大学数据结构期末知识点重点总结
数据结构期末复习汇总

数据结构期末复习汇总数据结构是计算机科学中十分重要的概念之一,它是指数据对象以及数据对象之间的关系、操作和操作规则的集合。
在计算机科学的学习中,掌握数据结构是至关重要的一步。
为了帮助大家复习期末考试,以下是一些数据结构的重要知识点的总结。
一、线性表线性表是最简单的一种数据结构,它是一种有序的数据元素集合。
线性表的特点是元素之间的关系是一对一的关系,每个元素都与它的前驱和后继相连接。
1.数组:数组是最常见的线性表结构,它由相同类型的数据元素组成,这些元素通过索引来访问。
2.链表:链表是另一种常见的线性表结构,它由节点组成,每个节点包含了数据以及一个指向下一个节点的指针。
二、栈和队列栈和队列是常用的线性结构,它们在操作上有一些限制。
1.栈:栈是一种具有后进先出(LIFO)特性的线性表。
栈中的元素只能在栈顶进行插入和删除操作。
2.队列:队列是一种具有先进先出(FIFO)特性的线性表。
队列中的元素只能在队尾进行插入操作,在队头进行删除操作。
三、树和二叉树树是一种非线性的数据结构,它由节点和边组成。
树的一个节点可以有多个子节点,但是每个节点只能有一个父节点。
1.二叉树:二叉树是一种特殊的树结构,每个节点最多只能有两个子节点。
2.二叉树:二叉树是一种特殊的二叉树,它满足左子树的所有节点的值都小于根节点的值,右子树的所有节点的值都大于根节点的值。
四、图图是一种非常重要的非线性结构,它由节点和边组成。
图的节点之间可以有多种不同的关系。
1.有向图:有向图是一种图结构,图的边有方向,从一个节点到另一个节点。
2.无向图:无向图是一种图结构,图的边没有方向。
五、排序和算法排序算法是对一组数据进行排序的算法,算法是找到目标元素在一组数据中的位置的算法。
1.冒泡排序:冒泡排序是一种交换排序算法,其核心思想是比较相邻的元素并进行交换,将最大(或最小)元素逐渐“冒泡”到数组的末尾。
2.快速排序:快速排序是一种分治排序算法,其核心思想是通过选择一个基准元素,将数组划分为两个子数组,其中一个子数组的所有元素都小于基准元素,另一个子数组的所有元素都大于基准元素,然后对两个子数组进行递归排序。
数据结构期末复习重点知识点总结

数据结构期末复习重点知识点总结一、数据结构概述数据结构是计算机科学中一门关于数据组织、存储和管理的学科。
它涉及到各种数据类型和它们之间的关系,以及对这些数据类型进行有效操作和处理的算法。
二、基本数据结构1. 数组- 数组是一种线性数据结构,用于存储相同类型的数据元素。
- 数组的特点是随机访问和连续存储。
- 数组的插入和删除操作需要移动其他元素,时间复杂度为O(n)。
2. 链表- 链表是一种线性数据结构,通过节点之间的指针链接来组织数据。
- 链表的特点是插入和删除操作简单,时间复杂度为O(1)。
- 链表分为单链表、双向链表和循环链表等不同类型。
3. 栈- 栈是一种具有后进先出(LIFO)特性的数据结构。
- 栈的操作主要包括压栈(Push)和弹栈(Pop)两个操作。
- 栈常用于表达式求值、递归算法的实现等场景。
4. 队列- 队列是一种具有先进先出(FIFO)特性的数据结构。
- 队列的操作主要包括入队(Enqueue)和出队(Dequeue)两个操作。
- 队列常用于实现缓冲区、消息队列等场景。
5. 树- 树是一种非线性的数据结构,由节点和边组成。
- 树的节点具有层级关系,由根节点、子节点和叶节点等组成。
- 常见的树结构有二叉树、红黑树、B树等。
6. 图- 图是一种非线性的数据结构,由节点和边组成。
- 图的节点之间可以有多对多的关系。
- 图的遍历方式有深度优先搜索(DFS)和广度优先搜索(BFS)。
三、常见的数据结构算法1. 排序算法- 冒泡排序、插入排序、选择排序等简单但效率较低的排序算法。
- 快速排序、归并排序、堆排序等高效的排序算法。
- 基数排序、桶排序等适用于特定场景的排序算法。
2. 查找算法- 顺序查找、二分查找等常用的查找算法。
- 树结构相关的查找算法,如二叉搜索树、红黑树等。
- 哈希查找、索引查找等高效的查找算法。
3. 图算法- Dijkstra算法、Bellman-Ford算法等最短路径算法。
数据结构笔记期末总结

数据结构笔记期末总结一、概述在本学期的学习中,我们主要学习了数据结构及其相关的算法。
数据结构是计算机科学的基础,是任何程序设计的基础。
它研究如何组织和存储数据,以及如何高效地访问和操作数据。
在学习过程中,我们通过理论讲解、实验操作、编程实践等方式加深了对数据结构的理解和应用能力的提升。
本文将对本学期所学的内容进行总结,以期对数据结构的学习有一个全面的回顾与总结。
二、线性结构1. 数组数组是一种线性结构,它将相同数据类型的元素按照一定的顺序排列,并按照一定的规则访问这些元素。
在数组中,每个元素都有一个索引,通过索引可以快速地访问数组中的元素。
数组的优点是存储效率高,支持随机访问;缺点是插入和删除操作比较低效。
2. 链表链表是由一系列节点组成的线性结构,每个节点包含一个数据元素和一个指向下一个节点的指针。
链表分为单向链表和双向链表,单向链表的每个节点只有一个指针,指向下一个节点;双向链表的每个节点有两个指针,一个指向前一个节点,一个指向后一个节点。
链表的优点是插入和删除操作高效,支持动态扩容;缺点是访问元素的效率较低。
3. 栈栈是一种具有特定操作规则的线性结构,它的特点是先进后出。
栈有两个基本操作:入栈和出栈。
入栈操作将一个元素放入栈顶,出栈操作将栈顶元素移除。
栈的应用场景很多,比如函数调用栈、表达式求值等。
4. 队列队列是一种具有特定操作规则的线性结构,它的特点是先进先出。
队列有两个基本操作:入队和出队。
入队操作将一个元素放入队尾,出队操作将队头元素移除。
队列的应用场景很多,比如任务调度、消息传递等。
三、非线性结构1. 树树是一种非线性结构,它由节点组成,节点之间存在一对多的层次关系。
树的基本概念包括根节点、叶子节点、父节点、子节点等。
树的应用场景很多,比如文件系统、数据库索引等。
2. 二叉树二叉树是一种特殊的树,它的每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树的遍历方式有前序遍历、中序遍历和后序遍历。
大学数据结构期末知识点重点总结

第三章认识电路(小结)一、电现象:1、物体具有吸引轻小物体的性质,叫物体带了电。
用摩擦的方法使物体带电,叫摩擦起电。
自然界中有且只有两种电荷:正电荷和负电荷。
电荷间相互作用的规律:同种电荷互相推斥、异种电荷互相吸引。
物体是否带电或带什么电,可以通过验电器进行检验,它是利用电荷间相互作用的规律制成的。
摩擦起电并是不是创造了电,而是电荷从一个物体转移到另一个物体(最常见的是带负电荷的电子从束缚电子本领弱的物体转移到束缚电子本领强的物体上)。
把带等量异种电荷的两个物体相互接触,由于电荷的转移,使它们都不带电的过程,叫电荷的中和。
电荷的多少叫电量,用“Q”表示,单位是有:库仑(C)和一个电子所带的电量(又叫元电荷,用“e”表示),换算关系为:1C=6.25ⅹ1018e 。
2、电场:带电体周围存在着一种特殊物质,叫电场。
它的基本性质是:对放入其中的电荷产生电场力的作用,电荷间的相互作用就是通过电场而产生的。
3、电荷的定向移动就形成电流,物理学中规定:正电荷定向移动的方向为电流的方向,但在绝大多数金属导体中,电流的方向跟实际电子定向移动的方向相反。
要得到持续的电流,就必须具备两个条件:一是要有持续提供电荷的电源;二是要有电荷移动路径的电路。
4、电流具有能量,电流通过用电器能够做功,电流做功的过程就是电能转化为其它形式能的过程。
二、电路:1、用导线将电源、开关、用电器等电路元件连接起来,组成的电流路径叫电路。
电路的基本组成部分及其作用:①电源:能持续提供电流的装置,常见的有干电池、蓄电池、发电机等。
②用电器:消耗电能的工作设备,将电能转化为其他形式的能。
③开关:用来接通或断开电路。
④导线:用于连接电源、开关、用电器等,形成让电荷移动的通道。
2、电路有通路、断路、短路三种状态,连通的电路叫通路,其特征是电路中有电流通过,用电器工作;断开了的电路叫断路,其特征是电路中没有电流,用电器不工作;电流不经用电器而直接从电源的正极流回负极的电路叫短路,其特征是电流很大,会烧毁电源和导线,甚至引发火灾。
数据结构复习资料复习提纲知识要点归纳

数据结构复习资料复习提纲知识要点归纳数据结构复习资料:复习提纲知识要点归纳一、数据结构概述1. 数据结构的定义和作用2. 常见的数据结构类型3. 数据结构与算法的关系二、线性结构1. 数组的概念及其特点2. 链表的概念及其分类3. 栈的定义和基本操作4. 队列的定义和基本操作三、树结构1. 树的基本概念及定义2. 二叉树的性质和遍历方式3. 平衡二叉树的概念及应用4. 堆的定义和基本操作四、图结构1. 图的基本概念及表示方法2. 图的遍历算法:深度优先搜索和广度优先搜索3. 最短路径算法及其应用4. 最小生成树算法及其应用五、查找与排序1. 查找算法的分类及其特点2. 顺序查找和二分查找算法3. 哈希查找算法及其应用4. 常见的排序算法:冒泡排序、插入排序、选择排序、归并排序、快速排序六、高级数据结构1. 图的高级算法:拓扑排序和关键路径2. 并查集的定义和操作3. 线段树的概念及其应用4. Trie树的概念及其应用七、应用案例1. 使用数据结构解决实际问题的案例介绍2. 如何选择适合的数据结构和算法八、复杂度分析1. 时间复杂度和空间复杂度的定义2. 如何进行复杂度分析3. 常见算法的复杂度比较九、常见问题及解决方法1. 数据结构相关的常见问题解答2. 如何优化算法的性能十、总结与展望1. 数据结构学习的重要性和难点2. 对未来数据结构的发展趋势的展望以上是数据结构复习资料的复习提纲知识要点归纳。
希望能够帮助你进行复习和回顾,加深对数据结构的理解和掌握。
在学习过程中,要注重理论与实践相结合,多进行编程练习和实际应用,提高数据结构的实际运用能力。
祝你复习顺利,取得好成绩!。
数据结构期末复习总结

第1章绪论1.数据(Data) :是描述客观事物的数字、字符以及所有能输入到计算机中并能被计算机接受的各种符号集合的统称。
包括数值数据和非数值数据(字符串、图形、图像、音频、视频)。
2.数据元素(Data Element) :表示一个事物的一组数据称为一个数据元素(结点顶点、记录);数据元素是数据的基本单位。
3.数据项(Data Item):是数据元素中有独立含义的、不可分割的最小标识单位(字段、域、属性)。
一个数据元素可由若干个数据项组成。
4.数据对象(Data Object):是性质相同的数据元素的集合,是数据的一个子集。
如字符集合C ={A,B,C,…} 。
数据(Data) :是描述客观事物的数字、字符以及所有能输入到计算机中并能被计算机接受的各种符号集合的统称。
包括数值数据和非数值数据(字符串、图形、图像、音频、视频)。
数据元素(Data Element) :表示一个事物的一组数据称为一个数据元素(结点、顶点、记录);数据元素是数据的基本单位。
数据项(Data Item):是数据元素中有独立含义的、不可分割的最小标识单位(字段、域、属性)。
一个数据元素可由若干个数据项组成。
数据对象(Data Object):是性质相同的数据元素的集合,是数据的一个子集。
如字符集合C ={A,B,C,…} 。
●数据的逻辑结构指数据元素之间的逻辑关系,用一个数据元素的集合和定义在此集合上的若干关系来表示。
●四种逻辑结构:集合、线性结构、树型结构、图状结构。
●数据结构的形式定义是一个二元组:Data-Structure=(D,S)其中:D是数据元素的有限集,S是D上关系的有限集。
例1:设数据逻辑结构B=(K,R)K={k1, k2, …, k9}R={ <k1, k3>,<k1, k8>,<k2, k3>,<k2, k4>,<k2, k5>,<k3, k9>,<k5, k6>,<k8, k9>,<k9, k7>,<k4, k7>,<k4, k6>有时候关系图不唯一(一般是无向图)●数据结构在计算机内存中的存储包括数据元素的存储和元素之间的关系的表示。
数据结构期末概念总结

数据结构期末概念总结第一部分:基本概念和算法复杂度分析1. 数据结构的定义和分类2. 算法的定义和特性3. 算法复杂度分析的方法和技巧4. 时间复杂度和空间复杂度的计算和比较5. 最坏情况、平均情况和最好情况的复杂度分析6. Big-O符号和渐进记号法的使用和解读第二部分:线性数据结构1. 数组和链表的定义、特性和比较2. 栈和队列的定义、特性和应用3. 双向链表和循环链表的定义、特性和应用4. 线性数据结构的遍历和操作算法5. 线性数据结构的实现和优化技巧第三部分:树和二叉树1. 树的定义、特性和应用2. 二叉树的定义、特性和分类3. 二叉树的遍历算法(前序、中序、后序、层序)4. 二叉搜索树的定义、特性和操作算法5. 平衡二叉树和AVL树的定义、特性和操作算法6. 堆和二叉堆的定义、特性和应用第四部分:图1. 图的定义、特性和分类2. 图的表示方法(邻接矩阵、邻接表、哈希表)3. 图的遍历算法(深度优先搜索、广度优先搜索)4. 最短路径算法(Dijkstra算法、Floyd-Warshall算法)5. 最小生成树算法(Prim算法、Kruskal算法)第五部分:高级数据结构1. 哈希表的定义、特性和应用2. 字典树的定义、特性和应用3. 线段树的定义、特性和应用4. 并查集的定义、特性和应用第六部分:高级算法思想1. 分治算法和递归思想2. 动态规划算法和状态转移方程3. 贪心算法和贪心选择策略4. 回溯算法和剪枝技巧在本篇文章中,我从基本概念和算法复杂度分析开始,系统地总结了数据结构课程的内容。
通过对线性数据结构(数组、链表、栈、队列)、树和二叉树、图、高级数据结构(哈希表、字典树、线段树、并查集)以及高级算法思想的介绍,读者们可以对数据结构的主要概念有一个全面的了解。
当然,数据结构不仅仅是掌握概念,更重要的是能够灵活运用这些概念解决实际问题。
因此,读者们在学习数据结构的过程中,一定要多做练习和实践,深入理解每种数据结构的应用场景和实现细节。
期末数据结构复习总结

数据结构第一章1、数据是描述客观事物的数和字符的集合2、数据项:是具有独立含义的数据最小单位,也称为字段或域3、数据对象:指性质相同的数据元数的集合,是数据的一个子集4、数据结构:指所有数据元素以及数据元素之间的关系5、数据的逻辑结构:由数据元素之间的逻辑关系构成6、数据的存储结构:数据元素及其关系在计算机存储器中的存储表示,称为物理结构逻辑结构的表达方式:1、图表表示:采用表格或图形直接描述数据的逻辑关系。
2、二元组表示:通用的数据逻辑结构表示方式:R={r},r={<010,021>,<021,027>,<027,029>}逻辑结构的类型:1、集合:指数据元素之间除了“同属于一个集合”的关系以外别无其他关系。
2、线性结构:一对一关系,只有一个前驱和一个后继元素。
3、树形结构:多对多关系,除了开始元素以外,都只有一个前驱和多个后继元素。
什么是算法:是问题求解步骤的描述,是指令的有限序列。
1、有穷性:执行有穷步后结束2、确定性:不能有二义性3、可行性:算法可以通过有限次的操作完成其功能,能够被重复地执行4、有输入:一个算法有0个或多个输入5、有输出:一个算法有一个或多个输出算法设计的目标:正确性(算法能正确执行)、可使用性(方便地使用)、可读性(算法易于理解)、健壮性(有好的容错性,不会异常中断或死机)、高效率与低存储量需求(算法的执行时间和存储空间)算法时间性分析方法:事后统计法(缺点:必须执行、存在很多因素掩盖算法本质)、事前估算法(仅考虑算法本身的效率高低、只依赖于问题的规模)第二章线性表:具有相同特性的数据元素的一个有限序列有序表:指线性表中的所有元素按递增或剃减方式有序排列顺序表:线性表的顺序存储结构简称为顺序表(下标从0开始),从逻辑上相邻的元素对应的物理存储位置也相邻,当进行插入或删除的操作时要平均移动半个表的元素,相当费时。
链表:线性表的链式存储结构称为链表,拥有唯一的标识头指针(head pointer),相应的指向开始结点(first pointer),指向尾结点的称为尾指针(tail pointer)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章概论1.数据结构描述的是按照一定逻辑关系组织起来的待处理数据元素的表示及相关操作,涉及数据的逻辑结构、存储结构和运算2.数据的逻辑结构是从具体问题抽象出来的数学模型,反映了事物的组成结构及事物之间的逻辑关系可以用一组数据(结点集合K)以及这些数据之间的一组二元关系(关系集合R)来表示:(K, R)结点集K是由有限个结点组成的集合,每一个结点代表一个数据或一组有明确结构的数据关系集R是定义在集合K上的一组关系,其中每个关系r(r∈R)都是K×K上的二元关系3.数据类型a.基本数据类型整数类型(integer)、实数类型(real)、布尔类型(boolean)、字符类型(char)、指针类型(pointer)b.复合数据类型复合类型是由基本数据类型组合而成的数据类型;复合数据类型本身,又可参与定义结构更为复杂的结点类型4.数据结构的分类:线性结构(一对一)、树型结构(一对多)、图结构(多对多)5.四种基本存储映射方法:顺序、链接、索引、散列6.算法的特性:通用性、有效性、确定性、有穷性7.算法分析:目的是从解决同一个问题的不同算法中选择比较适合的一种,或者对原始算法进行改造、加工、使其优化8.渐进算法分析a.大Ο分析法:上限,表明最坏情况b.Ω分析法:下限,表明最好情况c.Θ分析法:当上限和下限相同时,表明平均情况第二章线性表1.线性结构的基本特征a.集合中必存在唯一的一个“第一元素”b.集合中必存在唯一的一个“最后元素”c.除最后元素之外,均有唯一的后继d.除第一元素之外,均有唯一的前驱2.线性结构的基本特点:均匀性、有序性3.顺序表a.主要特性:元素的类型相同;元素顺序地存储在连续存储空间中,每一个元素唯一的索引值;使用常数作为向量长度b. 线性表中任意元素的存储位置:Loc(ki) = Loc(k0) + i * L(设每个元素需占用L个存储单元)c. 线性表的优缺点:优点:逻辑结构与存储结构一致;属于随机存取方式,即查找每个元素所花时间基本一样缺点:空间难以扩充d.检索:ASL=【Ο(1)】e.插入:插入前检查是否满了,插入时插入处后的表需要复制【Ο(n)】f.删除:删除前检查是否是空的,删除时直接覆盖就行了【Ο(n)】4.链表4.1单链表a.特点:逻辑顺序与物理顺序有可能不一致;属于顺序存取的存储结构,即存取每个数据元素所花费的时间不相等b.带头结点的怎么判定空表:head和tail指向单链表的头结点c.链表的插入(q->next=p->next; p->next=q;)【Ο(n)】d.链表的删除(q=p->next; p->next = q->next; delete q;)【Ο(n)】e.不足:next仅指向后继,不能有效找到前驱4.2双链表a.增加前驱指针,弥补单链表的不足b.带头结点的怎么判定空表:head和tail指向单链表的头结点c.插入:(q->next = p->next; q->prev = p; p->next = q; q->next->prev = q;)d.删除:(p->prev->next = p->next; p->next->prev = p->prev; p->prev = p->next = NULL; delete p;)4.3顺序表和链表的比较4.3.1主要优点a.顺序表的主要优点没用使用指针,不用花费附加开销;线性表元素的读访问非常简洁便利b.链表的主要优点无需事先了解线性表的长度;允许线性表的长度有很大变化;能够适应经常插入删除内部元素的情况4.3.2应用场合的选择a.不宜使用顺序表的场合经常插入删除时,不宜使用顺序表;线性表的最大长度也是一个重要因素b.不宜使用链表的场合当不经常插入删除时,不应选择链表;当指针的存储开销与整个结点内容所占空间相比其比例较大时,应该慎重选择第三章栈与队列1.栈a.栈是一种限定仅在一端进行插入和删除操作的线性表;其特点后进先出;插入:入栈(压栈);删除:出栈(退栈);插入、删除一端被称为栈顶(浮动),另一端称为栈底(固定);实现分为顺序栈和链式栈两种b.应用:1)数制转换while (N) {N%8入栈;N=N/8;}while (栈非空){出栈;输出;}2)括号匹配检验不匹配情况:各类括号数量不同;嵌套关系不正确算法:逐一处理表达式中的每个字符ch:ch=非括号:不做任何处理ch=左括号:入栈ch=右括号:if (栈空) return falseelse {出栈,检查匹配情况,if (不匹配) return false}如果结束后,栈非空,返回false3)表达式求值3.1中缀表达式:计算规则:先括号内,再括号外;同层按照优先级,即先乘*、除/,后加+、减-;相同优先级依据结合律,左结合律即为先左后右3.2后缀表达式:<表达式> ::= <项><项> + | <项> <项>-|<项><项> ::= <因子><因子> * |<因子><因子>/|<因子><因子> ::= <常数> •<常数> ::= <数字>|<数字><常数> <数字> ∷= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 93.3中缀表达式转换为后缀表达式InfixExp为中缀表达式,PostfixExp为后缀表达式初始化操作数栈OP,运算符栈OPND;OPND.push('#');读取InfixExp表达式的一项操作数:直接输出到PostfixExp中;操作符:当‘(’:入OPND;当‘)’:OPND此时若空,则出错;OPND若非空,栈中元素依次弹出,输入PostfixExpz中,直到遇到‘(’为止;若为‘(’,弹出即可当‘四则运算符’:循环(当栈非空且栈顶不是‘(’&& 当前运算符优先级>栈顶运算符优先级),反复弹出栈顶运算符并输入到PostfixExp中,再将当前运算符压入栈3.4后缀表达式求值初始化操作数栈OP;while (表达式没有处理完) {item = 读取表达式一项;操作数:入栈OP;运算符:退出两个操作数,计算,并将结果入栈}c.递归使用的场合:定义是递归的;数据结构是递归的;解决问题的方法是递归的2.队列a.若线性表的插入操作在一端进行,删除操作在另一端进行,则称此线性表为队列b.循环队列判断队满对空:队空:front==rear;队满:(rear+1)%n==front第五章二叉树1.概念a. 一个结点的子树的个数称为度数b.二叉树的高度定义为二叉树中层数最大的叶结点的层数加1c.二叉树的深度定义为二叉树中层数最大的叶结点的层数d.如果一棵二叉树的任何结点,或者是树叶,或者恰有两棵非空子树,则此二叉树称作满二叉树e.如果一颗二叉树最多只有最下面的两层结点度数可以小于2;最下面一层的结点都集中在该层最左边的位置上,则称此二叉树为完全二叉树f.当二叉树里出现空的子树时,就增加新的、特殊的结点——空树叶组成扩充二叉树,扩充二叉树是满二叉树外部路径长度E:从扩充的二叉树的根到每个外部结点(新增的空树叶)的路径长度之和内部路径长度I:扩充的二叉树中从根到每个内部结点(原来二叉树结点)的路径长度之和2.性质a. 二叉树的第i层(根为第0层,i≥0)最多有2^i个结点b. 深度为k的二叉树至多有2k+1-1个结点c. 任何一颗二叉树,度为0的结点比度为2的结点多一个。
n0 = n2 + 1d. 满二叉树定理:非空满二叉树树叶数等于其分支结点数加1e. 满二叉树定理推论:一个非空二叉树的空子树(指针)数目等于其结点数加1f. 有n个结点(n>0)的完全二叉树的高度为⌈log2(n+1)⌉,深度为⌈log2(n+1)⌉−1g. 对于具有n个结点的完全二叉树,结点按层次由左到右编号,则有:1) 如果i = 0为根结点;如果i>0,其父结点编号是(i-1)/22) 当2i+1<n,i结点的左子结点是2i+1;否则i结点没有左子结点3) 当2i+2<n,i结点的右子结点是2i+2;否则i结点没有右子结点3.周游(重点为由前序中序/中序后序求得二叉树)a.深度优先周游二叉树,可以有下列三种周游顺序:(实现:栈)1) 前序周游(tLR次序):访问根结点;前序周游左子树;前序周游右子树2) 中序周游(LtR次序):中序周游左子树;访问根结点;中序周游右子树3) 后序周游(LRt次序):后序周游左子树;后序周游右子树;访问根结点b. 广度周游二叉树:从二叉树的顶层(根结点)开始,自上至下逐层遍历;在同一层中,按照从左到右的顺序对结点逐一访问(实现:队列)4.存储链式存储结构,顺序存储结构(仅限完全二叉树:因为完全二叉树排列紧凑)5.二叉搜索树(BST)a.判定:是一颗空树;或者是具有下列性质的二叉树:对于任何一个结点,设其值为K,则该结点的左子树(若不空)的所有结点的值都小于K;右子树(若不空)的所有结点的值都大于K;它的左右子树也分别为二叉搜索树b.性质:按照中序周游将各结点打印出来,得到的排列按照由小到大有序c.检索:从根结点开始,在二叉搜索树中检索值K如果根结点储存的值为K,则检索结束如果K小于根结点的值,则只需检索左子树如果K大于根结点的值,则只检索右子树该过程一直持续到找到K或者遇上叶子结点如果遇上叶子结点仍没有发现K,则查找失败**查找关键码:把查找时所经过的点一次写出d.插入:用待插入结点与树根比较,若待插入的关键值小于树根的关键值,就进入左子树,否则进入右子树;在子树中,按照同样的方式沿检索路径直到叶结点,将新结点插入到二叉搜索树的叶子结点位置e.创建:从空的BST开始,将关键码按BST定义一次插入f.删除:与插入相反,删除在查找成功之后进行,并且要求在删除二叉排序树上某个结点之后,仍然保持二叉排序树的特性,删除过程分为如下情况:1)被删除的结点是叶子:直接将其删除即可2)被删除的结点只有左子树或只有右子树:直接将要删除的点删除后,将该点的左(右)孩子和上面结点相连3)被删除结点有左、右子树:若p有左右子树,则在左子树里找中序周游的最后一个结点r,将r的右指针置成指向p的右子树的根,用结点p的左子树的根去代替被删除的结点p6.堆a.最小/大堆定义:最小堆:是个关键码序列{k0, k1…kn-1},具有如下特性(i=0,1,…,⌊n/2⌋-1)k i ≤k 2i+1(左孩子)k i ≤k 2i+2(右孩子)(即父≤2个孩子)类似可以定义最大堆k i ≥k 2i+1k i ≥k 2i+2 (即父≥2个孩子)b.建“初堆”:按序列建立完全二叉树,从其中最后一个有孩子的结点开始按堆的定义调整c.插入:插入点追加到最后,自下而上依次比较父与子,直到满足堆的定义d.删除:用最后结点替换被删结点,自上至下调整成堆e.移出最小/大值:可以将堆中最后一个位置上的元素(数组中实际的最后一个元素)移到根的位置上,利用从左开始向下筛选对堆重新调整7.Huffman树a.概念路径:从树中一个结点到另一个结点之间的分支构成这两个结点间的路径结点路径长度:从根结点到该结点的路径上分支的数目树的路径长度:树中每个结点的路径长度之和b.带权的路径长度树中所有叶子结点的带权路径长度之和=其中:11:权值11:结点到根的路径长度c.编码:左0右1d.如何构建:选取序列中最小的相加生成树如此反复第六章树1.概念若<k,k'>∈N,则称k是k'的父结点,k'是的子结点若有序对<k,k'>及<k,k″>∈N,则称k'k″互为兄弟若有一条由k到达ks的路径,则称k是的祖先,ks是k的子孙2.树/森林与二叉树的相互转换a.树转换成二叉树加线: 在树中所有兄弟结点之间加一连线抹线: 对每个结点,除了其最左孩子外,与其余孩子之间的连线旋转:45°b.二叉树转化成树加线:若p结点是双亲结点的左孩子,则将的右孩子,右孩子的右孩子,所有右孩子,都与p的双亲用线连起来线调整:将结点按层次排列,形成树结构c.森林转换成二叉树将各棵树分别转换成二叉树将每棵树的根结点用线相连为轴心,顺时针旋转,构成二叉树型结构d.二叉树转换成森林抹线:将二叉树中根结点与其右孩子连线,及沿右分支搜索到的所有右孩子间连线全部抹掉,使之变成孤立的二叉树还原:将孤立的二叉树还原成树3.周游a.先根(次序)周游若树不空,则先访问根结点,然后依次先根周游各棵子树b.后根(次序)周游若树不空,则先依次后根周游各棵子树,然后访问根结点c.按层次周游若树不空,则自上而下自左至右访问树中每个结点4.存储结构“左子/右兄”二叉链表表示法:结点左指针指向孩子,右结点指向右兄弟,按树结构存储,无孩子或无右兄弟则置空5. “UNION/FIND算法”(等价类)判断两个结点是否在同一个集合中,查找一个给定结点的根结点的过程称为FIND归并两个集合,这个归并过程常常被称为UNION“UNION/FIND”算法用一棵树代表一个集合,如果两个结点在同一棵树中,则认为它们在同一个集合中;树中的每个结点(除根结点以外)有仅且有一个父结点;结点中仅需保存父指针信息,树本身可以存储为一个以其结点为元素的数组6.树的顺序存储结构a. 带右链的先根次序表示法在带右链的先根次序表示中,结点按先根次序顺序存储在一片连续的存储单元中每个结点除包括结点本身数据外,还附加两个表示结构的信息字段,结点的形式为:info是结点的数据;rlink是右指针,指向结点的下一个兄弟;ltag是一个左标记,当结点没有子结点(即对应二叉树中结点没有左子结点时),ltag为1,否则为0b. 带双标记位的先根次序表示法规定当结点没有下一个兄弟(即对应的二叉树中结点没有右子结点时)rtag为1,否则为0c. 带双标记位的层次次序表示法结点按层次次序顺序存储在一片连续的存储单元中第七章图1.定义a.假设图中有n个顶点,e条边:含有e=n(n-1)/2条边的无向图称作完全图含有e=n(n-1) 条弧的有向图称作有向完全图若边或弧的个数e < nlogn,则称作稀疏图,否则称作稠密图b. 顶点的度(TD)=出度(OD)+入度(ID)顶点的出度: 以顶点v为弧尾的弧的数目顶点的入度: 以顶点v为弧头的弧的数目c.连通图、连通分量若图G中任意两个顶点之间都有路径相通,则称此图为连通图若无向图为非连通图,则图中各个极大连通子图称作此图的连通分量d.强连通图、强连通分量对于有向图,若任意两个顶点之间都存在一条有向路径,则称此有向图为强连通图否则,其各个极大强连通子图称作它的强连通分量e.生成树、生成森林假设一个连通图有n个顶点和e条边,其中n-1条边和n个顶点构成一个极小连通子图,称该极小连通子图为此连通图的生成树对非连通图,则将由各个连通分量构成的生成树集合称做此非连通图的生成森林2.存储结构a.相邻矩阵表示法表示顶点间相邻关系的矩阵若G是一个具有n个顶点的图,则G的相邻矩阵是如下定义的n×n矩阵:A[i,j]=1,若(Vi, Vj)(或<Vi, Vj>)是图G的边A[i,j]=0,若(Vi, Vj)(或<Vi, Vj>)不是图G的边b.邻接表表示法为图中每个顶点建立一个单链表,第i个单链表中的结点表示依附于顶点Vi的边(有向图中指以Vi为尾的弧)(建立单链表时按结点顺序建立)3.周游a. 深度优先周游:从图中某个顶点V0出发,访问此顶点,然后依次从V0的各个未被访问的邻接点出发,深度优先搜索遍历图中的其余顶点,直至图中所有与V0有路径相通的顶点都被访问到为止b. 广度优先周游:从图中的某个顶点V0出发,并在访问此顶点之后依次访问V0的所有未被访问过的邻接点,随后按这些顶点被访问的先后次序依次访问它们的邻接点,直至图中所有与V0有路径相通的顶点都被访问到为止,若此时图中尚有顶点未被访问,则另选图中一个未曾被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止4.拓扑排序拓扑排序的方法是:1)选择一个入度为0的顶点且输出之2)从图中删掉此顶点及所有的出边3)回到第1步继续执行,直至图空或者图不空但找不到无前驱(入度为0)的顶点为止5.单源最短路径(Dijkstra算法)6.每对顶点间的最短路径(Floyd算法)7.最小生成树a.Prim算法b.Kruskal算法c.两种算法比较:Prim算法适合稠密图,Kruskal算法适合稀疏图第八章内排序算法最大时间平均时间直接插入排序Θ(n2) Θ(n2)冒泡排序Θ(n2) Θ(n2)直接选择排序Θ(n2) Θ(n2)Shell排序Θ(n3/2) Θ(n3/2)快速排序Θ(n2) Θ(nlog n)归并排序Θ(nlog n) Θ(nlog n)堆排序Θ(nlog n) Θ(nlog n)桶式排序Θ(n+m) Θ(n+m)基数排序Θ(d·(n+r)) Θ(d·(n+r))最小时间S(n) 稳定性Θ(n) Θ(1) 稳定Θ(n) Θ(1) 稳定Θ(n2) Θ(1) 不稳定Θ(n3/2) Θ(1) 不稳定Θ(nlog n) Θ(log n) 不稳定Θ(nlog n) Θ(n) 稳定Θ(nlog n) Θ(1) 不稳定Θ(n+m) Θ(n+m) 稳定Θ(d·(n+r)) Θ(n+r) 稳定第十章检索1.平均检索长度(ASL)是待检索记录集合中元素规模n的函数,其定义为:ASL=Pi为检索第i个元素的概率;Ci为找到第i个元素所需的比较次数2.散列a.除余法用关键码key除以M(取散列表长度),并取余数作为散列地址散列函数为:hash(key) =key mod Mb.解决冲突的方法开散列方法:把发生冲突的关键码存储在散列表主表之外(在主表外拉出单链表)闭散列方法:把发生冲突的关键码存储在表中另一个位置上c.线性探查基本思想:如果记录的基位置存储位置被占用,就在表中下移,直到找到一个空存储位置;依次探查下述地址单元:d0+1,d0+2,...,m-1,0,1,...,d0-1;用于简单线性探查的探查函数是:p(K, i) = id.散列表的检索1.假设给定的值为K,根据所设定的散列函数h,计算出散列地址h(K)2. 如果表中该地址对应的空间未被占用,则检索失败,否则将该地址中的值与K比较3. 若相等则检索成功;否则,按建表时设定的处理冲突方法查找探查序列的下一个地址,如此反复下去,直到某个地址空间未被占用(可以插入),或者关键码比较相等(有重复记录,不需插入)为止e.散列表的删除:删除后在删除地点应加上墓碑(被删除标记)f.散列表的插入:遇到墓碑不停止,知道找到真正的空位置第十一章索引技术1.概念:a.主码:数据库中的每条记录的唯一标识b.辅码:数据库中可以出现重复值的码2.B树a.定义:B树定义:一个m阶B树满足下列条件:(1) 每个结点至多有m个子结点;(2) 除根和叶外其它每个结点至少有⌈⌉个子结点;(3) 根结点至少有两个子结点例外(空树,or独根)(4) 所有的叶在同一层,可以有⌈⌉- 1到m-1个关键码(5) 有k个子结点的非根结点恰好包含k-1个关键码b.查找在根结点所包含的关键码K1,…,Kj中查找给定的关键码值(用顺序检索(key少)/二分检索(key多));找到:则检索成功;否则,确定要查的关键码值是在某个Ki和Ki+1之间,于是取pi所指结点继续查找;如果pi指向外部结点,表示检索失败.c.插入找到的叶是插入位置,若插入后该叶中关键码个数<m,插入完成;否则分裂,中间为分界码(插入到父结点),若父结点上溢则继续向上分裂d.删除删除的关键码不在叶结点层:先把此关键码与它在B树里的后继对换位置,然后再删除该关键码(叶中删)删除的关键码在叶结点层:删除后关键码个数不小于⌈⌉- 1——直接删除关键码个数小于⌈⌉- 1,如果兄弟结点关键码个数不等于⌈⌉- 1——从兄弟结点移若干个关键码到该结点中来(父结点中的一个关键码要做相应变化)如果兄弟结点关键码个数等于⌈⌉- 1——合并。