数据结构2021重点归纳
数据结构算法和应用--C++ 语言描述

• 小写o符号
f(n)=o(g(n) ):当且仅当f(n)=O(g(n))且f(n)≠ Ω(g(n))。
2021/4/15
例一 递归问题
递归函数是一个自己调用自己的函数。 递归函数包括两种
2021/4/15
什么是数据结构?
在计算机科学中,数据结构(data structure)是计算 机中存储、组织数据的方式。
什么是 算法?
算法是指完成一个任务所需要的具体步骤和方法。也 就是说给定初始状态或输入数据,能够得出所要求或 期望的终止状态或输出数据。
--维基百科
2021/4/15
数据结构算法与应用 --C++ 语言描述
f(n)=O(g(n)):当且仅当存在正的常数c和n0,使得对于所有的n≥n0 , 有f(n)≤cg(n)。
Ω符号与大O 符号类似,它用来估算函数f 的下限值。
f(n)= Ω (g(n)):当且仅当存在正的常数c 和n0,使得对于所有的n≥n0, 有f(n) ≥cg(n)。
Θ符号适用于同一个函数g 既可以作为f 的上限也可以作为f 的下限 的情形。
P36 练习7 计算n!的非递归程序 int factorial (int n) { //非递归计算n! if (n <= 1) return 1; int fact = 2; for (int i = 3; i <= n; i++)
fact *= i; return fact; }
2021/4/15
程序 性能
运行一个程序所需要的内存大小和时间 分析的方法 实验的方法
数据结构(牛小飞)3 拓扑排序

2021/8/5
25
5
拓扑排序-定义
拓扑排序是对有向无圈图的顶点的一种排序,使 得如果存在一条从vi到vj的路径,那么在排序中vj 就出现在vi的后面。
✓ 显然,如果图中含有圈,那么拓扑排序是不可能的, 因为对于圈上的两个顶点v和w,v优先于w同时w又优 先于v。
2021/8/5
6
拓扑排序-举例
B
A
D
C
不能求得它的拓扑有序序列。
// 对尚未访问的顶点调用DFS
}
while(!Empty(S)) //输出拓扑排序的结果
System.out.print(S.pop());
} 2021/8/5
21
拓扑排序-方法2
void DFS-T(int v) { // 从顶点v出发,深度优先搜索遍历连通图 vertexs[v].visited = true; for(w=FirstAdjVex(v);w>=0; w=NextAdjVex(v,w)) { if (!vertexs[w].visited) DFS-T(w); } // 对v的尚未访问的邻接顶点w递归调用DFS-T S.push(v); //顶点v的DFS函数执行完毕
q.enqueue(v);
while (!q.isEmpty( ) { //如果队列非空
…………
}
if (counter!=NUM_VERTICES) //有圈
throw new CycleFoundException( );
}
2021/8/5
15
拓扑排序-方法1
void topsort( ) throws CycleFoundException { …….
} // DFS-T
数据结构考研复习重点归纳

数据结构考研复习重点归纳数据结构是计算机科学中非常重要的一门基础课程,考研复习数据结构时,需要重点掌握的内容有以下几个方面。
1.线性表:线性表是数据结构中最基本的一种结构,常见的线性表有数组、链表和栈等。
考生需要掌握线性表的定义、插入、删除、查找等基本操作,并能够分析它们的时间复杂度。
2.树:树是一种非常重要且常见的数据结构,它具有分层结构和层次关系。
其中,二叉树是最简单也是最基本的一种树结构,树的遍历(如前序遍历、中序遍历和后序遍历)是树算法中的重要内容。
此外,还要了解一些特殊的树结构,如平衡树和B树等。
3.图:图是由节点和边组成的一种数据结构,它是一种非常灵活的结构,常用来表示各种实际问题中的关系。
在考研复习中,需要掌握图的基本概念(如顶点和边)、图的存储结构(如邻接矩阵和邻接表)以及图的遍历算法(如深度优先和广度优先)等。
4.查找和排序:在实际问题中,经常需要查找和排序数据。
查找算法(如顺序查找、二分查找和哈希查找)和排序算法(如冒泡排序、插入排序和快速排序)是数据结构中常见的算法,考生需要熟练掌握这些算法的原理和实现方法。
此外,还要了解一些高级的查找和排序算法,如二叉查找树和归并排序等。
5.散列表:散列表(也称哈希表)是一种特殊的数据结构,它利用散列函数将数据映射到一个固定大小的数组中。
散列表具有快速的查找和插入操作,常用于实现字典和数据库等应用。
在考研复习中,需要了解散列表的原理和实现方法,以及处理冲突的方法,如链地址法和开放地址法。
6.动态规划:动态规划是一种解决问题的数学方法,也是一种重要的算法思想。
在考研复习中,需要掌握动态规划的基本原理和解题思路,以及常见的动态规划算法,如背包问题和最长公共子序列等。
7.算法复杂度分析:在考研复习中,需要有一定的算法分析能力,能够对算法的时间复杂度和空间复杂度进行分析和估算。
此外,还要能够比较不同算法的效率,并选择合适的算法来解决实际问题。
除了以上重点内容,考生还要注意掌握一些基本的编程知识,如指针、递归和动态内存分配等。
数据结构的基本概念

2021/8/17
39
算法的五个特性
有穷性 算法必须是经过有限的步骤操作完成。
确定性 可行性
算法中每一条指令必须有确切的含义,读者理解时不会产生 二义性。有任何条件下,算法只有唯一的一条执行路径,即 对于相同的输入只能得出相同的输出。
一个算法是能行的,即算法中描述的操作都是可以通过已经 实现的基本运算执行有限次来实现的。
物理 总分 名次 54 67 71
2021/8/17
13
数据对象
▪ 数据对象是性质相同的数据元素的集合,是 数据的一个子集。如整数数据对象。
▪ 某个班级的45位同学的数据(姓名,性别, 地址,联系电话,家长姓名,照片)。
2021/8/17
14
3. 数据结构(Data Structure)
▪ 数据结构是指数据相互之间存在一种或多种 特定关系的数据元素集合。
▪ 所以在讨论算法的时间复杂度时,我们就简单计算 语句的频度。
2021/8/17
43
矩阵的相乘
▪ 二个矩阵的相乘
n
cij aik •bkj k1
a11 a12 a1n b11 b12 b1n c11 c12 c1n
a21
a22
a2nb21
b22
b2n
c21c22 源自c2n an1 an2 ann bn1 bn2 bnn cn1 cn2 cnn
▪ 结构类型:其可以分割的,如数组,结构体 等(struct ,union)。
▪ 通常数据类型可以看成是程序设计语言中已 实现的数据结构。
2021/8/17
17
5. 抽象数据类型ADT
ADT包括定义和实现两个方面。定义独立于实 现。定义仅给出一个ADT的逻辑特性,不必 考虑如何在计算机中实现。
数据结构树的知识点总结

数据结构树的知识点总结一、树的基本概念。
1. 树的定义。
- 树是n(n ≥ 0)个结点的有限集。
当n = 0时,称为空树。
在任意一棵非空树中:- 有且仅有一个特定的称为根(root)的结点。
- 当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1、T2、…、Tm,其中每个集合本身又是一棵树,并且称为根的子树(sub - tree)。
2. 结点的度、树的度。
- 结点的度:结点拥有的子树个数称为结点的度。
- 树的度:树内各结点的度的最大值称为树的度。
3. 叶子结点(终端结点)和分支结点(非终端结点)- 叶子结点:度为0的结点称为叶子结点或终端结点。
- 分支结点:度不为0的结点称为分支结点或非终端结点。
- 除根结点之外,分支结点也称为内部结点。
4. 树的深度(高度)- 树的层次从根开始定义起,根为第1层,根的子结点为第2层,以此类推。
树中结点的最大层次称为树的深度(或高度)。
二、二叉树。
1. 二叉树的定义。
- 二叉树是n(n ≥ 0)个结点的有限集合:- 或者为空二叉树,即n = 0。
- 或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。
2. 二叉树的特点。
- 每个结点最多有两棵子树,即二叉树不存在度大于2的结点。
- 二叉树的子树有左右之分,次序不能颠倒。
3. 特殊的二叉树。
- 满二叉树。
- 一棵深度为k且有2^k - 1个结点的二叉树称为满二叉树。
满二叉树的特点是每一层上的结点数都是最大结点数。
- 完全二叉树。
- 深度为k的、有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1至n的结点一一对应时,称之为完全二叉树。
完全二叉树的叶子结点只可能在层次最大的两层上出现;对于最大层次中的叶子结点,都依次排列在该层最左边的位置上;如果有度为1的结点,只可能有一个,且该结点只有左孩子而无右孩子。
三、二叉树的存储结构。
1. 顺序存储结构。
- 二叉树的顺序存储结构就是用一组地址连续的存储单元依次自上而下、自左至右存储完全二叉树上的结点元素。
数据结构重点难点

数据结构重点难点数据结构是计算机科学中非常重要的一门基础课程,它为我们理解和应用计算机中的数据提供了基础。
然而,由于其抽象性和概念性较强,学习数据结构往往是许多学生的一个挑战。
本文将介绍数据结构的几个重点难点,帮助读者更好地理解和掌握这门学科。
一、数组和链表数组和链表是数据结构中最基本的两种形式。
数组是一种连续的存储结构,可以通过索引访问元素,而链表是一种非连续的存储结构,每个节点都包含一个元素和一个指向下一个节点的指针。
数组的插入和删除操作比较麻烦,而链表的访问操作比较耗时。
在实际应用中,需要根据具体的场景选择数组还是链表。
二、栈和队列栈和队列是经常用到的数据结构。
栈是一种后进先出(LIFO)的结构,只允许在栈顶进行插入和删除操作,类似于堆叠盘子。
而队列是一种先进先出(FIFO)的结构,允许在队尾进行插入操作,在队头进行删除操作,类似于排队。
在实际应用中,栈和队列经常用于解决问题的算法设计。
三、树和二叉树树是一种非线性的数据结构,它由节点和边组成。
树的一个节点可以有多个子节点,而每个节点都有一个父节点,除了根节点外。
特殊的一种树结构是二叉树,它每个节点最多有两个子节点。
树和二叉树在很多应用中被广泛使用,如文件系统、数据库索引等。
四、图图是由节点和边构成的非线性数据结构,它可以用来表示复杂的关系和网络。
图由顶点集合和边集合组成,顶点表示图中的元素,边表示顶点之间的关系。
图可以是有向的或无向的,带权重的或不带权重的。
图的遍历算法和最短路径算法是图的重点难点,它们在图的应用中具有重要的作用。
五、排序和查找算法排序和查找是数据结构中常用的操作。
排序算法的目的是将一个无序的数据序列按照一定的规则进行整理,使其按照升序或降序排列。
常见的排序算法有冒泡排序、插入排序、选择排序、快速排序等。
查找算法的目的是在一个有序的数据序列中寻找指定的元素,常见的查找算法有顺序查找、二分查找、哈希查找等。
综上所述,数据结构是计算机科学中非常重要的一门课程,也是许多学生的挑战。
数据结构 复习重点

数据结构复习重点谁让我找到你们了.第一章1.数据是信息的载体,它能够被计算机识别、存储和加工处理。
2.数据元素是数据的基本单位。
有些情况下,数据元素也称为元素、结点、顶点、记录。
3.数据结构指的是数据之间的相互关系,即数据的组织形式。
一般包括三个方面的内容:①数据元素之间的逻辑关系,也称为数据的逻辑结构;②数据元素及其关系在计算机存储器内的表示,称为数据的存储结构;③数据的运算,即对数据施加的操作。
4.数据类型是一个值的集合以及在这些值上定义的一组操作的总称。
按"值"是否可分解,可将数据类型划分为两类:①原子类型,其值不可分解;②结构类型,其值可分解为若干个成分。
5.抽象数据类型是指抽象数据的组织和与之相关的操作。
可以看作是数据的逻辑结构及其在逻辑结构上定义的操作。
6.数据的逻辑结构简称为数据结构。
数据的逻辑结构可分为两大类:①线性结构(~的逻辑特征是若结构是非空集,则有且仅有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前趋和一个直接后继);②非线性结构(~的逻辑特征是一个结点可能有多个直接前趋和直接后继)。
7.数据存储结构可用四种基本的存储方法表示:①顺序存储方法(该方法是把逻辑上相邻的结点存储在物理位置上相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现。
由此得到的存储表示称为顺序存储结构);②链接存储方法(该方法不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系是由附加的指针字段表示的。
由此得到的存储表示称为链式存储结构);③索引存储方法(该方法通常是在存储结点信息的同时,还建立附加的索引表);④散列存储方法(该方法的基本思想是根据结点的关键字直接计算出该结点的存储地址)。
8.非形式地说,算法是任意一个良定义的计算过程,它以一个或多个值作为输入,并产生一个或多个值为输出。
因此,一个算法是一系列将输入转换为输出的计算步骤。
9.求解同一计算问题可能有许多不同的算法,究竟如何来评价这些算法的好坏以便从中选出较好的算法呢?选用的算法首先应该是"正确"的。
数据结构查找知识点总结

数据结构查找知识点总结查找是在一组数据中寻找特定元素或特定条件的操作。
1. 线性查找:从列表、数组或链表的头部开始逐个检查元素,直到找到目标元素或搜索结束。
最坏情况下需要遍历整个数据集。
- 特点:简单易懂但效率低。
- 时间复杂度:O(n)。
2. 二分查找:对有序的列表、数组或链表,采用分治思想,通过比较目标元素和中间元素的大小关系,缩小搜索范围,直到找到目标元素或搜索结束。
- 前提条件:数据必须有序。
- 特点:效率高,但要求数据有序,且适用于静态数据集。
- 时间复杂度:O(log n)。
3. 哈希查找:通过将元素进行哈希函数映射,将元素存储在哈希表中,以快速定位目标元素。
- 特点:查找速度快,适用于动态数据集。
- 时间复杂度:平均情况下是O(1),最坏情况下是O(n)(哈希冲突)。
4. 二叉查找树:一种有序的二叉树结构,左子树的所有节点的值都小于根节点的值,右子树的所有节点的值都大于根节点的值。
- 特点:可用于快速插入、删除和查找元素。
- 时间复杂度:平均情况下是O(log n),最坏情况下是O(n)(树退化为链表)。
5. 平衡二叉查找树:通过在二叉查找树的基础上对树进行平衡操作,使得树的高度保持在较小范围,从而提高查找效率。
- 特点:保持查找性能稳定,适用于动态数据集。
- 时间复杂度:平均情况下是O(log n),最坏情况下是O(log n)(由于树平衡操作的代价,最坏情况下仍可达到O(n))。
6. B树/B+树:一种多路搜索树,通过增加每个节点的子节点数目,减少树的高度,从而提高查找效率。
常用于磁盘索引等场景。
- 特点:适用于大规模数据集以及磁盘访问等场景,对于范围查找尤为高效。
- 时间复杂度:平均情况下是O(log n),最坏情况下是O(log n)。
7. 字典树(Trie树):一种通过字符串的前缀来组织和查找数据的树形数据结构。
- 特点:适用于按前缀匹配查找、排序等操作。
- 时间复杂度:查找操作的时间复杂度与字符串长度有关。