数据结构重点复习内容

合集下载

数据结构考研复习重点归纳

数据结构考研复习重点归纳

数据结构考研复习重点归纳数据结构是计算机科学中非常重要的一门基础课程,考研复习数据结构时,需要重点掌握的内容有以下几个方面。

1.线性表:线性表是数据结构中最基本的一种结构,常见的线性表有数组、链表和栈等。

考生需要掌握线性表的定义、插入、删除、查找等基本操作,并能够分析它们的时间复杂度。

2.树:树是一种非常重要且常见的数据结构,它具有分层结构和层次关系。

其中,二叉树是最简单也是最基本的一种树结构,树的遍历(如前序遍历、中序遍历和后序遍历)是树算法中的重要内容。

此外,还要了解一些特殊的树结构,如平衡树和B树等。

3.图:图是由节点和边组成的一种数据结构,它是一种非常灵活的结构,常用来表示各种实际问题中的关系。

在考研复习中,需要掌握图的基本概念(如顶点和边)、图的存储结构(如邻接矩阵和邻接表)以及图的遍历算法(如深度优先和广度优先)等。

4.查找和排序:在实际问题中,经常需要查找和排序数据。

查找算法(如顺序查找、二分查找和哈希查找)和排序算法(如冒泡排序、插入排序和快速排序)是数据结构中常见的算法,考生需要熟练掌握这些算法的原理和实现方法。

此外,还要了解一些高级的查找和排序算法,如二叉查找树和归并排序等。

5.散列表:散列表(也称哈希表)是一种特殊的数据结构,它利用散列函数将数据映射到一个固定大小的数组中。

散列表具有快速的查找和插入操作,常用于实现字典和数据库等应用。

在考研复习中,需要了解散列表的原理和实现方法,以及处理冲突的方法,如链地址法和开放地址法。

6.动态规划:动态规划是一种解决问题的数学方法,也是一种重要的算法思想。

在考研复习中,需要掌握动态规划的基本原理和解题思路,以及常见的动态规划算法,如背包问题和最长公共子序列等。

7.算法复杂度分析:在考研复习中,需要有一定的算法分析能力,能够对算法的时间复杂度和空间复杂度进行分析和估算。

此外,还要能够比较不同算法的效率,并选择合适的算法来解决实际问题。

除了以上重点内容,考生还要注意掌握一些基本的编程知识,如指针、递归和动态内存分配等。

数据结构复习资料复习提纲知识要点归纳

数据结构复习资料复习提纲知识要点归纳

数据结构复习资料复习提纲知识要点归纳数据结构复习资料:复习提纲知识要点归纳一、数据结构概述1. 数据结构的定义和作用2. 常见的数据结构类型3. 数据结构与算法的关系二、线性结构1. 数组的概念及其特点2. 链表的概念及其分类3. 栈的定义和基本操作4. 队列的定义和基本操作三、树结构1. 树的基本概念及定义2. 二叉树的性质和遍历方式3. 平衡二叉树的概念及应用4. 堆的定义和基本操作四、图结构1. 图的基本概念及表示方法2. 图的遍历算法:深度优先搜索和广度优先搜索3. 最短路径算法及其应用4. 最小生成树算法及其应用五、查找与排序1. 查找算法的分类及其特点2. 顺序查找和二分查找算法3. 哈希查找算法及其应用4. 常见的排序算法:冒泡排序、插入排序、选择排序、归并排序、快速排序六、高级数据结构1. 图的高级算法:拓扑排序和关键路径2. 并查集的定义和操作3. 线段树的概念及其应用4. Trie树的概念及其应用七、应用案例1. 使用数据结构解决实际问题的案例介绍2. 如何选择适合的数据结构和算法八、复杂度分析1. 时间复杂度和空间复杂度的定义2. 如何进行复杂度分析3. 常见算法的复杂度比较九、常见问题及解决方法1. 数据结构相关的常见问题解答2. 如何优化算法的性能十、总结与展望1. 数据结构学习的重要性和难点2. 对未来数据结构的发展趋势的展望以上是数据结构复习资料的复习提纲知识要点归纳。

希望能够帮助你进行复习和回顾,加深对数据结构的理解和掌握。

在学习过程中,要注重理论与实践相结合,多进行编程练习和实际应用,提高数据结构的实际运用能力。

祝你复习顺利,取得好成绩!。

数据结构复习笔记

数据结构复习笔记

第一章概论1.数据:信息的载体,能被计算机识别、存储和加工处理;2.数据元素:数据的基本单位,可由若干个数据项组成,数据项是具有独立含义的最小标识单位;3.数据结构:数据之间的相互关系,即数据的组织形式;它包括:1数据的逻辑结构,从逻辑关系上描述数据,与数据存储无关,独立于计算机;2数据的存储结构,是逻辑结构用计算机语言的实现,依赖于计算机语言;3数据的运算,定义在逻辑结构上,每种逻辑结构都有一个运算集合;常用的运算:检索/插入/删除/更新/排序;4.数据的逻辑结构可以看作是从具体问题抽象出来的数学模型;数据的存储结构是逻辑结构用计算机语言的实现;5.数据类型:一个值的集合及在值上定义的一组操作的总称;分为:原子类型和结构类型;6.抽象数据类型:抽象数据的组织和与之相关的操作;优点:将数据和操作封装在一起实现了信息隐藏;7. 抽象数据类型ADT:是在概念层上描述问题;类:是在实现层上描述问题;在应用层上操作对象类的实例解决问题;8.数据的逻辑结构,简称为数据结构,有:1线性结构,若结构是非空集则仅有一个开始和终端结点,并且所有结点最多只有一个直接前趋和后继;2非线性结构,一个结点可能有多个直接前趋和后继;9.数据的存储结构有:1顺序存储,把逻辑相邻的结点存储在物理上相邻的存储单元内;2链接存储,结点间的逻辑关系由附加指针字段表示;3索引存储,存储结点信息的同时,建立附加索引表,有稠密索引和稀疏索引;4散列存储,按结点的关键字直接计算出存储地址;10.评价算法的好坏是:算法是正确的;执行算法所耗的时间;执行算法的存储空间辅助存储空间;易于理解、编码、调试;11.算法的时间复杂度Tn:是该算法的时间耗费,是求解问题规模n的函数;记为On;时间复杂度按数量级递增排列依次为:常数阶O1、对数阶Olog2n、线性阶On、线性对数阶Onlog2n、平方阶On^2、立方阶On^3、……k次方阶On^k、指数阶O2^n;13.算法的空间复杂度Sn:是该算法的空间耗费,是求解问题规模n的函数;12.算法衡量:是用时间复杂度和空间复杂度来衡量的,它们合称算法的复杂度;13. 算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关;第二章线性表1.线性表:是由nn≥0个数据元素组成的有限序列;3.顺序表:把线性表的结点按逻辑次序存放在一组地址连续的存储单元里;4.顺序表结点的存储地址计算公式:Locai=Loca1+i-1C;1≤i≤n5.顺序表上的基本运算public interface List {链表:只有一个链域的链表称单链表;在结点中存储结点值和结点的后继结点的地址,data next data是数据域,next是指针域;1建立单链表;时间复杂度为On;加头结点的优点:1链表第一个位置的操作无需特殊处理;2将空表和非空表的处理统一; 2查找运算;时间复杂度为On;public class SLNode implements Node {private Object element;private SLNode next;public SLNodeObject ele, SLNode next{= ele;= next;}public SLNode getNext{return next;}public void setNextSLNode next{= next;}public Object getData {return element;}public void setDataObject obj {element = obj;}}public class ListSLinked implements List {private SLNode head; etData==ereturn p;else p = ;return null;}etData;.getNext;size--;return obj;}etNext;size--;return true;}return false;}环链表:是一种首尾相连的链表;特点是无需增加存储量,仅对表的链接方式修改使表的处理灵活方便;8.空循环链表仅由一个自成循环的头结点表示;9.很多时候表的操作是在表的首尾位置上进行,此时头指针表示的单循环链表就显的不够方便,改用尾指针rear来表示单循环链表;用头指针表示的单循环链表查找开始结点的时间是O1,查找尾结点的时间是On;用尾指针表示的单循环链表查找开始结点和尾结点的时间都是O1;10.在结点中增加一个指针域,prior|data|next;形成的链表中有两条不同方向的链称为双链表;public class DLNode implements Node {private Object element;private DLNode pre;private DLNode next;public DLNodeObject ele, DLNode pre, DLNode next{= ele;= pre;= next;}public DLNode getNext{return next;}public void setNextDLNode next{= next;}public DLNode getPre{return pre;}public void setPreDLNode pre{= pre;}public Object getData {return element;}public void setDataObject obj {element = obj;}}public class LinkedListDLNode implements LinkedList {private int size; etPrenode;node;size++;return node;}etNextnode;node;size++;return node;}etNext;.setPre;size--;return obj;}序表和链表的比较1基于空间的考虑:顺序表的存储空间是静态分配的,链表的存储空间是动态分配的;顺序表的存储密度比链表大;因此,在线性表长度变化不大,易于事先确定时,宜采用顺序表作为存储结构;2基于时间的考虑:顺序表是随机存取结构,若线性表的操作主要是查找,很少有插入、删除操作时,宜用顺序表结构;对频繁进行插入、删除操作的线性表宜采用链表;若操作主要发生在表的首尾时采用尾指针表示的单循环链表;12.存储密度=结点数据本身所占的存储量/整个结点结构所占的存储总量存储密度:顺序表=1,链表<1;第三章栈和队列1.栈是限制仅在表的一端进行插入和删除运算的线性表又称为后进先出表LIFO表;插入、删除端称为栈顶,另一端称栈底;表中无元素称空栈;2.栈的基本运算有:1initstacks,构造一个空栈;2stackemptys,判栈空;3stackfulls,判栈满;4pushs,x,进栈;5pops,退栈;6stacktops,取栈顶元素;3.顺序栈:栈的顺序存储结构称顺序栈;4.当栈满时,做进栈运算必定产生空间溢出,称“上溢”;当栈空时,做退栈运算必定产生空间溢出,称“下溢”;上溢是一种错误应设法避免,下溢常用作程序控制转移的条件;5.在顺序栈上的基本运算:public interface Stack {栈:栈的链式存储结构称链栈;栈顶指针是链表的头指针;7.链栈上的基本运算:public class StackSLinked implements Stack {private SLNode top; 列是一种运算受限的线性表,允许删除的一端称队首,允许插入的一端称队尾;队列又称为先进先出线性表,FIFO表;9.队列的基本运算:1initqueueq,置空队;2queueemptyq,判队空;3queuefullq,判队满;4enqueueq,x,入队;5dequeueq,出队;6queuefrontq,返回队头元素;10.顺序队列:队列的顺序存储结构称顺序队列;设置front和rear指针表示队头和队尾元素在向量空间的位置;11.顺序队列中存在“假上溢”现象,由于入队和出队操作使头尾指针只增不减导致被删元素的空间无法利用,队尾指针超过向量空间的上界而不能入队;12.为克服“假上溢”现象,将向量空间想象为首尾相连的循环向量,存储在其中的队列称循环队列;i=i+1%queuesize13.循环队列的边界条件处理:由于无法用front==rear来判断队列的“空”和“满”;解决的方法有:1另设一个布尔变量以区别队列的空和满;2少用一个元素,在入队前测试rear在循环意义下加1是否等于front;3使用一个记数器记录元素总数;14.循环队列的基本运算:public interface Queue {队列:队列的链式存储结构称链队列,链队列由一个头指针和一个尾指针唯一确定;16.链队列的基本运算:public class QueueSLinked implements Queue {private SLNode front;private SLNode rear;private int size;public QueueSLinked {front = new SLNode;rear = front;size = 0;}etData;}}第四章串1.串:是由零个或多个字符组成的有限序列;包含字符的个数称串的长度;2.空串:长度为零的串称空串;空白串:由一个或多个空格组成的串称空白串;子串:串中任意个连续字符组成的子序列称该串的子串;主串:包含子串的串称主串;子串的首字符在主串中首次出现的位置定义为子串在主串中的位置;3.空串是任意串的子串;任意串是自身的子串;串常量在程序中只能引用但不能改变其值;串变量取值可以改变;4.串的基本运算1intstrlenchars;求串长;2charstrcpycharto,charfrom;串复制;3charstrcatcharto,charfrom;串联接;4intstrcmpchars1,chars2;串比较;5charstrchrchars,charc;字符定位;5.串的存储结构:1串的顺序存储:串的顺序存储结构称顺序串;按存储分配不同分为:1静态存储分配的顺序串:直接用定长的字符数组定义,以“\0”表示串值终结;definemaxstrsize256typedefcharseqstringmaxstrsize;seqstrings;不设终结符,用串长表示;Typedefstruct{Charchmaxstrsize;Intlength;}seqstring;以上方式的缺点是:串值空间大小是静态的,难以适应插入、链接等操作;2动态存储分配的顺序串:简单定义:typedefcharstring;复杂定义:typedefstruct{charch;intlength;}hstring;2串的链式存储:串的链式存储结构称链串;链串由头指针唯一确定;类型定义:typedefstructnode{chardata;structnodenext;}linkstrnode;typedeflinkstrnodelinkstring;linkstrings;将结点数据域存放的字符个数定义为结点的大小;结点大小不为1的链串类型定义:definenodesize80typedefstructnode{chardatanodesize;structnodenext;}linkstrnode;6.串运算的实现1顺序串上的子串定位运算;1子串定位运算又称串的模式匹配或串匹配;主串称目标串;子串称模式串; 2朴素的串匹配算法;时间复杂度为On^2;比较的字符总次数为n-m+1m; Intnaivestrmatchseqstringt,seqstringp{inti,j,k;intm=;intn=;fori=0;i<=n-m;i++{j=0;k=i;whilej<m&&k==j{j++;k++;}ifj==mreturni;}return–1;}2链串上的子串定位运算;时间复杂度为On^2;比较的字符总次数为n-m+1m;LinkstrnodelilnkstrmatchlinkstringT,linkstringP {linkstrnodeshift,t,p;shift=T;t=shift;p=P;whilet&&p{ift->data==p->data{t=t->next;p=p->next;}else{shift=shift->next;t=shift;p=P;}}ifp==NULLreturnshift;elsereturnNULL;}第五章多维数组和广义表1.多维数组:一般用顺序存储的方式表示数组;2.常用方式有:1行优先顺序,将数组元素按行向量排列;2列优先顺序,将数组元素按列向量排列;3.计算地址的函数:LOCAij=LOCAc1c2+i-c1d2-c2+1+j-c2d4.矩阵的压缩存储:为多个非零元素分配一个存储空间;对零元素不分配存储空间;1对称矩阵:在一个n阶的方阵A中,元素满足Aij=Aji0<=i,j<=n-1;称为对称矩阵;元素的总数为:nn+1/2;设:I=i或j中大的一个数;J=i或j中小的一个数;则:k=II+1/2+J;地址计算:LOCAij=LOCsak=LOCsa0+kd=LOCsa0+II+1/2+Jd2三角矩阵:以主对角线划分,三角矩阵有上三角和下三角;上三角的主对角线下元素均为常数c;下三角的主对角线上元素均为常数c;元素总数为:nn+1/2+1;以行优先顺序存放的Aij与SAk的关系:上三角阵:k=i2n-i+1/2+j-i;下三角阵:k=ii+1/2+j;3对角矩阵:所有的非零元素集中在以主对角线为中心的带状区域,相邻两侧元素均为零;|i-j|>k-1/2以行优先顺序存放的Aij与SAk的关系:k=2i+j;5.稀疏矩阵:当矩阵A中有非零元素S个,且S远小于元素总数时,称为稀疏矩阵;对其压缩的方法有顺序存储和链式存储;1三元组表:将表示稀疏矩阵的非零元素的三元组行号、列号、值按行或列优先的顺序排列得到的一个结点均是三元组的线性表,将该表的线性存储结构称为三元组表;其类型定义:definemaxsize10000typedefintdatatype;typedefstruct{inti,j;datatypev;}trituplenode;typedefstruct{trituplenodedatamaxsize;intm,n,t;}tritupletable;2带行表的三元组表:在按行优先存储的三元组表中加入一个行表记录每行的非零元素在三元组表中的起始位置;类型定义:definemaxrow100typedefstruct{tritulpenodedatamaxsize;introwtabmaxrow;intm,n,t;}rtritulpetable;6.广义表:是线性表的推广,广义表是n个元素的有限序列,元素可以是原子或一个广义表,记为LS;7.若元素是广义表称它为LS的子表;若广义表非空,则第一个元素称表头,其余元素称表尾;8.表的深度是指表展开后所含括号的层数;9.把与树对应的广义表称为纯表,它限制了表中成分的共享和递归;10.允许结点共享的表称为再入表;11.允许递归的表称为递归表;12.相互关系:线性表∈纯表∈再入表∈递归表;13.广义表的特殊运算:1取表头headLS;2取表尾tailLS;第六章树1.树:是n个结点的有限集T,T为空时称空树,否则满足:1有且仅有一个特定的称为根的结点;2其余结点可分为m个互不相交的子集,每个子集本身是一棵树,并称为根的子树;2.树的表示方法:1树形表示法;2嵌套集合表示法;3凹入表表示法;4广义表表示法;3.一个结点拥有的子树数称为该结点的度;一棵树的度是指树中结点最大的度数;4.度为零的结点称叶子或终端结点;度不为零的结点称分支结点或非终端结点5.根结点称开始结点,根结点外的分支结点称内部结点;6.树中某结点的子树根称该结点的孩子;该结点称为孩子的双亲;7.树中存在一个结点序列K1,K2,…Kn,使Ki为Ki+1的双亲,则称该结点序列为K1到Kn的路径或道路;8.树中结点K到Ks间存在一条路径,则称K是Ks的祖先,Ks是K的子孙;9.结点的层数从根算起,若根的层数为1,则其余结点层数是其双亲结点层数加1;双亲在同一层的结点互为堂兄弟;树中结点最大层数称为树的高度或深度;10.树中每个结点的各个子树从左到右有次序的称有序树,否则称无序树;11.森林是m棵互不相交的树的集合;12.二叉树:是n个结点的有限集,它或为空集,或由一个根结点及两棵互不相交的、分别称为该根的左子树和右子树的二叉树组成;13.二叉树不是树的特殊情况,这是两种不同的数据结构;它与无序树和度为2的有序树不同;14.二叉树的性质:1二叉树第i层上的结点数最多为2^i-1;2深度为k的二叉树至多有2^k-1个结点;3在任意二叉树中,叶子数为n0,度为2的结点数为n2,则n0=n2+1;15.满二叉树是一棵深度为k的且有2^k-1个结点的二叉树;16.完全二叉树是至多在最下两层上结点的度数可以小于2,并且最下层的结点集中在该层最左的位置的二叉树;17.具有N个结点的完全二叉树的深度为log2N取整加1;18.二叉树的存储结构1顺序存储结构:把一棵有n个结点的完全二叉树,从树根起自上而下、从左到右对所有结点编号,然后依次存储在一个向量b0~n中,b1~n存放结点,b0存放结点总数;各个结点编号间的关系:1i=1是根结点;i>1则双亲结点是i/2取整;2左孩子是2i,右孩子是2i+1;要小于n3i>n/2取整的结点是叶子;4奇数没有右兄弟,左兄弟是i-1;5偶数没有左兄弟,右兄弟是i+1;2链式存储结构结点的结构为:lchild|data|rchild;相应的类型说明:typedefchardata;typedefstructnode{datatypedata;structnodelchild,rchild;}bintnode;typedefbintnodebintree;19.在二叉树中所有类型为bintnode的结点和一个指向开始结点的bintree类型的头指针构成二叉树的链式存储结构称二叉链表;20.二叉链表由根指针唯一确定;在n个结点的二叉链表中有2n个指针域,其中n+1个为空;21.二叉树的遍历方式有:前序遍历、中序遍历、后序遍历;时间复杂度为On;22.线索二叉树:利用二叉链表中的n+1个空指针域存放指向某种遍历次序下的前趋和后继结点的指针,这种指针称线索;加线索的二叉链表称线索链表;相应二叉树称线索二叉树;23.线索链表结点结构:lchild|ltag|data|rtag|rchild;ltag=0,lchild是指向左孩子的指针;ltag=1,lchild是指向前趋的线索;rtag=0,rchild是指向右孩子的指针;rtag=1,rchild是指向后继的线索;24.查找p在指定次序下的前趋和后继结点;算法的时间复杂度为Oh;线索对查找前序前趋和后序后继帮助不大;25.遍历线索二叉树;时间复杂度为On;26.树、森林与二叉树的转换1树、森林与二叉树的转换1树与二叉树的转换:1}所有兄弟间连线;2}保留与长子的连线,去除其它连线;该二叉树的根结点的右子树必为空;2森林与二叉树的转换:1}将所有树转换成二叉树;2}将所有树根连线;2二叉树与树、森林的转换;是以上的逆过程;27.树的存储结构1双亲链表表示法:为每个结点设置一个parent指针,就可唯一表示任何一棵树;Data|parent2孩子链表表示法:为每个结点设置一个firstchild指针,指向孩子链表头指针,链表中存放孩子结点序号;Data|firstchild;3双亲孩子链表表示法:将以上方法结合;Data|parent|firstchild4孩子兄弟链表表示法:附加两个指向左孩子和右兄弟的指针;Leftmostchild|data|rightsibling28.树和森林的遍历:前序遍历一棵树等价于前序遍历对应二叉树;后序遍历等价于中序遍历对应二叉树;29.最优二叉树哈夫曼树:树的路径长度是从树根到每一结点的路径长度之和;将树中的结点赋予实数称为结点的权;30.结点的带权路径是该结点的路径长度与权的乘积;树的带权路径长度又称树的代价,是所有叶子的带权路径长度之和;31.带权路径长度最小的二叉树称最优二叉树哈夫曼树;32.具有2n-1个结点其中有n个叶子,并且没有度为1的分支结点的树称为严格二叉树;33.哈夫曼编码34.对字符集编码时,要求字符集中任一字符的编码都不是其它字符的编码前缀,这种编码称前缀码;35.字符出现频度与码长乘积之和称文件总长;字符出现概率与码长乘积之和称平均码长;36.使文件总长或平均码长最小的前缀码称最优前缀码37.利用哈夫曼树求最优前缀码,左为0,右为1;编码平均码长最小;没有叶子是其它叶子的祖先,不可能出现重复前缀;第七章图1.图:图G是由顶点集V和边集E组成,顶点集是有穷非空集,边集是有穷集;中每条边都有方向称有向图;有向边称弧;边的始点称弧尾;边的终点称弧头;G中每条边都没有方向的称无向图;3.顶点n与边数e的关系:无向图的边数e介于0~nn-1/2之间,有nn-1/2条边的称无向完全图;有向图的边数e介于0~nn-1之间,有nn-1条边的称有向完全图;4.无向图中顶点的度是关联与顶点的边数;有向图中顶点的度是入度与出度的和;所有图均满足:所有顶点的度数和的一半为边数;5.图GV,E,如V’是V的子集,E’是E的子集,且E’中关联的顶点均在V’中,则G’V’,E’是G的子图;6.在有向图中,从顶点出发都有路径到达其它顶点的图称有根图;7.在无向图中,任意两个顶点都有路径连通称连通图;极大连通子图称连通分量;8.在有向图中,任意顺序两个顶点都有路径连通称强连通图;极大连通子图称强连通分量;9.将图中每条边赋上权,则称带权图为网络;10.图的存储结构:1邻接矩阵表示法:邻接矩阵是表示顶点间相邻关系的矩阵;n个顶点就是n阶方阵;无向图是对称矩阵;有向图行是出度,列是入度;2邻接表表示法:对图中所有顶点,把与该顶点相邻接的顶点组成一个单链表,称为邻接表,adjvex|next,如要保存顶点信息加入data;对所有顶点设立头结点,vertex|firstedge,并顺序存储在一个向量中;vertex保存顶点信息,firstedge保存邻接表头指针;11.邻接矩阵表示法与邻接表表示法的比较:1邻接矩阵是唯一的,邻接表不唯一;2存储稀疏图用邻接表,存储稠密图用邻接矩阵;3求无向图顶点的度都容易,求有向图顶点的度邻接矩阵较方便;4判断是否是图中的边,邻接矩阵容易,邻接表最坏时间为On;5求边数e,邻接矩阵耗时为On^2,与e无关,邻接表的耗时为Oe+n;12.图的遍历:1图的深度优先遍历:类似与树的前序遍历;按访问顶点次序得到的序列称DFS序列;对邻接表表示的图深度遍历称DFS,时间复杂度为On+e;对邻接矩阵表示的图深度遍历称DFSM,时间复杂度为On^2;2图的广度优先遍历:类似与树的层次遍历;按访问顶点次序得到的序列称BFS序列;对邻接表表示的图广度遍历称BFS,时间复杂度为On+e;对邻接矩阵表示的图广度遍历称BFSM,时间复杂度为On^2;13.将没有回路的连通图定义为树称自由树;14.生成树:连通图G的一个子图若是一棵包含G中所有顶点的树,该子图称生成树;有DFS生成树和BFS生成树,BFS生成树的高度最小;非连通图生成的是森林;15.最小生成树:将权最小的生成树称最小生成树;是无向图的算法1普里姆算法:1确定顶点S、初始化候选边集T0~n-2;formvex|tovex|lenght2选权值最小的Ti与第1条记录交换;3从T1中将tovex取出替换以下记录的fromvex计算权;若权小则替换,否则不变;4选权值最小的Ti与第2条记录交换;5从T2中将tovex取出替换以下记录的fromvex计算权;若权小则替换,否则不变;6重复n-1次;初始化时间是On,选轻边的循环执行n-1-k次,调整轻边的循环执行n-2-k;算法的时间复杂度为On^2,适合于稠密图;2克鲁斯卡尔算法:1初始化确定顶点集和空边集;对原边集按权值递增顺序排序;2取第1条边,判断边的2个顶点是不同的树,加入空边集,否则删除;3重复e次;对边的排序时间是Oelog2e;初始化时间为On;执行时间是Olog2e;算法的时间复杂度为Oelog2e,适合于稀疏图;16.路径的开始顶点称源点,路径的最后一个顶点称终点;17.单源最短路径问题:已知有向带权图,求从某个源点出发到其余各个顶点的最短路径;18.单目标最短路径问题:将图中每条边反向,转换为单源最短路径问题;19.单顶点对间最短路径问题:以分别对不同顶点转换为单源最短路径问题;20.所有顶点对间最短路径问题:分别对图中不同顶点对转换为单源最短路径问题;21.迪杰斯特拉算法:1初始化顶点集Si,路径权集Di,前趋集Pi;2设置Ss为真,Ds为0;3选取Di最小的顶点加入顶点集;4计算非顶点集中顶点的路径权集;5重复3n-1次;算法的时间复杂度为On^2;22.拓扑排序:对一个有向无环图进行拓扑排序,是将图中所有顶点排成一个线性序列,满足弧尾在弧头之前;这样的线性序列称拓扑序列;1无前趋的顶点优先:总是选择入度为0的结点输出并删除该顶点的所有边;设置各个顶点入度时间是On+e,设置栈或队列的时间是On,算法时间复杂度为On+e;2无后继的顶点优先:总是选择出度为0的结点输出并删除该顶点的所有边;设置各个顶点出度时间是On+e,设置栈或队列的时间是On,算法时间复杂度为On+e;求得的是逆拓扑序列;第八章排序1.文件:由一组记录组成,记录有若干数据项组成,唯一标识记录的数据项称关键字;2.排序是将文件按关键字的递增减顺序排列;3.排序文件中有相同的关键字时,若排序后相对次序保持不变的称稳定排序,否则称不稳定排序;4.在排序过程中,文件放在内存中处理不涉及数据的内、外存交换的称内排序,反之称外排序;5.排序算法的基本操作:1比较关键字的大小;2改变指向记录的指针或移动记录本身;6.评价排序方法的标准:1执行时间;2所需辅助空间,辅助空间为O1称就地排序;另要注意算法的复杂程度;7.若关键字类型没有比较运算符,可事先定义宏或函数表示比较运算;8.插入排序1直接插入排序算法中引入监视哨R0的作用是:1保存Ri的副本;2简化边界条件,防止循环下标越界;关键字比较次数最大为n+2n-1/2;记录移动次数最大为n+4n-1/2;算法的最好时间是On;最坏时间是On^2;平均时间是On^2;是一种就地的稳定的排序;2希尔排序实现过程:是将直接插入排序的间隔变为d;d的取值要注意:1最后一次必为1;2避免d 值互为倍数;关键字比较次数最大为n^;记录移动次数最大为^;算法的平均时间是On^;是一种就地的不稳定的排序;9.交换排序1冒泡排序实现过程:从下到上相邻两个比较,按小在上原则扫描一次,确定最小值,重复n-1次;关键字比较次数最小为n-1、最大为nn-1/2;记录移动次数最小为0,最大为3nn-1/2;算法的最好时间是On;最坏时间是On^2;平均时间是On^2;是一种就地的稳定的排序;2快速排序实现过程:将第一个值作为基准,设置i,j指针交替从两头与基准比较,有交换后,交换j,i;i=j时确定基准,并以其为界限将序列分为两段;重复以上步骤;关键字比较次数最好为nlog2n+nC1、最坏为nn-1/2;算法的最好时间是Onlog2n;最坏时间是On^2;平均时间是Onlog2n;辅助空间为Olog2n;是一种不稳定排序;10.选择排序1直接选择排序实现过程:选择序列中最小的插入第一位,在剩余的序列中重复上一步,共重复n-1次;关键字比较次数为nn-1/2;记录移动次数最小为0,最大为3n-1;算法的最好时间是On^2;最坏时间是On^2;平均时间是On^2;是一种就地的不稳定的排序;2堆排序。

(完整版)数据结构知识点总结

(完整版)数据结构知识点总结

数据结构知识点概括第一章概论数据就是指能够被计算机识别、存储和加工处理的信息的载体。

数据元素是数据的基本单位,可以由若干个数据项组成。

数据项是具有独立含义的最小标识单位。

数据结构的定义:·逻辑结构:从逻辑结构上描述数据,独立于计算机。

·线性结构:一对一关系。

·线性结构:多对多关系。

·存储结构:是逻辑结构用计算机语言的实现。

·顺序存储结构:如数组。

·链式存储结构:如链表。

·索引存储结构:·稠密索引:每个结点都有索引项。

·稀疏索引:每组结点都有索引项。

·散列存储结构:如散列表。

·数据运算。

·对数据的操作。

定义在逻辑结构上,每种逻辑结构都有一个运算集合。

·常用的有:检索、插入、删除、更新、排序。

数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。

·结构类型:由用户借助于描述机制定义,是导出类型。

抽象数据类型ADT:·是抽象数据的组织和与之的操作。

相当于在概念层上描述问题。

·优点是将数据和操作封装在一起实现了信息隐藏。

程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。

算法取决于数据结构。

算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。

评价算法的好坏的因素:·算法是正确的;·执行算法的时间;·执行算法的存储空间(主要是辅助存储空间);·算法易于理解、编码、调试。

时间复杂度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。

渐近时间复杂度:是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。

评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度。

算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。

时间复杂度按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、……k次方阶O(n^k)、指数阶O(2^n)。

数据结构考研复习要点

数据结构考研复习要点

考研题型包括:简答题;方法选择(分析);构造题;算法题。

第一章绪论1. 数据结构的基本概念:数据、数据元素、数据对象、数据结构2. 抽象数据类型:数据对象、逻辑关系、一组操作。

ADT的特点:数据抽象、信息隐蔽3. 数据结构三要素:数据元素间的逻辑关系、物理存储和一组操作。

元素间的逻辑关系:集合、线性、树、图元素在计算机内存中的存储结构:顺序、非顺序4. 算法的定义:规则的有限集合,为了解决某个特定问题而规定的一系列基本操作。

算法特性:有限性、确定性、可行性、输入、输出算法设计目标:正确性、可读性、鲁棒性、高效率低存储5. 算法性能评价:时间和空间算法时间复杂度:T(n)=O(f(n))。

它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。

其中f(n)是问题规模n的某个函数。

求解算法的时间复杂度的具体步骤是:⑴找出算法中的基本语句;⑵计算基本语句的执行次数的数量级;保留基本语句执行次数的函数中的最高次幂,忽略所有低次幂和最高次幂的系数。

⑶用大Ο记号表示算法的时间性能。

将基本语句执行次数的数量级放入大Ο记号中。

O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < { O(2^n) < O(n!) < O(n^n) }【例】分析下面各算法的时间复杂度算法1:int fact(int n){ if (n<=1) return 1;return n*fact(n-1);}算法2:i=l;while (i<n){for(j=l;j<=n;j++)x=x+l;i=i*2;}算法3:for(i=l;i<=n;i++){ j=l;while (j<=i){x+=l; j++;}}算法:4void sort(int b[],int n){ int i, j, k;for (i=0; i<n-1; i++){ k = i;for (j=i+1; j<n; j++)if (b[k] > b[j]) k = j;x = b[i]; b[i] = b[k]; b[k] = x;}}算法5void add(int n){ int i = 0, s = 0;while (s<n){ i++;s = s + i;}}设while循环语句执行次数为T(n),则算法6void hanoi(int n, char a, char b, char c){ if (n==1) printf("move %d disk from %c to %c \n", n, a, c);else{ hanoi(n-1, a, c, b);printf("move %d disk from %c to %c \n", n, a, c);hanoi(n-1, b, a, c);}}算法7:void PreOrder(BiTree T){ if (T){ v isit(T->daata)PreOrder(T->lchild);PreOrder(T->rchild);}}算法空间复杂度:空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。

(完整版)数据结构知识点全面总结—精华版

(完整版)数据结构知识点全面总结—精华版

第1章绪论内容提要:◆数据结构研究的内容。

针对非数值计算的程序设计问题,研究计算机的操作对象以及它们之间的关系和操作。

数据结构涵盖的内容:◆基本概念:数据、数据元素、数据对象、数据结构、数据类型、抽象数据类型。

数据——所有能被计算机识别、存储和处理的符号的集合。

数据元素——是数据的基本单位,具有完整确定的实际意义。

数据对象——具有相同性质的数据元素的集合,是数据的一个子集。

数据结构——是相互之间存在一种或多种特定关系的数据元素的集合,表示为:Data_Structure=(D, R)数据类型——是一个值的集合和定义在该值上的一组操作的总称。

抽象数据类型——由用户定义的一个数学模型与定义在该模型上的一组操作,它由基本的数据类型构成。

◆算法的定义及五个特征。

算法——是对特定问题求解步骤的一种描述,它是指令的有限序列,是一系列输入转换为输出的计算步骤。

算法的基本特性:输入、输出、有穷性、确定性、可行性◆算法设计要求。

①正确性、②可读性、③健壮性、④效率与低存储量需求◆算法分析。

时间复杂度、空间复杂度、稳定性学习重点:◆数据结构的“三要素”:逻辑结构、物理(存储)结构及在这种结构上所定义的操作(运算)。

◆用计算语句频度来估算算法的时间复杂度。

第二章线性表内容提要:◆线性表的逻辑结构定义,对线性表定义的操作。

线性表的定义:用数据元素的有限序列表示◆线性表的存储结构:顺序存储结构和链式存储结构。

顺序存储定义:把逻辑上相邻的数据元素存储在物理上相邻的存储单元中的存储结构。

链式存储结构: 其结点在存储器中的位置是随意的,即逻辑上相邻的数据元素在物理上不一定相邻。

通过指针来实现!◆线性表的操作在两种存储结构中的实现。

数据结构的基本运算:修改、插入、删除、查找、排序1)修改——通过数组的下标便可访问某个特定元素并修改之。

核心语句:V[i]=x;顺序表修改操作的时间效率是O(1)2) 插入——在线性表的第i个位置前插入一个元素实现步骤:①将第n至第i 位的元素向后移动一个位置;②将要插入的元素写到第i个位置;③表长加1。

数据结构必考知识点总结

数据结构必考知识点总结在准备考试时,了解数据结构的基本概念和相关算法是非常重要的。

以下是一些数据结构的必考知识点总结:1. 基本概念数据结构的基本概念是非常重要的,包括数据、数据元素、数据项、数据对象、数据类型、抽象数据类型等的概念。

了解这些概念有助于更好地理解数据结构的本质和作用。

2. 线性表线性表是数据结构中最基本的一种,它包括顺序表和链表两种实现方式。

顺序表是将数据元素存放在一块连续的存储空间内,而链表是将数据元素存放在若干个节点中,每个节点包含数据和指向下一个节点的指针。

了解线性表的概念和基本操作是非常重要的。

3. 栈和队列栈和队列是两种特殊的线性表,它们分别具有后进先出和先进先出的特性。

栈和队列的实现方式有多种,包括数组和链表。

掌握栈和队列的基本操作和应用是数据结构的基本内容之一。

4. 树结构树是一种非线性的数据结构,它包括二叉树、多路树、二叉搜索树等多种形式。

了解树的基本定义和遍历算法是必考的知识点。

5. 图结构图是一种非线性的数据结构,它包括有向图和无向图两种形式。

了解图的基本概念和相关算法是非常重要的,包括图的存储方式、遍历算法、最短路径算法等。

6. 排序算法排序是一个非常重要的算法问题,掌握各种排序算法的原理和实现方式是必不可少的。

常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。

7. 查找算法查找是另一个重要的算法问题,包括顺序查找、二分查找、哈希查找、树查找等。

了解各种查找算法的原理和实现方式是必考的知识点之一。

8. 算法复杂度分析算法的时间复杂度和空间复杂度是评价算法性能的重要指标,掌握复杂度分析的方法和技巧是非常重要的。

9. 抽象数据类型ADT是数据结构的一种概念模型,它包括数据的定义和基本操作的描述。

了解ADT的概念和实现方式是非常重要的。

10. 动态存储管理动态存储管理是数据结构中一个重要的问题,包括内存分配、内存释放、内存回收等。

了解动态存储管理的基本原理和实现方式是必考的知识点之一。

数据结构复习要点

A—熟练掌握B—理解C—了解第一章:绪论1. 基本概念:包括数据的逻辑结构、数据的存储结构和数据的相关运算。

C四类数据组织结构:集合、线性表、树形、图状结构C数据的存储方式:顺序存储和链式存储。

B2.算法和分析算法的特征、时间复杂度的分析和常见的时间复杂度增长率排序、空间复杂度B本章重点:分析算法时间复杂度例1. 下面关于算法说法错误的是()A.算法最终必须由计算机程序实现B.为解决某问题的算法同为该问题编写的程序含义是相同的C. 算法的可行性是指指令不能有二义性D. 以上几个都是错误的D例2. 以下那一个术语与数据的存储结构无关?()A.栈 B. 哈希表 C. 线索树 D. 双向链表A.例3..求下段程序的时间复杂度:void mergesort(int i, int j){int m;if(i!=j){m=(i+j)/2;mergesort(i,m);mergesort(m+1,j);merge(i,j,m);}}其中mergesort()用于对数组a[n]归并排序,调用方式为mergesort(0,n-1);,merge()用于两个有序子序列的合并,是非递归函数,时间复杂度为。

解:分析得到的时间复杂度的递归关系:为merge()所需的时间,设为cn(c为常量)。

因此令,有有第二章:线性表1.线性表的基本运算:….. C2.线性表的顺序存储(利用静态数组或动态内存分配)。

相应的表示与操作 A3.线性表的链式存储。

相应的表示与操作。

包括循环链表、双向链表。

A4.顺序存储与链式存储的比较:基于时间的考虑--分别适用于静态的和动态的操作:比如静态查找和插入删除);基于空间的考虑-- ……. B这也适用于后面用两种方式存储的其他数据结构。

★本章重点:很熟悉顺序表,单链表、双链表,循环链表的基本操作;并学会在各种链表上进行一些算法设计(与基本操作类似的操作或组合),请仔细复习。

例4.假设有两个按元素值递增次序排列的线性表,均以单链表形式存储。

数据结构知识点总结归纳整理

第1章绪论1.1 数据结构的基本概念数据元是数据的基本单位,一个数据元素可由若干个数据项完成,数据项是构成数据元素的不可分割的最小单位。

例如,学生记录就是一个数据元素,它由学号、姓名、性别等数据项组成。

数据对象是具有相同性质的数据元素的集合,是数据的一个子集。

数据类型是一个值的集合和定义在此集合上一组操作的总称。

•原子类型:其值不可再分的数据类型•结构类型:其值可以再分解为若干成分(分量)的数据类型•抽象数据类型:抽象数据组织和与之相关的操作抽象数据类型(ADT)是指一个数学模型以及定义在该模型上的一组操作。

抽象数据类型的定义仅取决于它的一组逻辑特性,而与其在计算机内部如何表示和实现无关。

通常用(数据对象、数据关系、基本操作集)这样的三元组来表示。

#关键词:数据,数据元素,数据对象,数据类型,数据结构数据结构的三要素:1.逻辑结构是指数据元素之间的逻辑关系,即从逻辑关系上描述数据,独立于计算机。

分为线性结构和非线性结构,线性表、栈、队列属于线性结构,树、图、集合属于非线性结构。

2.存储结构是指数据结构在计算机中的表示(又称映像),也称物理结构,包括数据元素的表示和关系的表示,依赖于计算机语言,分为顺序存储(随机存取)、链式存储(无碎片)、索引存储(检索速度快)、散列存储(检索、增加、删除快)。

3.数据的运算:包括运算的定义和实现。

运算的定义是针对逻辑结构的,指出运算的功能;运算的实现是针对存储结构的,指出运算的具体操作步骤。

1.2 算法和算法评价算法是对特定问题求解步骤的一种描述,有五个特性:有穷性、确定性、可行性、输入、输出。

一个算法有零个或多个的输入,有一个或多个的输出。

时间复杂度是指该语句在算法中被重复执行的次数,不仅依赖于问题的规模n,也取决于待输入数据的性质。

一般指最坏情况下的时间复杂度。

空间复杂度定义为该算法所耗费的存储空间。

算法原地工作是指算法所需辅助空间是常量,即O(1)。

第2章线性表2.1 线性表的定义和基本操作线性表是具有相同数据类型的n个数据元素的有限序列。

数据结构复习大纲

数据结构复习大纲第一章绪论1. 数据结构的基本概念和术语1.1 数据、数据元素、数据项、数据结构等基本概念1.2 数据结构的逻辑结构、存储结构及数据运算的含义及其相互关系1.3 数据结构的两大逻辑结构和四种常用的存储表示方法2. 算法的描述和分析2.1 算法、算法的时间复杂度和空间复杂度、最坏的和平均的时间复杂度等概念2.2 算法描述和算法分析的方法,对于一般算法能分析出时间复杂度第二章线性表1. 线性表的逻辑结构1.1 线性表的逻辑结构特征2. 线性表的顺序存储结构2.1 顺序表的含义及特点,即顺序表如何反映线性表中元素之间的逻辑关系2.2 顺序表上的插入、删除操作及其平均时间性能分析3. 线性表的链式存储结构3.1 链表如何表示线性表中元素之间的逻辑关系3.2 链表中头指针和头结点的使用3.3 单链表、双(向)链表、循环链表链接方式上的区别3.4 单链表上实现的建表、查找、插入和删除4. 顺序表和链表的比较4.1 顺序表和链表的主要优缺点4.2 针对线性表上所需要执行的主要操作,知道选择顺序表还是链表作为其存储结构才能取得较优的时空性能第三章栈和队列1.栈的逻辑结构、存储结构及其相关算法1.1 栈的逻辑结构特点,栈与线性表的异同1.2 顺序栈和链栈上实现的进栈、退栈等基本算法1.3 栈的“上溢”和“下溢”的概念及其判别条件2. 队列的逻辑结构、存储结构及其相关算法2.1 队列的逻辑结构特点,队列与线性表的异同2.2 顺序队列(主要是循环队列)和链队列上实现的入队、出队等基本算法2.3 队列的“上溢”和“下溢”的概念及其判别条件2.4 使用数组实现的循环队列取代普通的顺序队列的原因2.5 循环队列中对边界条件的处理方法3. 栈和队列的应用3.1 栈和队列的特点,什么样的情况下能够使用栈或队列3.2 表达式求值的算法思想,及栈变化情况。

第四章串、数组和广义表1.串1.1 串的有关概念及基本运算1.2 串与线性表的关系2.多维数组2.1 多维数组的逻辑结构特征2.2 多维数组的顺序存储结构及地址计算方式2.3 数组是一种随机存取结构的原因2.4 矩阵的压缩存储(对称矩阵、三角矩阵、稀疏矩阵)的表示方式和对应的地址计算方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构重点复习内容教材P143-P147:树、森林与二叉树的相互转换,并做一到两个练习,如教材P154的6.11并求各树与森林的各种遍历序列;教材P147-P151:哈夫曼树,并做一到两个练习,如教材P153的6.9并计算其WPL;教材P160-P165:图的邻接矩阵与邻接表的定义及其图的建立算法,可参考实验内容;教材P168-P171:图的深度优先遍历算法的实现;教材P175-P179:最小生成树,并做一到两个练习,要求会根据一个图的邻接矩阵,画出图,并求出其最小生成树,且过程要完整;教材P197-P200:顺序查找、二分查找算法的实现,可参考实验内容;教材P224-P231:哈希查找,并做一到两个练习,如教材P232的8.5;教材P2414-P242:冒泡排序算法的实现,可参考实验内容;各章知识的总结。

数据结构复习要点一.基础知识(一)述论1.数据结构、逻辑结构、存储结构和算法的定义;2.逻辑结构、存储结构的分类与特点;3.算法的特征与评价标准;4.时间与空间复杂度的定义;5.算法的描述形式。

(二)线性结构1.线性结构的定义与特点;2.线性表的定义和特点;3.线性表的两种存储结构的定义;4.栈与队列的定义与操作特点;5.栈与队列的存储结构的定义。

(三)树结构1.树结构的定义与特点;2.树结构的基本术语;3.二叉树的定义与特点;4.二叉树的性质;5.树与二叉树的存储结构;(四)图结构1.图结构的定义与特点;2.图结构的基本术语;3.图的存储结构;4.最小生成树、AOE、AOV。

(五)查找与排序1.查找与排序的定义与分类;2.查找与排序的存储结构。

二.方法与技术1.线性表的查找、建立、插入和删除操作的实现与分析,特别是头、尾插入法建立单链表的算法(重点);2.顺序栈与循环队列的基本操作。

3.二叉树的有关操作的递归实现,比如建立二叉树(重点);4.二叉树的四种遍历、树与森林的遍历、森林与二叉树的转换(重点);5.哈夫曼树的建立与WPL的计算(重点);6.图的邻接矩阵和邻接表存储结构下的图的建立算法的实现(重点);7.图的邻接矩阵和邻接表存储结构下的图的深度优先遍历算法的实现(重点);8.求最小生成树的方法(重点);9.顺序查找与二分查找算法的实现(重点);10.哈希查找方法与平均查找长度的计算(重点);11.冒泡排序数据结构--排序数据结构--排序一、单项选择题1.下列内部排序算法中:A.快速排序 B.直接插入排序C. 二路归并排序D. 简单选择排序E. 起泡排序F. 堆排序(1)其比较次数与序列初态无关的算法是()(2)不稳定的排序算法是()(3)在初始序列已基本有序(除去n个元素中的某k个元素后即呈有序,k<<n)的情况下,排序效率最高的算法是()(4)排序的平均时间复杂度为O(n?logn)的算法是()为O(n?n)的算法是()2.比较次数与排序的初始状态无关的排序方法是( )。

A.直接插入排序B.起泡排序C.快速排序D.简单选择排序3.对一组数据(84,47,25,15,21)排序,数据的排列次序在排序的过程中的变化为(1)84 47 25 15 21 (2)15 47 25 84 21(3)15 21 25 84 47 (4)15 21 25 47 84则采用的排序是( )。

A. 选择B. 冒泡C. 快速D. 插入4.下列排序算法中( )排序在一趟结束后不一定能选出一个元素放在其最终位置上。

A. 选择 B. 冒泡 C. 归并 D. 堆5.一组记录的关键码为(46,79,56,38,40,84),则利用快速排序的方法,以第一个记录为基准得到的一次划分结果为()。

A.(38,40,46,56,79,84) B. (40,38,46,79,56,84)C.(40,38,46,56,79,84) D. (40,38,46,84,56,79)6.下列排序算法中,在待排序数据已有序时,花费时间反而最多的是( )排序。

A.冒泡 B. 希尔 C. 快速 D. 堆7. 就平均性能而言,目前最好的内排序方法是( )排序法。

A. 冒泡B. 希尔插入C. 交换D. 快速8. 下列排序算法中,占用辅助空间最多的是:( )A. 归并排序B. 快速排序C. 希尔排序D. 堆排序9. 若用冒泡排序方法对序列{10,14,26,29,41,52}从大到小排序,需进行()次比较。

A. 3B. 10C. 15D. 2510. 快速排序方法在()情况下最不利于发挥其长处。

A. 要排序的数据量太大B. 要排序的数据中含有多个相同值C. 要排序的数据个数为奇数D. 要排序的数据已基本有序11.下列四个序列中,哪一个是堆()。

A. 75,65,30,15,25,45,20,10B. 75,65,45,10,30,25,20,15C. 75,45,65,30,15,25,20,10D. 75,45,65,10,25,30,20,1512. 有一组数据(15,9,7,8,20,-1,7,4),用堆排序的筛选方法建立的初始堆为()A.-1,4,8,9,20,7,15,7 B.-1,7,15,7,4,8,20,9C.-1,4,7,8,20,15,7,9 D.A,B,C均不对。

二、填空题1.若待排序的序列中存在多个记录具有相同的键值,经过排序,这些记录的相对次序仍然保持不变,则称这种排序方法是________的,否则称为________的。

2.按照排序过程涉及的存储设备的不同,排序可分为________排序和________排序。

3.直接插入排序用监视哨的作用是___________________________。

4.对n个记录的表r[1..n]进行简单选择排序,所需进行的关键字间的比较次数为_______。

5.下面的c函数实现对链表head进行选择排序的算法,排序完毕,链表中的结点按结点值从小到大链接。

请在空框处填上适当内容,每个空框只填一个语句或一个表达式:#include <stdio.h>typedef struct node {char data; struct node *link; }node;node *select(node *head){node *p,*q,*r,*s;p=(node *)malloc(sizeof(node));p->link=head; head=p;while(p->link!=null){q=p->link; r=p;while ((1)____________){ if (q->link->data<r->link->data) r=q;q=q->link;}if ((2)___________) {s=r->link; r->link=s->link;s->link= ((3)_________); ((4)_________);}((5)________) ;}p=head; head=head->link; free(p); return(head);}6.下面的排序算法的思想是:第一趟比较将最小的元素放在r[1]中,最大的元素放在r[n]中,第二趟比较将次小的放在r[2]中,将次大的放在r[n-1]中,…,依次下去,直到待排序列为递增序。

(注:<-->)代表两个变量的数据交换)。

void sort(SqList &r,int n) {i=1;while((1)______) {min=max=1;for (j=i+1;(2)________ ;++j){if((3)________) min=j; else if(r[j].key>r[max].key) max=j; }if((4)_________) r[min] < ---- >r[j];if(max!=n-i+1){if ((5)_______) r[min] < ---- > r[n-i+1]; else ((6)______); }i++;}}//sort7.下列算法为奇偶交换排序,思路如下:第一趟对所有奇数的i,将a[i]和a[i+1]进行比较,第二趟对所有偶数的i,将a[i]和a[i+1]进行比较,每次比较时若a[i]>a[i+1],将二者交换;以后重复上述二趟过程,直至整个数组有序。

void oesort (int a[n]){int flag,i,t;do {flag=0;for(i=1;i<n;i++,i++)if(a[i]>a[i+1]){flag=(1)______; t=a[i+1]; a[i+1]=a[i]; (2)________;}for (3)________if (a[i]>a[i+1]){flag=(4)________;t=a[i+1]; a[i+1]=a[i]; a[i]=t;}}while (5)_________;}三、应用题1.对于给定的一组键值:83,40,63,13,84,35,96,57,39,79,61,15,分别画出应用直接插入排序、直接选择排序、快速排序、堆排序、归并排序对上述序列进行排序中各趟的结果。

2.判断下列序列是否是堆(可以是小堆,也可以是大堆,若不是堆,请将它们调整为堆)。

(1)100,85,98,77,80,60,82,40,20,10,66(2)100,98,85,82,80,77,66,60,40,20,10(3)100,85,40,77,80,60,66,98,82,10,20(4)10,20,40,60,66,77,80,82,85,98,1003.填空并回答相关问题(1)下面是将任意序列调整为最大堆(MAX HEAP)的算法,请将空白部分填上:将任意序列调整为最大堆通过不断调用adjust函数,即:FOR(i=n/2;i >0;i- -)adjust(list,i,n);其中list为待调整序列所在数组(从下标1开始),n为序列元素个数,adjust函数为:void adjust(int list[],int root,int n)/*将以root为下标的对应元素作为待调整堆的根,待调整元素放在list数组中,最大元素下标为n*/{int child,rootkey;rootkey=list[root];child=2*root;while(child<=n){if((child<n)&&(list[child]<list[child+1]))(1)_______;if(rootkey>list[child])break;else{List[(2) ]=list[child];child*=2;}}list[child/2]=rootkey;}(2).判断下列序列能否构成最大堆:(12,70,33,65,24,56,48,92,86,33);若不能按上述算法将其调整为堆,调整后的结果为:()。

相关文档
最新文档