解析】如图,在平行四边形ABCD中,AO=CO=5,BO=DO=3,∴2<AB<8.故选C.10.【答案】A【解析】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD=180°–∠B=180°–45°=135°,∵△AEF是等边三角形,∴∠EAF=60°,∴∠BAE=∠BAD–∠EAF=75°.故选A.11.【答案】D【解析】∵AD∥BC,∴∠A+∠ABC=180°,∠ADC+∠BCD=180°,∵∠A=∠BCD,∴∠ABC=∠ADC,∵∠A=∠BCD,∴四边形ABCD是平行四边形,∴AB∥CD.∴①正确;∵∠A=∠ABD,DE平分∠ADB,∴DE⊥AB,∴DE⊥CD,∴②正确;∵∠A=∠ABD,四边形ABCD是平行四边形,∴AD=BD=BC,∴∠BDC=∠BCD,∵AD∥BC,∴∠ADB=∠DBC,∵∠ADC=∠ADB+∠BDC,∴∠ADC=∠DBC+∠BCD,∴∠ADC–∠DCE=∠DBC+∠BCD–∠DCE=∠DBC+∠BCF,∵∠DFC=∠DBC+BCF,∴∠DFC=∠ADC–∠DCE;∴③正确;∵AB∥CD,∴△BED的边BE上的高和△EBC的边BE上的高相等,∴由三角形面积公式得:S△BED=S△EBC,都减去△EFB的面积得:S△EDF=S△BCF,∴④正确;综上得①②③④都正确,故选D.12.【答案】B【解析】∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=12AB,即线段MN的长度不变,故①正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故②正确;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故③错误;∠APB的大小点P的移动而变化,故④错误.直线MN,AB之间的距离不随点P的移动而变化,故⑤正确;综上所述,随点P的移动而不变化的是①②⑤.故选B.13.【答案】9【解析】∵将△ABC沿AB方向向右平移到△DEF,∴四边形ADFC是平行四边形,四边形ACFB是是梯形.∵∠ACB=90°,AC=3,BC=4,∴5AB=.∵点D是边AB的中点,∴AD=BD=15522⨯=,∴CF=AD=12AB52=,设AB边上的高为x.∵AB=5,AC=3,BC=4,AB边上的高为x,∴12AC·BC=12AB·x,∴125x =.∴S梯形ACFB=1512(5)9225⨯+⨯=.14.【答案】1∶3【解析】如图,作EF AD ∥,M 是DE 的中点,则△DMN ≌△EMF ,得MN =MF ,E 是AC 的中点,则FC =NF ,所以13MF MC =,得13FEM CEM S S =△△,得:DMN CEM S S △△=1∶3.16.【答案】D【解析】∵AC =4 cm ,若△ADC 的周长为13 cm ,∴AD +DC =13-4=9(cm ).又∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,∴平行四边形的周长为2(AB +BC )=18 cm .故选D . 17.【答案】B【解析】∵AD BC ∥,∴ADB DBC ∠=∠,由折叠可得ADB BDF ∠=∠,∴DBC BDF ∠=∠,又∵40DFC ∠=︒,∴20DBC BDF ADB ∠=∠=∠=︒,又∵48ABD ∠=︒,∴ABD △中,1802048112A ︒︒-︒∠=-=︒,∴112E A ∠∠==︒,故选B .18.【答案】C【解析】A 、由AD BC ∥,AB CD ∥可以判断四边形ABCD 是平行四边形,故本选项不符合题意;B 、由AB CD ∥,AB CD =可以判断四边形ABCD 是平行四边形,故本选项不符合题意;C 、由AD BC ∥,AB DC =不能判断四边形ABCD 是平行四边形,故本选项符合题意; D 、由AB DC =,AD BC =可以判断四边形ABCD 是平行四边形,故本选项不符合题意,故选C . 19.【答案】C【解析】当①③时,四边形ABCD 为平行四边形;当①④时,四边形ABCD 为平行四边形;当③④时,四边形ABCD 为平行四边形,故选C . 20.【答案】B【解析】(1)①②,利用两组对边平行的四边形是平行四边形判定; (2)③④,利用两组对边相等的四边形是平行四边形判定;(3)①③或②④,利用一组对边平行且相等的四边形是平行四边形判定,共4种组合方法,故选B . 21.【答案】B【解析】如图,连接BF .设平行四边形AFEO 的面积为4m .∵FO :OC =3:1,BE =OB ,AF ∥OE ,∴S △OBF =S △AOB =m ,S △OBC =13m ,S △AOC =23m ,∴S △AOB ∶S △AOC ∶S △BOC =m ∶23m ∶13m =3∶2∶1,故选B . 22.【答案】B【解析】A 、如图,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵BE =DF ,∴OE =OF ,∴四边形AECF 是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF∥CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE∥CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.23.【答案】3【解析】∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=12BC=162=3cm,故答案为:3.24.【答案】14【解析】∵四边形ABCD是平行四边形,∴AB=CD=5,OA=OC=4,OB=OD=5,∴△OCD的周长=5+4+5=14,故答案为:14.25.【答案】14【解析】∵四边形ABCD是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC的周长=BC+OB+OC=6+8=14,故答案为14.26.【答案】10【解析】∵四边形ABCD是平行四边形,AB=7,BC=3,∴AD=BC=3,CD=AB=7,∵由作图可知,MN是线段AC的垂直平分线,∴AE=CE,∴△ADE的周长=AD+(DE+AE)=AD+CD=3+7=10,故答案为:10.27.【答案】10【解析】∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB=2,由折叠,∠DAC=∠EAC,∵∠DAC=∠ACB,∴∠ACB=∠EAC,∴OA=OC,∵AE过BC的中点O,∴AO=12BC,∴∠BAC=90°,∴∠ACE=90°,由折叠,∠ACD=90°,∴E、C、D共线,则DE=4,∴△ADE的周长为:3+3+2+2=10,故答案为:10.28.【解析】∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,OAE OCF OA OCAOE COF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA),∴OE=OF.29.【解析】∵ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,EAO FCO AO OCAOE COF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA),∴AE=CF.31.【解析】∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F.∵BE=CF,∴BE+CE=CF+CE,∴BC=EF.在△ABC和△DEF中,B DEF BC EFACB F∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEF(ASA),∴AB=DE.又∵AB∥DE,∴四边形ABED是平行四边形.32.【解析】在ABCD中,AD=BC,∠A=∠C,∵E、F分别是边BC、AD的中点,∴AF=CE,在△ABF与△CDE中,AB CDA C AF CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△CDE(SAS),∴∠ABF=∠CDE.33.【解析】如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,ABC DEF BC EFACB DFE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.34.【解析】∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF.又BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°.在△ABE与△CDF中,AEB CFDBAE DCF AB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴得△ABE≌△CDF(AAS),∴AE=CF.35.【解析】∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∠A =∠C , ∴∠E =∠F , 又∵BE =DF , ∴AD +DF =CB +BE , 即AF =CE ,在△CEH 和△AFG 中,E F EC FA C A ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CEH ≌△AFG , ∴CH =AG .36.【解析】(1)∵E 是AB 边上的中点,∴AE BE =, ∵AD BC ∥, ∴ADE F ∠=∠,在ADE △和BFE △中,ADE F ∠=∠,DEA FEB ∠=∠,AE BE =, ∴ADE △≌BFE △, ∴AD BF =.(2)如图,过点D 作DM AB ⊥于点M ,∵AB ∥DC ,∴DM 同时也是平行四边形ABCD 的高,∴11113282244AED S AB DM AB DM =⋅⋅=⋅=⨯=△,∴32824EBCD S =-=四边形.37.【解析】(1)∵四边形ABCD是平行四边形,∴CD∥AB,∴∠AFN=∠CEM,∵FN=EM,AF=CE,∴△AFN≌△CEM(SAS).(2)∵△AFN≌△CEM,∴∠NAF=∠ECM,∵∠CMF=∠CEM+∠ECM,∴107°=72°+∠ECM,∴∠ECM=35°,∴∠NAF=35°.38.【解析】(1)∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥F C.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形.(2)∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25 cm,AC的长5 cm,∴BC=25-AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25-AB)2+52,解得AB=13 cm.30。

浙教版数学八年级下册4.2《平行四边形》(平行四边形及其性质)教案2

浙教版数学八年级下册4.2《平行四边形》(平行四边形及其性质)教案2

浙教版数学八年级下册4.2《平行四边形》(平行四边形及其性质)教案2一. 教材分析《平行四边形》是浙教版数学八年级下册第4章的内容,本节课主要让学生掌握平行四边形的性质。

教材通过引入平行四边形的概念,引导学生探究平行四边形的性质,从而培养学生对几何图形的认识和推理能力。

本节课的内容是学生进一步学习几何图形的基础,对于学生来说具有重要的意义。

二. 学情分析学生在学习本节课之前,已经学习了三角形的性质,具备了一定的几何图形认知和推理能力。

但部分学生对于平行四边形的性质的理解可能会受到之前学习的影响,需要在本节课中进一步巩固和提高。

此外,学生对于平行四边形的实际应用可能还不够了解,需要在教学过程中加强引导。

三. 教学目标1.知识与技能:使学生了解平行四边形的概念,掌握平行四边形的性质,并能够运用平行四边形的性质解决实际问题。

2.过程与方法:通过观察、操作、推理等方法,培养学生的几何图形认知和推理能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:平行四边形的性质。

2.难点:平行四边形性质的证明和应用。

五. 教学方法1.情境教学法:通过生活实例引入平行四边形的概念,激发学生的学习兴趣。

2.问题驱动法:引导学生提出问题,并进行自主探究,培养学生的推理能力。

3.合作学习法:学生进行小组讨论,增强学生的合作意识。

六. 教学准备1.教学课件:制作课件,展示平行四边形的性质及其应用。

2.学生活动材料:准备一些几何图形,供学生进行观察和操作。

3.教学视频:准备一些与平行四边形相关的教学视频,用于导入和拓展环节。

七. 教学过程1.导入(5分钟)利用教学视频展示平行四边形的实际应用,引导学生关注平行四边形。

然后提出问题:“你们认为什么是平行四边形?”让学生进行思考和讨论。

2.呈现(10分钟)通过课件展示平行四边形的性质,引导学生观察并总结平行四边形的性质。

八年级数学下册第4章平行四边形4.4平行四边形的判定定理教案(新版)浙教版

八年级数学下册第4章平行四边形4.4平行四边形的判定定理教案(新版)浙教版

4.4 平行四边形的判定定理教学目标知识与技能探索并掌握平行四边形的三个判定定理.过程与方法1.经历平行四边形判定条件的探索过程,使学生逐步掌握说理的基本方法,并在与他人交流的过程中,能合理清晰地表述自己的思维过程.2.在拼摆平行四边形的过程中,培养学生的动手实践能力及丰富的想象力,积累数学活动经验,增强学生的创新意识.情感、态度与价值观1.让学生主动参与探索的活动,在做“数学实验”的过程中,发展学生的合情推理意识、主动探究的习惯,激发学生学习数学的热情和兴趣.2.通过探索式证明学习,开拓学生的思路,发展学生的思维能力.3.在与他人的合作过程中,培养学生敢于面对挑战和勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,培养学生的合作意识和团队精神.教学重点平行四边形的判定定理.教学难点平行四边形的判定定理的运用.教学设计—、课前导入1.什么叫平行四边形?平行四边形有什么性质?(学生口答,教师板书)2.将以上的性质定理,分别用命题形式叙述出来.(如果……,那么……)根据平行四边形的定义,我们研究了平行四边形的其他性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形的性质定理的逆命题是否成立?二、自主探究活动1:你知道平行四边形的判定方法吗?如何用几何语言表示?(定义法):两组对边分别平行的四边形是平行四边形.几何语言表述定义法:∵AB//CD,AD//BC,∴四边形ABCD是平行四边形.结论:一个四边形只要其两组对边分别平行,就可判定这个四边形是一个平行四边形.活动2:设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?课堂探究,用准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若两纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?设问:我们能否用推理的方法证明这个命题是正确的吗?(让学生找出题设、结论,然后写出已知、求证及证明过程)小结:用几何语言表述定义法和刚才的证明方法证明一个四边形是平行四边形的方法为:判定定理1:一组对边平行并且相等的四边形是平行四边形.用几何语言表述为:∵AB=CD且AB∥CD,∴四边形ABCD是平行四边形.例1 已知:如图,在□ABCD中,E,F分别是AB,CD的中点.求证:EF∥AD.活动3:用做好的纸条拼成一个四边形,其中强调两组对边分别相等.你得到什么结论?方法二:两组对边分别相等的四边形是平行四边形.设问:这个命题的条件和结论是什么?已知:在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.分析:判定平行四边形的依据目前只有定义,也就是要证明两组对边分别平行,当然是借助第三条直线证明角相等.连结BD,易证三角形全等.板书证明过程.小结:用几何语言表述定义法和刚才证明的方法证明一个四边形是平行四边形的方法为:判定定理2:两组对边分别相等的四边形是平行四边形.∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.活动4:设问:“对角线互相平分的四边形是平行四边形.”这一命题的前提是什么?结论又是什么?活动:用事先准备好的纸条按课本探究方法做,让学生判定这个四边形是否是平行四边形.判定定理3:对角线互相平分的四边形是平行四边形.这个定理的前提是什么?结论又是什么?已知:如图,在四边形ABCD中,AC,BD相交于点O,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.AC分析:证明这个四边形是平行四边形的方法有:(1)两组对边分别相等;(2)平行四边形的定义:两组对边分别平行.板书证明过程.小结:由刚才证明可得,只要对角线互相平分,就可判定这个四边形是平行四边形.几何语言表述:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.例2 已知:如图,在□ABCD中,E,F分别是BD上的两点,且∠BAE=∠DCF.求证:四边形AECF是平行四边形.三、本课小结今天我们主要研究了利用边和角的关系来判定平行四边形,注意满足的条件.两组对边分别平行两组对边分别相等的四边形是平行四边形一组对边平行且相等对角线互相平分注意:若一组对边平行,另一组对边相等,是否可以判断为平行四边形,它可能是梯形.四、布置作业教材P97作业题第2,3题.O。

浙教版数学八年级下册《4.4 平行四边形的判定定理》教学设计4

浙教版数学八年级下册《4.4 平行四边形的判定定理》教学设计4

浙教版数学八年级下册《4.4 平行四边形的判定定理》教学设计4一. 教材分析《4.4 平行四边形的判定定理》是浙教版数学八年级下册的重点内容。

本节内容主要介绍平行四边形的判定方法,通过判定定理的学习,使学生能够熟练掌握平行四边形的性质,提高他们解决几何问题的能力。

本节内容与之前学习的三角形相似定理和矩形、菱形的性质密切相关,为学生提供了进一步研究复杂几何图形的出发点。

二. 学情分析学生在学习本节内容前,已经掌握了平行线的性质、矩形、菱形的性质等基础知识,具备了一定的逻辑思维能力和空间想象能力。

但部分学生对几何图形的理解仍存在困难,对于判断一个四边形是否为平行四边形的方法还不够熟练。

因此,在教学过程中,需要关注这部分学生的学习情况,引导他们积极参与课堂讨论,提高他们的自信心。

三. 教学目标1.理解平行四边形的判定定理,掌握判定一个四边形为平行四边形的方法。

2.能够运用判定定理解决实际问题,提高解决几何问题的能力。

3.培养学生的逻辑思维能力和空间想象能力,提高他们的数学素养。

四. 教学重难点1.重点:平行四边形的判定定理的理解和运用。

2.难点:判定定理的证明和灵活运用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、讨论,自主发现判定定理。

2.运用多媒体课件,展示几何图形,直观地演示平行四边形的判定过程。

3.采用分组合作的学习方式,鼓励学生互相交流、讨论,提高他们的合作能力。

4.注重个体差异,针对不同学生提供个性化的指导,帮助他们克服学习困难。

六. 教学准备1.多媒体课件:制作平行四边形判定定理的课件,展示几何图形。

2.学习材料:提供相关的学习资料,帮助学生巩固知识。

3.教学用具:准备一些四边形模型,方便学生直观地观察和操作。

七. 教学过程1.导入(5分钟)利用多媒体课件展示一些实际生活中的平行四边形图片,引导学生关注平行四边形的存在。

提问:“你们认为什么样的四边形可以被称为平行四边形?”让学生发表自己的看法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形全章复习巩固讲义1.平行四边形的概念定义:两组对边分别__________的四边形叫做平行四边形. 平行四边形的定义既是性质,又是判定. (1)由定义知平行四边形的两组对边分别平行;(2)由定义可以得出只要四边形中的两组对边分别平行,那么这个四边形就是平行四边形. 平行四边形的基本元素:边、角、对角线.典型例题(2019秋﹒新泰市期末)如图,在平行四边形ABCD 中,AB ⊥AC ,若AB =8,AC =12,则BD 的长是( ) A .22B .16C .18D .20【考点】平行四边形的性质.平行四边形【专题】计算题;运算能力;推理能力.【分析】由四边形ABCD 是平行四边形,根据平行四边形的对角线互相平分,可得OA 的长,然后由AB ⊥AC ,AB =8,OA =6,根据勾股定理可求得OB 的长,继而求得答案.【解答】解:∵四边形ABCD 是平行四边形,AC =12, ∴OA =12AC =6,BD =2OB , ∵AB ⊥AC ,AB =8, ∴OB =82+62=10, ∴BD =2OB =20. 故选:D .【点评】此题考查了平行四边形的性质以及勾股定理的运用.熟记握平行四边形的对角线互相平分这一性质是解题的关键.2.平行四边形的性质(1)平行四边形的对边相等;(2)平行四边形的对角__________;(3)平行四边形的对角线互相__________.【归纳】(1)平行四边形的性质为证明线段平行或相等、角相等提供了新的理论依据;(2)平行四边形的两条对角线将平行四边形分成的四个三角形中,相对的两个三角形全等,且四个三角形的面积相等,相邻两个三角形的周长差等于平行四边形相应的邻边之差;(3)利用对角线互相平分可以解决对角线或边的取值范围问题,在解答时应联系“三角形的两边之和大于第三边,两边之差小于第三边”来解决.典型例题(2019秋﹒新泰市期末)如图,在平行四边形ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G.下列结论,其中正确的有()个①DE=DF;②AG=GF:③AF=DF:④BG=GC;⑤BF=EF,【考点】全等三角形的判定与性质;平行四边形的性质.平行四边形【专题】多边形与平行四边形;推理能力.【分析】由AAS证明△ABF≌△DEF,得出对应边相等AF=DF,BF=EF,即可得出结论,对于①②④不一定正确.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,即AB∥CE,∴∠ABF=∠E,∵DE=CD,∴AB=DE,在△ABF和△DEF中,∵⎩⎪⎨⎪⎧∠ABF =∠E∠AFB =∠DFE AB =DE, ∴△ABF ≌△DEF (AAS ), ∴AF =DF ,BF =EF ; 可得③⑤正确, 故选:B .【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.3.两条平行线之间的距离定义:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离. 性质:(1)两条平行线之间的距离处处__________; (2)夹在两条平行线间的平行线段相等.4.平行四边形的判定(1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)一组对边平行且__________的四边形是平行四边形; (4)两组对角分别相等的四边形是平行四边形; (5)对角线互相平分的四边形是平行四边形.【注意】(1)判定方法可作为“画平行四边形”的依据.(2)一组对边平行,另一组对边相等的四边形不一定是平行四边形,有可能是等腰梯形. (3)一组对边相等,一组对角相等的四边形也不一定是平行四边形. (4)两组邻边分别相等或两组邻角分别相等都不能判定四边形是平行四边形.5.三角形的中位线及其定理定义:连接三角形两边中点的线段(任意一个三角形都有三条中位线). 定理:三角形的中位线平行于三角形的第三边,并且等于第三边的__________.【注意】(1)三角形有三条中位线,每一条中位线与第三边都有相应的位置关系与数量关系.三角形的中位线定义为证明两条直线平行、两条线段之间的数量关系提供了一个重要依据.(2)三角形的中位线与中线的区别:三角形的中位线是连接三角形两边中点的线段,三角形的中线是连接三角形顶点与其对边中点的线段.(3)当遇到中点时,可考虑构造三角形的中位线来解决问题,这种思路方法就是我们常说的“遇到中点想中位线”;相应地,知道三角形的中位线也就等于知道了三角形两边的中点.知识参考答案:1.平行2.相等;平分3.相等4.相等5.一半一、平行四边形的定义两组对边分别平行的四边形叫做平行四边形.【例1】将两个全等的不等边三角形拼成平行四边形,可拼成的不同的平行四边形的个数为__________.【答案】3【解析】如图所示:可以拼成3个平行四边形.分别是:DBCA,BACF,AECB.故答案为:3.二、平行四边形的性质平行四边形的对边平行且相等,对角相等,邻角互补,对角线互相平分.【例2】如图,在平行四边形ABCD中,AE垂直于CD,E是垂足.如果∠B=55°,那么∠DAE的角度为A.25°B.35°C.45°D.55°【答案】B【解析】∵平行四边形ABCD,∴∠D=∠B=55°,∵AE⊥CD,∴∠AED=90°,∴∠DAE=90°–55°=35°.故选B.【名师点睛】本题主要利用平行四边形对角相等解题.【例3】在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是A.2cm<OA<5cm B.2cm<OA<8cmC.1cm<OA<4cm D.3cm<OA<8cm【答案】C【解析】∵AB=3,BC=5,∴2<AC<8.∵四边形ABCD是平行四边形,∴OA=12AC,∴1<OA<4.故选C.【例4】如图,在ABCD中,AB=4,BC=5,对角线相交于点O,过点O的直线分别交AD,BC于点E,F,且OE=1.5,则四边形EFCD的周长为A.10 B.12 C.14 D.16【答案】B【解析】∵四边形ABCD是平行四边形,∴CD=AB=4,AD=BC=5,OA=OC,AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,∴△AOE≌△COF(AAS),∴OF=OE=1.5,CF=AE.故四边形EFCD的周长为CD+EF+AD=12.故选B.三、两条平行线之间的距离两条平行间的距离处处相等.【例5】如图,已知l1∥l2,AB∥CD,CE⊥l2,FG⊥l2,下列说法错误的是A.l1与l2之间的距离是线段FG的长度B.CE=FGC.线段CD的长度就是l1与l2两条平行线间的距离D.AC=BD【答案】C【解析】A、∵FG⊥l2于点G,∴l1与l2两平行线间的距离就是线段FG的长度,故本选项正确;B、∵l1∥l2,CE⊥l2于点E,FG⊥l2于点G,∴CE∥FG,∴四边形CEGF是平行四边形,∴CE=FG,故本选项正确;C、∵CE⊥l2于点E,∴l1与l2两平行线间的距离就是线段CE的长度,故本选项错误;D、∵l1∥l2,AB∥CD,∴四边形ABDC是平行四边形,∴AC=BD,故本选项正确;故选C.四、平行四边形的判定平行四边形的判定有:①两组对边分别相等的四边形是平行四边形;②两组对边分别平行的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤有一组对边平行且相等的四边形是平行四边形.【例6】如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是A.OA=OC,AD∥BC B.∠ABC=∠ADC,AD∥BCC.AB=DC,AD=BC D.∠ABD=∠ADB,∠BAO=∠DCO【答案】D五、平行四边形性质与判定的综合平行四边形的性质的条件和结论正好与判定的条件和结论相反,它们构成互逆的关系.由平行四边形这一条件,得到边、角或对角线的关系,这是平行四边形的性质;反之,由边、角或对角线的关系,得到平行四边形的结论,这是平行四边形的判定.【例7】如图,在ABCD中,过点A作AM⊥BC于点M,交BD于点E,过点C作CN⊥AD于点N,交BD于点F,连接AF,CE.求证:四边形AECF为平行四边形.【解析】∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠ABC=∠ADC,∴∠ABD=∠CDB,又∵AM⊥BC,CN⊥AD,∴∠BAM=∠DCN,∴△ABE≌△CDF(ASA),∴AE=CF,∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∴四边形AECF为平行四边形.六、三角形的中位线及其定理利用三角形的中位线不仅可以证明直线平行,也可以证明线段的倍分关系.【例8】如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.【解析】△PMN是等腰三角形.理由如下:∵点P是BD的中点,点M是CD的中点,∴PM=12 BC,同理:PN=12 AD,∵AD=BC,∴PM=PN,∴△PMN是等腰三角形.基础1.在ABCD中,对角线AC,BD相交于点O,若△AOB的面积为3,则ABCD的面积为A.6 B.9 C.12 D.182.若平行四边形中两个内角的度数比为1∶2,则其中较小的内角是A.90°B.60°C.120°D.45°3.如果四边形ABCD是平行四边形,AB=6,且AB的长是四边形ABCD周长的316,那么BC的长是A.6 B.8 C.10 D.164.如图,在四边形ABCD中,∠DAC=∠ACB,要使四边形ABCD成为平行四边形,则应增加的条件不能是A.AD=BC B.OA=OCC.AB=CD D.∠ABC+∠BCD=180°5.如图,AB∥CD,AD不平行于BC,AC与BD相交于点O,写出三对面积相等的三角形是__________.6.如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=22 m,则AB=__________m.7.如图,在△ABC中,AD⊥BC于点D,E,F,G分别是BC,AC,AB的中点.若AB=23BC=3DE=12,DG=12AB,求四边形DEFG的周长.8.如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P 从点A出发沿射线AD方向以每秒1个单位长度的速度运动,同时点Q从点C出发沿射线CB方向以每秒2个单位长度的速度运动,在线段QC上取点E,使得QE=2,连接PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长;(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.能力9.已知ABCD的对角线AC,BD的长分别为10,6,则AB长的范围是A.AB>2 B.AB<8 C.2<AB<8 D.2≤AB≤810.平行四边形ABCD与等边三角形AEF按如图所示的方式摆放,如果∠B=45°,则∠BAE的大小是A.75°B.80°C.100°D.120°11.如图,已知四边形ABCD中,AD∥BC,∠A=∠BCD=∠ABD,DE平分∠ADB,下列说法:①AB∥CD;②ED⊥CD;③∠DFC=∠ADC–∠DCE;④S△EDF=S△BCF,其中正确的结论是A .①②③B .①②④C .①③④D .①②③④12.如图,点A ,B 为定点,定直线l ∥AB ,P 是l 上一动点.点M ,N 分别为PA ,PB 的中点,对于下列各值:①线段MN 的长;②△PMN 的面积;③△PAB 的周长;④∠APB 的大小;⑤直线MN ,AB 之间的距离.其中会随点P 的移动而不改变的是A .①②③B .①②⑤C .②③④D .②④⑤13.如图,在△ABC 中,∠ACB =90°,AC =3,BC =4,点D 是边AB 的中点,将△ABC 沿着AB 平移到△DEF 处,那么四边形ACFB 的面积等于__________.14.如图,DE 是ABC △的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,:DMN CEM S S △△等于_________.15.如图,在ABCD 中,对角线AC ,BD 相交于点O ,OA =5cm ,E ,F 为直线BD 上的两个动点(点E ,F 始终在ABCD 的外面),且DE =12OD ,BF =12OB ,连接AE ,CE ,CF ,AF .(1)求证:四边形AFCE 为平行四边形. (2)若DE =13OD ,BF =13OB ,上述结论还成立吗?由此你能得出什么结论? (3)若CA 平分∠BCD ,∠AEC =60°,求四边形AECF 的周长.真题16.(2019·贵州黔东南、黔南、黔西南)如图在ABCD 中,已知AC =4 cm ,若△ACD 的周长为13 cm ,则ABCD 的周长为A .26 cmB .24 cmC .20 cmD .18 cm17.(2019·甘肃兰州)如图,将ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若48ABD ∠=︒,40CFD ∠=︒,则E ∠为A .102︒B .112︒C .122︒D .92︒18.(2019·黑龙江绥化)下列选项中,不能判定四边形ABCD 是平行四边形的是A .AD BC ∥,AB CD ∥ B .AB CD ∥,AB CD =C .AD BC ∥,AB DC =D .AB DC =,AD BC =19.(2019·内蒙古呼和浩特)顺次连接平面上A 、B 、C 、D 四点得到一个四边形,从①AB ∥CD ②BC =AD③∠A =∠C ④∠B =∠D 四个条件中任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况共有 A .5种B .4种C .3种D .1种20.(2019·广西玉林)在四边形ABCD 中:①AB ∥CD ;②AD ∥BC ;③AB =CD ;④AD =BC ,从以上选择两个条件使四边形ABCD 为平行四边形的选法共有 A .3种B .4种C .5种D .6种21.(2019·四川德阳)如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO 至点C ,使3FO OC =,连接AB 、AC 、BC ,则在ABC ∆中::ABO AOC BOC S S S △△△A .621∶∶B .321∶∶C .632∶∶D .432∶∶ 22.(2019·安徽)ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是 A .BE =DF B .AE =CF C .AF ∥CED .∠BAE =∠DCF23.(2019·广西梧州)如图,已知在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =6 cm ,则DE 的长度是__________cm .24.(2019·湖北十堰)如图,已知ABCD的对角线AC,BD交于点O,且AC=8,BD=10,AB=5,则△OCD 的周长为__________.25.(2019·江苏泰州)如图,ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为__________.26.(2019·辽宁抚顺)如图,ABCD中,AB=7,BC=3,连接AC,分别以点A和点C为圆心,大于12 AC的长为半径作弧,两弧相交于点M,N,作直线MN,交CD于点E,连接AE,则△AED的周长是__________.学科=网27.(2019·山东淄博)在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于__________.28.(2019·福建)如图,ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E ,F .求证:OE =OF .29.(2019·广西梧州)如图,在ABCD 中,对角线AC ,BD 相交于点O ,过点O 的一条直线分别交AD ,BC 于点E ,F .求证:AE =CF .30.(2019·辽宁大连)如图,ABCD 的对角线AC ,BD 相交于点O ,点E 、F 在AC 上,且AF =CE .求证:BE =DF .31.(2019·湖北孝感)如图,B ,E ,C ,F 在一条直线上,已知AB DE ∥,AC DF ∥,BE CF ,连接AD .求证:四边形ABED 是平行四边形.32.(2019·江苏无锡)如图,平行四边形ABCD中,E、F分别是边BC、AD的中点,求证:∠ABF= ∠CDE.33.(2019·湖北恩施州)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE 于O.求证:AD与BE互相平分.34.(2019·浙江衢州)如图,在ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.35.(2019·江苏宿迁)如图,在ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H,求证:AG=CH.36.(2019·青海)如图,在平行四边形ABCD中,E为AB边上的中点,连接DE并延长,交CB的延长线于点F.;(1)求证:AD BF(2)若平行四边形ABCD的面积为32,试求四边形EBCD的面积.37.(2019·云南曲靖)如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.38.(2019·黑龙江大庆)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25 cm,AC的长为5 cm,求线段AB的长度.参考答案1.【答案】C【解析】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴S△AOD=S△COD=S△BOC=S△AOB.∵△AOB的面积为3,∴ABCD的面积为4×3=12.故选C.2.【答案】B【解析】如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B∶∠C=1∶2,∴∠B=13×180°=60°,故选B.3.【答案】C【解析】∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵AB=6,且AB的长是四边形ABCD周长的316,∴四边形ABCD周长为:6÷316=32,∴AB+BC=12×32=16,∴BC=10.故选C.5.【答案】△ADC和△BDC;△ADO和△BCO;△DAB和△CAB【解析】根据AB∥CD可得:△ABC和△ABD的面积相等,△ACD和△BCD的面积相等,则△ACD的面积减去△OCD的面积等于△BCD的面积减去△OCD的面积,即△AOD和△BOC的面积相等.6.【答案】44【解析】∵E、F是AC,CB的中点,∴EF是△ABC的中位线,∴EF=12AB,∵EF=22m,∴AB=44m,故答案为44.7.【解析】∵AB=23BC=3DE=12,∴BC=18,DE=4,∴DG=12AB=6,∵E,F,G分别是BC,AC,AB的中点,∴FG=12BC=9,EF=12AB=6,∴四边形DEFG的周长为4+6+9+6=25.8.【解析】(1)作AM⊥BC于M,如图所示:∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AM=12BC=5,∵AD∥BC,∴∠PAN=∠C=45°,∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,∴PN=AP=t,CE=NE=5–t,∵CE=CQ–QE=2t–2,∴5–t=2t–2,解得:t=73,BQ=BC–CQ=10–2×71633;(2)存在,t=4;理由如下:若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,∴t=10–2t+2,解得:t=4,∴存在t的值,使以A,B,E,P为顶点的四边形为平行四边形,t=4.9.【答案】C【解析】如图,在平行四边形ABCD中,AO=CO=5,BO=DO=3,∴2<AB<8.故选C.10.【答案】A【解析】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD=180°–∠B=180°–45°=135°,∵△AEF是等边三角形,∴∠EAF=60°,∴∠BAE=∠BAD–∠EAF=75°.故选A.11.【答案】D【解析】∵AD∥BC,∴∠A+∠ABC=180°,∠ADC+∠BCD=180°,∵∠A=∠BCD,∴∠ABC=∠ADC,∵∠A=∠BCD,∴四边形ABCD是平行四边形,∴AB∥CD.∴①正确;∵∠A=∠ABD,DE平分∠ADB,∴DE⊥AB,∴DE⊥CD,∴②正确;∵∠A=∠ABD,四边形ABCD是平行四边形,∴AD=BD=BC,∴∠BDC=∠BCD,∵AD∥BC,∴∠ADB=∠DBC,∵∠ADC=∠ADB+∠BDC,∴∠ADC=∠DBC+∠BCD,∴∠ADC–∠DCE=∠DBC+ ∠BCD–∠DCE=∠DBC+∠BCF,∵∠DFC=∠DBC+BCF,∴∠DFC=∠ADC–∠DCE;∴③正确;∵AB∥CD,∴△BED的边BE上的高和△EBC的边BE上的高相等,∴由三角形面积公式得:S△BED=S△EBC,都减去△EFB的面积得:S△EDF=S△BCF,∴④正确;综上得①②③④都正确,故选D.12.【答案】B【解析】∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN =12 AB,即线段MN的长度不变,故①正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故②正确;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故③错误;∠APB的大小点P的移动而变化,故④错误.直线MN,AB之间的距离不随点P的移动而变化,故⑤正确;综上所述,随点P的移动而不变化的是①②⑤.故选B.13.【答案】9【解析】∵将△ABC沿AB方向向右平移到△DEF,∴四边形ADFC是平行四边形,四边形ACFB是是梯形.∵∠ACB=90°,AC=3,BC=4,∴22345AB=+=.∵点D是边AB的中点,∴AD=BD=15522⨯=,∴CF=AD=12AB52=,设AB边上的高为x.∵AB=5,AC=3,BC=4,AB边上的高为x,∴12AC·BC=12AB·x,∴125x=.∴S梯形ACFB=1512(5)9225⨯+⨯=.14.【答案】1∶3【解析】如图,作EF AD∥,M是DE的中点,则△DMN≌△EMF,得MN=MF,E是AC的中点,则FC=NF,所以13MFMC=,得13FEMCEMSS=△△,得:DMN CEMS S△△=1∶3.16.【答案】D【解析】∵AC =4 cm ,若△ADC 的周长为13 cm ,∴AD +DC =13-4=9(cm ).又∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,∴平行四边形的周长为2(AB +BC )=18 cm .故选D . 17.【答案】B【解析】∵AD BC ∥,∴ADB DBC ∠=∠,由折叠可得ADB BDF ∠=∠,∴DBC BDF ∠=∠, 又∵40DFC ∠=︒,∴20DBC BDF ADB ∠=∠=∠=︒,又∵48ABD ∠=︒,∴ABD △中,1802048112A ︒︒-︒∠=-=︒,∴112E A ∠∠==︒,故选B .18.【答案】C【解析】A 、由AD BC ∥,AB CD ∥可以判断四边形ABCD 是平行四边形,故本选项不符合题意; B 、由AB CD ∥,AB CD =可以判断四边形ABCD 是平行四边形,故本选项不符合题意; C 、由AD BC ∥,AB DC =不能判断四边形ABCD 是平行四边形,故本选项符合题意;D 、由AB DC =,AD BC =可以判断四边形ABCD 是平行四边形,故本选项不符合题意,故选C . 19.【答案】C【解析】当①③时,四边形ABCD 为平行四边形;当①④时,四边形ABCD 为平行四边形;当③④时,四边形ABCD 为平行四边形,故选C . 20.【答案】B【解析】(1)①②,利用两组对边平行的四边形是平行四边形判定; (2)③④,利用两组对边相等的四边形是平行四边形判定;(3)①③或②④,利用一组对边平行且相等的四边形是平行四边形判定,共4种组合方法,故选B.21.【答案】B【解析】如图,连接BF.设平行四边形AFEO的面积为4m.∵FO:OC=3:1,BE=OB,AF∥OE,∴S△OBF=S△AOB=m,S△OBC=13 m,S△AOC=23m,∴S△AOB∶S△AOC∶S△BOC=m∶23m∶13m=3∶2∶1,故选B.22.【答案】B【解析】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF∥CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE∥CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.23.【答案】3【解析】∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=12BC=162⨯=3 cm,故答案为:3.24.【答案】14【解析】∵四边形ABCD是平行四边形,∴AB=CD=5,OA=OC=4,OB=OD=5,∴△OCD的周长=5+4+5=14,故答案为:14.25.【答案】14【解析】∵四边形ABCD是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC的周长=BC+OB+OC=6+8=14,故答案为14.26.【答案】10【解析】∵四边形ABCD是平行四边形,AB=7,BC=3,∴AD=BC=3,CD=AB=7,∵由作图可知,MN 是线段AC的垂直平分线,∴AE=CE,∴△ADE的周长=AD+(DE+AE)=AD+CD=3+7=10,故答案为:10.27.【答案】10【解析】∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB=2,由折叠,∠DAC=∠EAC,∵∠DAC=∠ACB,∴∠ACB=∠EAC,∴OA=OC,∵AE过BC的中点O,∴AO=12BC,∴∠BAC=90°,∴∠ACE=90°,由折叠,∠ACD=90°,∴E、C、D共线,则DE=4,∴△ADE的周长为:3+3+2+2=10,故答案为:10.28.【解析】∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA),∴OE=OF.29.【解析】∵ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,EAO FCO AO OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA),∴AE=CF.31.【解析】∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F.∵BE=CF,∴BE+CE=CF+CE,∴BC=EF.在△ABC和△DEF中,B DEF BC EFACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEF(ASA),∴AB=DE.又∵AB∥DE,∴四边形ABED是平行四边形.32.【解析】在ABCD中,AD=BC,∠A=∠C,∵E、F分别是边BC、AD的中点,∴AF=CE,在△ABF与△CDE中,AB CDA C AF CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△CDE(SAS),∴∠ABF=∠CDE.33.【解析】如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,ABC DEF BC EFACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.34.【解析】∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF.又BE⊥AC,DF⊥AC,∴∠AEB =∠CFD =90°.在△ABE 与△CDF 中,AEB CFDBAE DCF AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴得△ABE ≌△CDF (AAS ), ∴AE =CF .35.【解析】∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∠A =∠C , ∴∠E =∠F , 又∵BE =DF , ∴AD +DF =CB +BE , 即AF =CE ,在△CEH 和△AFG 中,E F EC FA C A ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CEH ≌△AFG , ∴CH =AG .36.【解析】(1)∵E 是AB 边上的中点,∴AE BE =, ∵AD BC ∥, ∴ADE F ∠=∠,在ADE △和BFE △中,ADE F ∠=∠,DEA FEB ∠=∠,AE BE =, ∴ADE △≌BFE △, ∴AD BF =.(2)如图,过点D 作DM AB ⊥于点M ,∵AB ∥DC ,∴DM 同时也是平行四边形ABCD 的高, ∴11113282244AED S AB DM AB DM =⋅⋅=⋅=⨯=△, ∴32824EBCD S =-=四边形.37.【解析】(1)∵四边形ABCD 是平行四边形,∴CD ∥AB , ∴∠AFN =∠CEM , ∵FN =EM ,AF =CE , ∴△AFN ≌△CEM (SAS ). (2)∵△AFN ≌△CEM , ∴∠NAF =∠ECM , ∵∠CMF =∠CEM +∠ECM , ∴107°=72°+∠ECM , ∴∠ECM =35°, ∴∠NAF =35°.38.【解析】(1)∵D 、E 分别是AB 、AC 的中点,F 是BC 延长线上的一点,∴ED 是Rt △ABC 的中位线, ∴ED ∥F C .BC =2DE , 又EF ∥DC ,∴四边形CDEF 是平行四边形. (2)∵四边形CDEF 是平行四边形; ∴DC =EF ,∵DC 是Rt △ABC 斜边AB 上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25 cm,AC的长5 cm,∴BC=25-AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25-AB)2+52,解得AB=13 cm.。

相关文档
最新文档