人教版八年级数学下册17.2勾股定理的逆定理-同步练习(4)
2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17.2勾股定理的逆定理》同步练习题(附答案)一.选择题1.在△ABC中,若AC2﹣BC2=AB2,则()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定2.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:153.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.2,3,4C.,3,4D.1,,34.一个长方形抽屉长3cm,宽4cm,贴抽屉底面放一根木棒,那么这根木棒最长(不计木棒粗细)可以是()A.4cm B.5cm C.6cm D.7cm5.下列五组数:①4、5、6;②0.6、0.8、1;③7、4、25;④8、15、17;⑤9、40、41,其中是勾股数的组数为()A.2B.3C.4D.56.已知a、b、c为△ABC的三边,且满足(a﹣b)(a2+b2﹣c2)=0,则△ABC是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形7.△ABC中,已知AB=1,AC=2.要使∠B是直角,BC的长度是()A.B.C.3D.或8.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()A.17m B.18m C.25m D.26m9.一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口1.5小时后,则两船相距()A.10海里B.20海里C.30海里D.40海里二.填空题10.勾股数为一组连续自然数的是.11.已知△ABC中,AB=k,AC=k﹣1,BC=3,当k=时,∠C=90°.12.如图,某港口P位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点A,B处,且相距20海里,如果知道甲船沿北偏西40°方向航行,则乙船沿方向航行.13.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为cm2.14.如图,一棵高为16m的大树被台风刮断,若树在离地面6m处折断,树顶端刚好落在地可上,此处离树底部m处.15.如图,每个小正方形的边长为1,则∠ABC的度数为°.16.若一个三角形的三边长分别为5、12、13,则此三角形的面积为.17.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.18.如图所示,一架梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得AE长为0.9米,则梯子底端点B移动的距离为米.三.解答题19.如图,四边形ABCD是舞蹈训练场地,要在场地上铺上草坪网.经过测量得知:∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是不是直角,并说明理由;(2)求四边形ABCD需要铺的草坪网的面积.20.如图,点C是线段BD上的一点,∠B=∠D=90°,AB=3,BC=2,CD=6,DE=4,AE=,求证:∠ACE=90°.21.如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.22.如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.(1)求证:BD⊥CB;(2)求四边形ABCD的面积;(3)如图2,以A为坐标原点,以AB、AD所在直线为x轴、y轴建立直角坐标系,点P在y轴上,若S△PBD=S四边形ABCD,求P的坐标.参考答案一.选择题1.解:∵AC2﹣BC2=AB2,∴AC2=BC2+AB2,∴∠B=90°.故选:B.2.解:b2﹣c2=a2则b2=a2+c2△ABC是直角三角形;a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.3.解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、22+32≠42,不能构成直角三角形,故不符合题意;C、()2+32=42,能构成直角三角形,故符合题意;D、12+()2≠32,不能构成直角三角形,故不符合题意.故选:C.4.解:这根木棒最长==5(cm),故选:B.5.解:①42+52≠62,故不是勾股数;②0.6、0.8、1不都是正整数,故不是勾股数;③72+42≠252,故不是勾股数;④82+152=172,故是勾股数;⑤92+402=412,故是勾股数;其中勾股数有2组,故选:A.6.解:∵(a﹣b)(a2+b2﹣c2)=0,∴a﹣b=0,或a2+b2﹣c2=0,即a=b或a2+b2=c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.7.解:∵∠B是直角,故AC为△ABC的斜边,AB为直角边,∴BC===.故选:A.8.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17(米).故选:A.9.解:如图所示:∠1=∠2=45°,AB=12×1.5=18(海里),AC=16×1.5=24(海里),∴∠BAC=∠1+∠2=90°,即△ABC是直角三角形,∴BC===30(海里).故选:C.二.填空题10.解:设中间的数是x,那么前面的一个就x﹣1,后面的一个就是x+1,根据题意(x﹣1)2+x2=(x+1)2,解得:x=0(舍去)或x=4;4﹣1=3,4+1=5;故答案为:3、4、5.11.解:∵∠C=90°,∴AC2+BC2=AB2,∵AB=k,AC=k﹣1,BC=3,∴(k﹣1)2+32=k2,解得:k=5,故答案为:5.12.解:由题意可知:AP=12,BP=16,AB=20,∵122+162=202,∴△APB是直角三角形,∴∠APB=90°,由题意知∠APN=40°,∴∠BPN=90°﹣∠APN=90°﹣40°=50°,即乙船沿北偏东50°方向航行,故答案为:北偏东50°.13.解:设三边分别为5x,12x,13x,则5x+12x+13x=60,∴x=2,∴三边分别为10cm,24cm,26cm,∵102+242=262,∴三角形为直角三角形,∴S=10×24÷2=120cm2.故答案为:120.14.解:设树顶端落在离树底部x米处,由题意得:62+x2=(16﹣6)2,解得:x1=8,x2=﹣8(不合题意舍去).故答案为:8.15.解:连接AC,由勾股定理得:AC2=22+12=5,BC2=22+12=5,AB2=12+32=10,∴AC2+BC2=5+5=10=BA2,∴△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=45°,故答案为:45.16.解:∵52+122=132,∴三边长分别为5、12、13的三角形构成直角三角形,其中的直角边是5、12,∴此三角形的面积为×5×12=30.17.解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.18.解:在直角△ABC中,已知AB=2.5米,BC=0.7米,∴AC===2.4米,在直角△CDE中,已知DE=AB=2.5米,AE=0.9米,∴CE=AC﹣AE=1.5米,∴CD===2米,∴BD=2米﹣0.7米=1.3米故答案为:1.3.三.解答题19.解:连接AC,如图,,在Rt△ABC中,AB=24 m,BC=7 m,∴AC==25 m,在△ADC中,CD=15 m,AD=20 m.AC=25 m,∵CD2+AD2=152+202=252=AC2,∴△ADC为直角三角形,∠D=90°.(2)由(1)知△ADC为直角三角形,∠D=90°,∴S△ADC==150 m²,∵S△ABC=m²,∴S四边形ABCD=S△ADC+S△ABC=150+84=234 m².20.证明:在Rt△ABC中,∠B=90°,AB=3,BC=2,∴AC===.在Rt△EDC中,∠D=90°,CD=6,DE=4,∴CE===2,∵AC2=13,CE2=52,AE2=65,∴AE2=AC2+CE2,∴△ACE是直角三角形,AE是斜边,∴∠ACE=90°.21.(1)解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;(2)证明:∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=42+32=52=BC2,∴△BCD是直角三角形.22.(1)证明:连接BD.∵AD=4m,AB=3m,∠BAD=90°,∴BD=5m.又∵BC=12m,CD=13m,∴BD2+BC2=CD2.∴BD⊥CB;(2)四边形ABCD的面积=△ABD的面积+△BCD的面积=×3×4+×12×5=6+30=36(m2).故这块土地的面积是36m2;(3)∵S△PBD=S四边形ABCD,∴•PD•AB=×36,∴•PD×3=9,∴PD=6,∵D(0,4),点P在y轴上,∴P的坐标为(0,﹣2)或(0,10).。
人教版八年级下册数学 第17章《勾股定理》讲义 第6讲 勾股定理-逆定理(有答案)

人教版八年级下册数学第17章《勾股定理》讲义第6讲勾股定理-逆定理(有答案)第6讲 勾股定理-逆定理 第一部分 知识梳理知识点一:勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 .①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形知识点二:勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)知识点三:勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整例4、已知:△ABC 的三边分别为m 2-n 2,2mn,m 2+n 2(m,n 为正整数,且m >n),判断△ABC 是否为直角三角形.例5、三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 举一反三:1、以下列各组数为边长,能组成直角三角形的是( )A 、8,15,17B 、4,5,6C 、5,8,10D 、8,39,402、下列各组线段中的三个长度:①9、12、15;②7、24、25;③32、42、52;④3a、4a 、5a (a>0);⑤m 2-n 2、2mn 、m 2+n 2(m 、n 为正整数,且m>n )其中可以构成直角三角形的有( )A 、5组B 、4组C 、3组D 、2组3、现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为( )A 、30厘米B 、40厘米C 、50厘米D 、以上都不对4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。
2020年人教版数学八年级下册17.2勾股定理的逆定理同步练习(解析版)

17.2 勾股定理的逆定理1.下列命题的逆命题是真命题的是 ( )A .对顶角相等B .正方形的四个角都是直角C .两直线平行,同位角相等D .菱形的对角线互相垂直 2.下列定理有逆定理的是 ( )A .直角都相等B .同旁内角互补,两直线平行C .同位角相等D .全等三角形的对应角相等3.下列各组数是三角形的三边长,不能组成直角三角形的一组数是 ( )A .3,4,5B .6,8,10C .1.5,2,2.5D .543,,4.若一个三角形的三边长之比为8:15:17,则它为________三角形.5.如图17-2-1.以△ABC 的三边为直径分别向三角形外侧作半圆,其中两个半圆的面积和等于另一个半圆的面积,则此三角形的形状为________.6.如图17-2-2,四边形ABCD 中,∠C=90º,BD 平分∠ABC ,AD=3,E 为AB 上一点,AE=4,ED=5,求CD 的长.7.下列四组数:(1)0.6,0.8,1;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中勾股数的组数为 ( )A .1B .2C .3D .4能力提升全练1.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC是直角三角形的是 ( )A .∠A =∠C-∠B B .a:b:c=2:3:4C .a ²=b ²-c ²D .a=34,b=45,c=12.如图17-2-3,四边形ABCD 中,AB=4 cm,BC=3 cm,CD=12 cm, DA=13 cm ,且∠ABC=90º,则四边形ABCD 的面积为( )A .6 cm²B .30 cm²C .24 cm²D .36 cm² 3.阅读以下解题过程:已知a ,b ,c 为△ABC 的三边长,且满足a ²c ²-b ²c ²=a ⁴-b ⁴,试判断△ABC 的形状. 解:∵a ²c ²-b ²c ²=a ⁴-b ⁴,①∴c²(a²-b²)=(a²-b²)(a²+b²),②∴c²=a²+b².③∴△ABC为直角三角形,④(1)上述解题过程从哪一步开始出现错误?请写出该步的代号__________;(2)错误的原因是________________________________________________________;(3)本题正确的结论是____________________________________________________. 三年模拟全练一、选择题1.F列四组线段中,可以构成直角三角形的是 ( )A.1.5,2,2.5 B.4,5,6C.2,3,4 D.1,2,32.下列各组数中,是勾股数的为 ( )A.1,1,2 B.1.5,2,2.5C.7,24,25 D.6,12,133.甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m,甲客轮用15分钟到达点A.乙客轮用20分钟到达点B,若A、B两点的直线距离为1000 m,甲客轮沿着北偏东30º的方向航行,则乙客轮的航行方向可能是 ( )A.南偏东60º B.南偏西60º C.北偏西30º D.南偏西30º二、填空题4.三角形的三边长为a,b,c,且满足(a+b)²=c²+2ab,则这个三角形是_________.三、解答题5.如图17-2-4,每个小正方形的边长都为1.(1)求四边形ABCD的面积与周长;(2)∠DAB是直角吗?五年中考模拟一、选择题1.下列长度的三条线段能组成直角三角形的是 ( )A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,12 2.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A.7.5平方千米 B.15平方千米 C.75平方千米 D.750平方千米二、填空题3.如图17-2-5,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上.则∠ACB 的大小为_______.核心素养全练1.王老师在一次“探究性学习”课中设计了如下数表:(1)请你分别观察a 、b 、c 与n 之间的关系,并用含自然数n (n >1)的代数式表示a 、b 、c ;(2)猜想:以a 、b 、c 为边长的三角形是不是直角三角形,请证明你的猜想.2.如图17-2-6,南北线MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我国反走私艇A 发现正东方有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇曰密切注意,反走私艇A和走私艇C 的距离是13海里,A 、B 两艇的距离是5海里,反走私艇B 和走私艇C 的距离是12海里,若走私艇C 的速度不变,最早会在什么时候进入我国领海?3.阅读下面的材料,然后解答问题:我们新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形, 理解:①根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗?________(填“是”或“不是”);②若某三角形的三边长分别为1、7、2,则该三角形________(填“是”或“不是”)奇异三角形. 探究:在Rt △ABC 中,两边长分别是a 、c ,且a ²=50,c ²=100,则这个三角形是不是奇异三角形?请说明理由, 拓展:在Rt△ABC中,∠C=90º,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a²:b²:c².17.2 勾股定理的逆定理1.C“两直线平行,同位角相等”的逆命题是“同位角相等,两直线平行”,是平行线判定定理,所以逆命题是真命题.2.B“直角都相等”的逆命题是“相等的角是直角”,选项A错误;“同旁内角互补,两直线平行”的逆命题是“两直线平行,同旁内角互补”,选项B正确;“同位角相等”的逆命题是“相等的角是同位角”,选项C错误;“全等三角形的对应角相等”的逆命题是“角对应相等的三角形是全等三角形”,选项D错误,故选B.3.D ∵3²+4²=5²,∴此三角形是直角三角形,选项A不合题意;∵6²+8²=10²,∴此三角形是直角三角形,选项B不合题意;∵1.5²+2²=2.5²,∴此三角形是直角三角形,选项C不合题意;()()()222543≠+,∴此三角形不是直角三角形,选项D符合题意,故选D.4.答案直角解析设三边长分别为8k,15k,17k( k>0),则(8k)²+(15k)²=289k²=(17k)²,由勾股定理的逆定理,可判断此三角形为直角三角形.5.答案直角三角形解析由题意得S₁+S₂=S₃,即222212121212121⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛⋅+⎪⎭⎫⎝⎛ABACBCπππ,∴BC²+AC²=AB²,∴△ABC为直角三角形.6.解析∵AD=3,AE=4,ED=5,∴AD²+AE²=ED².∴∠A=90º,∴DA⊥AB.∵∠C=90º,∴DC⊥BC.∵BD平分∠A BC,∴CD=AD=3.7.B(1)中各数不全是正整数;(2)中5²+12²=13²;(3)中8²+15²=17²;(4)中4²+5²≠6².故有2组勾股数.1.B A.由条件可得∠A+∠B=∠C,且∠A+∠B+∠C=180º,可求得∠C=90º,故△ABC 为直角三角形;B.不妨设a=2,b=3,c=4,此时a²+b²=13,而c²=16,即a²+b²≠c²,故△ABC 不是直角三角形;C .由条件可得到a ²+c ²=b ²,满足勾股定理的逆定理,故△ABC 是直角三角形;D .由条件有a ²+c ²=2222451625143b =⎪⎭⎫ ⎝⎛==+⎪⎭⎫ ⎝⎛,满足勾股定理的逆定理,故△ABC 是直角三角形.故选B . 2.C 连接 AC, ∵∠A BC=90º,AB=4 cm,BC=3 cm,∴AC=5 cm,∵CD=12 cm,DA=13 cm,AC ²+CD ²=5²+12²=169=13²=DA ²,∴△ADC 为直角三角形,∴S 四边形ABCD =S △ACD - S △ABC=21AC •CD-21AB •BC =21×5×12-21×4×3=30-6=24(cm ²).故四边形ABCD 的面积为24 cm ².故选C .3.答案 (1)③ (2)不能确定a ²-b ²是不是0 (3)△ABC 是等腰三角形或直角三角形解析 ∵c ²(a ²-b ²)=(a ²-b ²)(a ²+b ²),∴(a ²-b ²)[c ²-(a ²+b ²)]=0,∴a ²-b ²=0或c ²-(a ²+b ²)=0,即a=b 或a ²+b ²=c ²,∴三角形为等腰三角形或直角三角形,故从第③步开始错误,其原因是不能确定a ²-b ²是不是0. 一、选择题1.A 根据勾股定理的逆定理判断,求出两短边的平方和与最长边的平方,判断是否相等即可.1.5²+2²=2.5².即三角形是直角三角形,故此选项正确.故选A . 2.C A ∵1²+1²≠2²,∴不是勾股数,此选项错误; B .1.5和2.5不是正整数,此选项错误;C .∴7²+24²=25²,且7,24,25是正整数,∴是勾股数,此选项正确;D .∵6²+12²≠13²,∴不是勾股数,此选项错误,故选C .3.A 如图,∵甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m ,甲客轮用15分钟到达点A ,乙客轮用20分钟到达点B ,∴甲客轮走了40×15=600(m),乙客轮走了40×20=800(m).∵A 、B 两点间的直线距离为1000 m ,又∵600²+800²=1000²,∴∠A OB=90º, ∵甲客轮沿着北偏东30º的方向航行, ∴乙客轮沿着南偏东60º的方向航行,故选A .二、填空题4.答案 直角三角形解析化简(a+b )²=c ²+2ab ,得a ²+b ²=c ²,所以该三角形是直角三角形. 三、解答题5·解析(1)四边形ABCD 的面积为25-1-21×1×5-21×1×4-21×1×2-21×2×4=14.5, 周长为AB+BC+CD+AD=2617532026175++=+++.(2)∠D AB 是直角.理由如下:连接BD ,∴AB ²+AD ²=5+20=25,BD ²=25.∴AB ²+AD ²=BD ². ∴△ABD 是直角三角形,且∠D AB 是直角. 一、选择题1.A 根据勾股定理的逆定理,能组成直角三角形的三边长必须满足两条较短边的平方和等于最长边的平方.∵3²+4²=5²,∴长为3,4,5的三条线段能组成直角三角形.故选A .2.A 将里换算成以米为单位,则三角形沙田的三边长分别为2.5千米.6千米,6.5千米,因为2.5²+6²=6.5²,所以这个三角形为直角三角形,直角边长为2.5千米和6千米,所以S=21×6×2.5=7.5(平方千米),故选A . 二、填空题 3.答案 90º解析在网格中,由勾股定理得AC=183322=+,BC=324422=+.AB=507122=+, ∴AC ²+BC ²=AB ².∴由勾股定理的逆定理,知△ABC 为直角三角形,且∠A CB=90º. 1.解析(1)由题表可以得出: n=2时.a=2²-1,b=2×2,c=2²+1;n=3时,a=3²-1,b=2×3,c=3²+1; n=4时,a=4²-1,b=2×4,c=4²+1; ……∴a=n ²-1,b=2n ,c=n ²+1(n >1,且n 为自然数). (2)以a 、b 、c 为边长的三角形是直角三角形, 证明:∵a ²+b ²=(n ²-1)²+4n ²=n ⁴+2n ²+1, c ²=(n ²+1)²=n ⁴+2n ²+1, ∴a ²+b 2=c 2.∴以a 、b 、c 为边长的三角形是直角三角形. 2.解析 设MN 与AC 相交于E ,则∠B EC=90º, ∴AB ²+BC ²=5²+12²=13²=AC ².∴△ABC 为直角三角形,且∠A BC=90。
17.2勾股定理的逆定理-2020-2021学年人教版八年级数学下册同步提升训练

2020-2021年人教版八年级数学下册《17.2勾股定理的逆定理》同步提升训练(附答案)1.下列各组线段中不能作为直角三角形三边长的是()A.1、、2B.1、、C.、2、D.、、2.下列说法不正确的是()A.△ABC中,若∠A﹣∠B=∠C,则△ABC是直角三角形B.△ABC中,若b2﹣c2=a2,则△ABC是直角三角形C.△ABC的三边之比是5:12:13,则△ABC是直角三角形D.△ABC中,若a2+b2≠c2,则△ABC不是直角三角形3.下列各组数是勾股数的是()A.0.3,0.4,0.5B.5,7,9C.4,5,6D.6,8,104.如果用,a、b、c表示△ABC的三边,那么分别满足下列条件的三角形中,直角三角形有()①b2=c2﹣a2②a:b:c=3:4:5③∠C=∠A﹣∠B④∠A:∠B:∠C=12:13:15A.1个B.2个C.3个D.4个5.如图,已知△ABC中AC=24,AB=25,BC=7,AB上取一点E,AC上取一点F使得∠EFC=136°,过点B作BD∥EF,则∠CBD等于()A.44°B.56°C.46°D.68°6.如图所示的是一种机器人行走的路径,机器人从A处先往东走4m,又往北走1.5m,遇到障碍后又往西走2m,再转向北走4.5m后往东一拐,仅走0.5m就到达了B.则点A与点B之间的直线距离是()A.10m B.8.5m C.7m D.6.5m7.如图,在△ABC中,AB=5,BC=4,AC=3,点O是三条角平分线的交点,则△BOC 的BC边上的高是()A.1B.2C.3D.4二.填空题(共12小题)8.将一根长为24cm的筷子置于底面直径为12cm,高为16cm的圆柱形水杯中,则筷子露在杯子外面的最短长度为cm.9.如图,正方形网格中,点A,B,C,D均在格点上,则∠AOB+∠COD=°.10.在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(BC)有5米.则旗杆的高度.11.《九章算术》中有一个“折竹抵地”问题:“今有竹高九尺,末折抵地,去本三尺,问折者高几何?”意思是:现有竹子高9尺,折后竹尖抵地与竹子底部的距离为3尺,问折处高几尺?即:如图,AB+AC=9尺,BC=3尺,则AC尺.12.如图,一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面的部分BC为1尺.如果把这根芦苇沿与水池边垂直的方向拉向岸边,芦苇的顶部B恰好碰到岸边的B',则这根芦苇的长度是尺.13.某会展中心在会展期间准备将高5m、长13m、宽2m的楼道铺上地毯,已知地毯每平方米20元,请你帮助计算一下,铺完这个楼道至少需要元.14.若一个三角形的三边长为m+1,12,m+5,当m=时,这个三角形是直角三角形,且斜边长为m+5.15.若正整数a,n满足a2+n2=(n+1)2,这样的三个整数a,n,n+1(如:3,4,5或5,12,13)我们称它们为一组“完美勾股数”.当n<150时,共有组这样的“完美勾股数”.16.将一根16cm长的细木棒放入长、宽、高分别为4cm、3cm和12cm的长方体无盖盒子中,则细木棒露在盒子外面的最短长度是.17.如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞米.18.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是.19.一架5米长的梯子斜靠在一竖直的墙上,这时梯足距离墙脚3m,若梯子的顶端下滑1m,则梯足将滑动.20.如图,学校有一块三角形空地ABC,计划将这块三角形空地分割成四边形ABDE和△EDC,分别摆放“秋海棠”和“天竺葵”两种不同的花卉.经测量,∠EDC=90°,DC =6m,CE=10m,BD=14m,AB=16m,AE=2m.(1)求DE的长;(2)求四边形ABDE的面积.21.在△ABC中,AB=c,BC=a,AC=b.如图1,若∠C=90°时,根据勾股定理有a2+b2=c2.(1)如图2,当△ABC为锐角三角形时,类比勾股定理,判断a2+b2与c2的大小关系,并证明;(2)如图3,当△ABC为钝角三角形时,类比勾股定理,判断a2+b2与c2的大小关系,并证明;(3)如图4,一块四边形的试验田ABCD,已知∠B=90°,AB=80米,BC=60米,CD=90米,AD=110米,求这块试验田的面积.22.如图,把一块直角三角形(△ABC,∠ACB=90°)土地划出一个三角形(△ADC)后,测得CD=3米,AD=4米,BC=12米,AB=13米.(1)求证:∠ADC=90°;(2)求图中阴影部分土地的面积.23.《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(如图).水深和芦苇长各多少尺?24.如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB =AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,测得CB=1.5千米,CH=1.2千米,HB=0.9千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)求新路CH比原路CA少多少千米?25.如图,某电信公司计划在A,B两乡镇间的E处修建一座5G信号塔,且使C,D两个村庄到E的距离相等.已知AD⊥AB于点A,BC⊥AB于点B,AB=80km,AD=50km,BC=30km,求5G信号塔E应该建在离A乡镇多少千米的地方?26.如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.27.如图,在△ABC中,AB=5,AC=13,AD是边BC上的中线,点E在AD的延长线上,AD=ED=6.(1)求证:△ABD≌△ECD;(2)求△ABD的面积.参考答案1.解:A.∵12+()2≠22,∴以1,,2为边不能组成直角三角形,故本选项符合题意;B.∵12+()2=()2,∴以1,,为边能组成直角三角形,故本选项不符合题意;C.∵22+()2=()2,∴以2,,为边能组成直角三角形,故本选项不符合题意;D.∵()2+()2=()2,∴以,,为边能组成直角三角形,故本选项不符合题意;故选:A.2.解:A、△ABC中,若∠A﹣∠B=∠C,可得,∠A=90°,则△ABC是直角三角形,说法正确,不符合题意;B、△ABC中,若b2﹣c2=a2,可得,b2=c2+a2,则△ABC是直角三角形,说法正确,不符合题意;C、△ABC的三边之比是5:12:13,可得,(5x)2+(12x)2=(13x)2,则△ABC是直角三角形,说法正确,不符合题意;D、△ABC中,若a2+b2≠c2,而b2=c2+a2,则△ABC是直角三角形,说法错误,符合题意;故选:D.3.解:A、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;B、∵52+72≠92,∴这组数不是勾股数;C、∵52+42≠62,∴这组数不是勾股数;D、∵62+82=102,∴这组数是勾股数.故选:D.4.解:①b2=c2﹣a2,可以变形为b2+a2=c2,是直角三角形;②∵a:b:c=3:4:5,∴设a=3x,b=4x,c=5x,∵(3x)2+(4x)2=(5x)2,∴a2+b2=c2,∴是直角三角形;③∵∠C=∠A﹣∠B,∴∠C+∠B=∠A,∵∠C+∠B+∠A=180°,∴∠A=90°,∴是直角三角形;④∵∠A:∠B:∠C=12:13:15,∴设∠A=×180°≠90°∴不是直角三角形;则直角三角形有3个,故选:C.5.解:在△ABC中AC=24,AB=25,BC=7,∵242+72=625=252,即AC2+BC2=AB2,∴△ABC为直角三角形,∴∠ACB=90°.过点C作CM∥EF交AB于点M,则CM∥BD,如图所示.∵CM∥EF,∠EFC=136°,∴∠MCF=180°﹣∠EFC=44°,∴∠BCM=∠ACB﹣∠MCF=46°.又∵CM∥BD,∴∠CBD=∠BCM=46°.故选:C.6.解:过点B作BC⊥AD于C,从图中可以看出AC=4﹣2+0.5=2.5(m),BC=4.5+1.5=6(m),在直角△ABC中,AB为斜边,则AB==6.5(m).答:从点A到点B之间的距离是6.5m,故选:D.7.解:过O作OE⊥AC于E,OF⊥BC于F,OD⊥AB于D,在△ABC中,BC=4,CA=3,AB=5,∴△ABC是直角三角形,∵点O为△ABC的三条角平分线的交点,∴OE=OF=OD,设OE=x,∵S△ABC=S△OAB+S△OAC+S△OCB,∴×4×3=OD×5+OE×3+OF×4,∴5x+3x+4x=12,∴x=1,∴点O到BC的距离等于1.即△BOC的BC边上的高是1,故选:A.8.解:设筷子露在杯子外面的长度为h,当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB===20(cm),故h=24﹣20=4(cm).故筷子露在杯子外面的最短长度为4cm.故答案为:4.9.解:连接BC,由勾股定理得:OC2=12+22=5,OB2=12+32=10,BC2=12+22,∴OC=BC,OC2+BC2=OB2,∴∠OCB=90°,即△COB是等腰直角三角形,∴∠COB=45°,∵∠DOA=90°,∴∠AOB+∠COD=∠DOA﹣∠COB=45°,故答案为:45.10.解:设旗杆的高度为x米,根据题意可得:(x+1)2=x2+52,解得:x=12,答:旗杆的高度为12米.故答案为:12米.11.解:设竹子折断处离地面x尺,则斜边为(9﹣x)尺,根据勾股定理得:x2+32=(9﹣x)2.解得:x=4,答:折断处离地面的高度为4尺.故答案为:=4.12.解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即芦苇长13尺.故答案是:13.13.解:由勾股定理得AB===12(m),则地毯总长为12+5=17(m),则地毯的总面积为17×2=34(平方米),所以铺完这个楼道至少需要34×20=680(元).故答案为:680.14.解:由题意可得,(m+1)2+122=(m+5)2,解得m=15.故答案为:15.15.解:∵n<150,(n+1)2﹣n2=2n+1,又∵149+150=299,大于等于9小于297的非偶数完全平方数有9,25,49,81,121,169,225,289,一共8个,∴共有8组这样的“完美勾股数”.故答案为:8.16.解:如图,由题意知:盒子底面对角长为=5(cm),盒子的对角线长:=13(cm),∵细木棒长16cm,∴细木棒露在盒外面的最短长度是:16﹣13=3cm.故答案为:3cm.17.解:如图所示,AB,CD为树,且AB=13米,CD=8米,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=12AE=AB﹣CD=5,在直角三角形AEC中,斜边长AC==13米,即小鸟至少要飞13米.故答案为13.18.解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,,∴△ABD≌△ECD(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=AD•AB=15,故答案为:15.19.解:依照题意画出图形,如图所示.在Rt△AOB中,OB=3m,AB=5m,∴OA==4m.在Rt△COD中,OC=OA﹣AC=3m,CD=AB=5m,∴OD==4m,∴BD=OD﹣OB=4﹣3=1m.故答案为:1m.20.解:(1)在Rt△EDC中,∠EDC=90°,DC=6m,CE=10m,∴m;(2)如图,连接BE,在Rt△EBD中,BD=14m,ED=8m,∴BE2=BD2+ED2=142+82=260,∵AB=16m,AE=2m,∴AB2+AE2=162+22=260,∴AB2+AE2=BE2,∴△ABE是直角三角形,∠A=90°,∴S△ABE=×16×2=16(m2).又∵S△BDE=×14×8=56(m2).∴四边形ABDE的面积=S△ABE+S△BDE=72(m2).21.解:(1)a2+b2>c2,理由如下:过点A作AD⊥BC于D,设CD=x,则BD=a﹣x,由勾股定理得,b2﹣x2=AD2,c2﹣(a﹣x)2=AD2,∴b2﹣x2=c2﹣(a﹣x)2,整理得:a2+b2=c2+2ax,∵2ax>0,∴a2+b2>c2;(2)a2+b2<c2,理由如下:作AE⊥BC交BC的延长线于E,设CE=x,则c2﹣(a+x)2=AE2=b2﹣x2,整理得:a2+b2=c2﹣2ax,∵2ax>0,∴a2+b2<c2;(3)连接AC,作DF⊥AC于F,由勾股定理得,AC==100,由(1)可知,AD2﹣AF2=DC2﹣CF2,即1102﹣(100﹣CF)2=902﹣CF2,解得,CF=30,则DF==60,∴这块试验田的面积=×60×80+×100×60=(2400+3000)米222.(1)证明:∵∠ACB=90°,BC=12米,AB=13米,∴AC===5(米),∵CD=3米,AD=4米,∴AD2+CD2=AC2=25,∴∠ADC=90°;(2)解:图中阴影部分土地的面积=A×BC﹣AD×CD=×5×12﹣×4×3=24(平方米).23.解:设水深x尺,则芦苇长(x+1)尺.由题意得x2+52=(x+1)2.解得x=12.∴x+1=13.答:水深12尺;芦苇长13尺.24.解:(1)是,理由是:在△CHB中,∵CH2+BH2=(1.2)2+(0.9)2=2.25,BC2=2.25,∴CH2+BH2=BC2,∴CH⊥AB,所以CH是从村庄C到河边的最近路;(2)设AC=x千米,在Rt△ACH中,由已知得AC=x,AH=x﹣0.9,CH=1.2,由勾股定理得:AC2=AH2+CH2∴x2=(x﹣0.9)2+(1.2)2,解这个方程,得x=1.25,1.25﹣1.2=0.05(千米)答:新路CH比原路CA少0.05千米.25.解:设AE=xkm,则BE=(80﹣x)km,∵AD⊥AB,BC⊥AB,∴△ADE和△BCE都是直角三角形,∴DE2=AD2+AE2,CE2=BE2+BC2,又∵AD=50,BC=30,DE=CE,∴502+x2=(80﹣x)2+302,解得x=30.答:5G信号塔E应该建在离A乡镇30千米的地方.26.解:(1)△ABC为直角三角形,理由:由图可知,,BC=,AB==5,∴AC2+BC2=AB2,∴△ABC是直角三角形;(2)设AB边上的高为h,由(1)知,,BC=,AB=5,△ABC是直角三角形,∴=,即=h,解得,h=2,即AB边上的高为2.27.证明:(1)∵AD是边BC上的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),(2)∵△ABD≌△ECD,∴AB=CE=5,∵AE=AD+ED=12,AC=13,CE=5,∴AE2+CE2=AC2,∴△ACE是直角三角形,∴△ABC的面积=△ACE的面积=×5×12=30,∴△ABD的面积=△ABC的面积=15。
人教版八年级下册数学全国通用版中考数学练:第17章 全国通用版中考数学4:勾股定理的逆定理

专题4:勾股定理的逆定理知识讲解(一)勾股定理的逆定理如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形.(二)互逆命题如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题. (三)勾股数满足222a b c +=的三个正整数,称为勾股数.(1)3、4、5;6、8、10;9、12、15;12、16、20;15、20、25等. (2)(,,)a b c 是组勾股数,则(,,)ka kb kc (k 为正整数)也是一组勾股数. (3)3、4、5;5、12、13;7、24、25;9、40、41;11、60、61等(4)21a n =+,222b n n =+,2221c n n =++(n 为大于1的自然数)(5)22a m n =-,2b mn =,22c m n =+(m n >,且m 和n 均为正整数)典型例题【例1】 如下图,在由单位正方形组成的网格图中标有AB ,CD ,EF ,GH 四条线段,其中能构成一个直角三角形三边的线段是( )A .CD ,EF ,GHB .AB ,EF ,GHC .AB ,CD ,GH D .AB ,CD ,EFFHGE DBC A【解析】 8AB 20CD =5EF =13GH ,选B .训练1. 将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是( )A .7、24、25B .5、12、13C .3、4、5D .2、3、7 【解析】 答案:D【例2】 △ABC 三边a b c ,,满足222338102426a b c a b c +++=++,则△ABC 是( ) A.锐角三角形 B.钝角三角形 C.等腰三角形 D.直角三角形 【解析】 提示:由题意()()()222512130a b c -+-+-=,51213a b c ===,,,因为222a b c +=,所以△ABC 为直角三角形。
数学随堂小练人教版八年级下册:17.2勾股定理的逆定理(有答案)

数学随堂小练人教版八年级下册17.2勾股定理的逆定理一、单选题1.已知,,a b c 为ABC ∆三边,且满足()()222220a b a b c -+-=,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形2.下列各组数中,能构成直角三角形三边长的是( )A.4、5、6B.5,12,23C.6,8,113.下面说法正确的是个数有( )(1)如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形;(2)如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;(3)如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;(4)如果12A B C ∠=∠=∠,那么ABC ∆是直角三角形; (5)若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;(6)在ABC ∆中,若A B C ∠+∠=∠,则此三角形是直角三角形.A.3个B.4个C.5个D.6个4.在下列四组数中,不是勾股数的是( )A. 3a =,4b =,5c =B. 15a =,20b =,25c =C. 3a =,5b =,7c =D. 5a =,12b =,13c =5.ABC ∆的三边长分别为a 、b 、c ,下列条件:①A B C ∠=∠-∠;②::3:4:5A B C ∠∠∠=;③()()2a b c b c =+-; ④::5:12:13a b c =,其中能判定ABC ∆是直角三角形的有( )A.1个B.2个C.3个D.4个6.给出下列几组数:①6,7,8;②8,15,6;③221,2,1n n n -+其中能组成直角三角形的三条边长是( )A.①③B.②④C.①②D.③④7.下列命题的逆命题为真命题的是( )A.如果a b =,那么22a b =B.无理数是无限小数C.对顶角相等D.两直线平行,同旁内角互补8.如图,在单位正方形组成的网格图中标有AB,CD,EF,GH 四条线段,其中能作为一个直角三角形的线段是( )A.CD,EF,GHB.AB,EF,GHC.AB,CD,GHD.AB,CD,EF9.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,那么它们的积是正数它们的逆命题是真命题的个数是( )A.0B.1C.2D.3二、填空题10.如图,在ABC △中,5AB =,13AC BC =,边上的中线6AD =,则ABD △的面积是 .11.命题“如果0a b +=,那么a b ,互为相反数”的逆命题为 .12.填空1.如果两个命题的题设、结论正好相反,那么这两个命题叫做互逆命题,如果把其中一个叫做原命题,那么另一个叫做它的__________.2.如果一个定理的逆命题经过证明是正确的,它也是一个定理,则称这两个定理互为__________.3.一个命题__________有逆命题,一个定理__________有逆定理.(填“一定”或“不一定”)13.已知一个三角形的三边长分别是12,16,20,则这个三角形的面积为__________.三、解答题14.如图,四边形ABCD 中,90C ∠=︒,BD 平分ABC ∠,3AD E =,为AB 上一点,4AE =,5ED =,求CD 的长.参考答案1.答案:D因为,,a b c 为三角形三边,根据()()222220a b a b c -+-=,可找到这三边的数量关系.∵()()222220a b a b c -+-=,∴a b =或222a b c +=.当只有a b =成立时,是等腰三角形.当只有第二个条件成立时:是直角三角形.当两个条件同时成立时:是等腰直角三角形.故正确的选项是D.考点:1、特殊三角形的判定;2、勾股定理的逆定理的应用.2.答案:DA 、222456+≠,不能构成直角三角形,故不符合题意;B 、22251223+≠,不能构成直角三角形,故不符合题意;C 、2226811+≠,不能构成直角三角形,故不符合题意;D 、22211+=,能构成直角三角形,故符合题意. 故选D.考点:勾股定理的逆定理.3.答案:D①∵三角形三个内角的比是1:2:3∴设三角形的三个内角分别为,2,3x x x∴23180x x x ++=︒,解得30x =︒∴333090x =⨯︒=︒∴此三角形是直角三角形,故本小题正确;②∵三角形的一个外角与它相邻的一个内角的和是180︒∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确; ③∵直角三角形的三条高的交点恰好是三角形的一个顶点∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确; ④∵12A B C ∠=∠=∠ ∴设A B x ∠=∠=,则2C x ∠=∴2180x x x ++=︒,解得45x =︒∴224590x =⨯︒=︒ ∴此三角形是直角三角形,故本小题正确;⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差 ∴三角形一个内角也等于另外两个内角的和∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补∴有一个内角一定是90,故这个三角形是直角三角形,故本小题正确;⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补∴有一个内角一定是90,故这个三角形是直角三角形,故本小题正确.故选D.4.答案:C四组数均为正整数,故只需根据勾股定理的逆定理验证.5.答案:C①A B C ∠=∠-∠,180A B C ∠+∠+∠=︒,解得90B ∠=︒,所以是直角三角形;②::3:4:5A B C ∠∠∠=,180A B C ∠+∠+∠=︒,解得45?A ∠=,60B ∠=,75C ∠=︒,故不是直角三角形;③∵()()222a b c b c b c =+-=-,∴222a b c +=,根据勾股定理的逆定理是直角三角形; ④∵::5:12:13a b c =,∴222a b c +=,根据勾股定理的逆定理是直角三角形.故选C.6.答案:D本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.①222678+≠,故不是直角三角形,故错误;②2226815+≠,故不是直角三角形,故错误;③22222(1)(2)(1)nn n ,故是直角三角形,故正确;④2221)(21)6,故是直角三角形,故正确.正确的是③④.考点:勾股定理的逆定理7.答案:DA.逆命题为如果22a b =,那么a b =,为假命题;B 逆命题为无限小数是无理数,是假命题;C.逆命题为相等的角是对顶角,是假命题;D 逆命题为同旁内角互补,两直线平行,是真命题,故选D.8.答案:B设小正方形的边长为1,则AB 2=22+22=8,CD 2=22+42=20, EF 2=12+22=5,GH 2=22+32=13.因为AB 2+EF 2=GH 2,所以能构成一个直角三角形三边的线段是AB 、EF 、GH.故选B.9.答案:B①对顶角相等的逆命题是相等的角是对顶角,是假命题;②全等三角形的对应边相等的逆命题是各边对应相等的三角形是全等三角形,是真命题;③如果两个实数是正数,那么它们的积是正数的逆命题是如果两个实数的积是正数,那么这两个实数是正数,是假命题故选B.10.答案:15如图,延长AD 到点E ,使6DE AD ==,连接CE AD ,是BC 边上的中线,BD CD ∴=,在ABD △和ECD △中,BD CD ADB CDE AD ED =⎧⎪∠=∠⎨⎪=⎩,()SAS ABD ECD ∴≅△△,5CE AB ∴==,BAD E ∠=∠,212AE AD ==,5CE =,13AC =,222CE AE AC ∴+=,90E ∴∠=︒,90BAD ∴∠=︒,ABD ∴△为直角三角形,ABD ∴△的面积1152AD AB =⋅=,故答案为15.11.答案:如果a b ,互为相反数,那么0a b +=.12.答案:1.逆命题; 2.逆定理; 3.一定; 不一定根据勾股定理的逆定理求得。
人教版数学八年级下册17.2 勾股定理的逆定理同步练习(解析版)
17.2 勾股定理的逆定理1.下列命题的逆命题是真命题的是 ( )A .对顶角相等B .正方形的四个角都是直角C .两直线平行,同位角相等D .菱形的对角线互相垂直 2.下列定理有逆定理的是 ( )A .直角都相等B .同旁内角互补,两直线平行C .同位角相等D .全等三角形的对应角相等3.下列各组数是三角形的三边长,不能组成直角三角形的一组数是 ( )A .3,4,5B .6,8,10C .1.5,2,2.5D .543,,4.若一个三角形的三边长之比为8:15:17,则它为________三角形.5.如图17-2-1.以△ABC 的三边为直径分别向三角形外侧作半圆,其中两个半圆的面积和等于另一个半圆的面积,则此三角形的形状为________.6.如图17-2-2,四边形ABCD 中,∠C=90º,BD 平分∠ABC ,AD=3,E 为AB 上一点,AE=4,ED=5,求CD 的长.7.下列四组数:(1)0.6,0.8,1;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中勾股数的组数为 ( )A .1B .2C .3D .4能力提升全练1.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC是直角三角形的是 ( )A .∠A =∠C-∠B B .a:b:c=2:3:4C .a ²=b ²-c ²D .a=34,b=45,c=12.如图17-2-3,四边形ABCD 中,AB=4 cm,BC=3 cm,CD=12 cm, DA=13 cm ,且∠ABC=90º,则四边形ABCD 的面积为( )A .6 cm²B .30 cm²C .24 cm²D .36 cm² 3.阅读以下解题过程:已知a ,b ,c 为△ABC 的三边长,且满足a ²c ²-b ²c ²=a ⁴-b ⁴,试判断△ABC 的形状. 解:∵a ²c ²-b ²c ²=a ⁴-b ⁴,①∴c²(a²-b²)=(a²-b²)(a²+b²),②∴c²=a²+b².③∴△ABC为直角三角形,④(1)上述解题过程从哪一步开始出现错误?请写出该步的代号__________;(2)错误的原因是________________________________________________________;(3)本题正确的结论是____________________________________________________. 三年模拟全练一、选择题1.F列四组线段中,可以构成直角三角形的是 ( )A.1.5,2,2.5 B.4,5,6C.2,3,4 D.1,2,32.下列各组数中,是勾股数的为 ( )A.1,1,2 B.1.5,2,2.5C.7,24,25 D.6,12,133.甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m,甲客轮用15分钟到达点A.乙客轮用20分钟到达点B,若A、B两点的直线距离为1000 m,甲客轮沿着北偏东30º的方向航行,则乙客轮的航行方向可能是 ( )A.南偏东60º B.南偏西60º C.北偏西30º D.南偏西30º二、填空题4.三角形的三边长为a,b,c,且满足(a+b)²=c²+2ab,则这个三角形是_________.三、解答题5.如图17-2-4,每个小正方形的边长都为1.(1)求四边形ABCD的面积与周长;(2)∠DAB是直角吗?五年中考模拟一、选择题1.下列长度的三条线段能组成直角三角形的是 ( )A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,12 2.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A.7.5平方千米 B.15平方千米 C.75平方千米 D.750平方千米二、填空题3.如图17-2-5,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上.则∠ACB 的大小为_______.核心素养全练1.王老师在一次“探究性学习”课中设计了如下数表:(1)请你分别观察a 、b 、c 与n 之间的关系,并用含自然数n (n >1)的代数式表示a 、b 、c ;(2)猜想:以a 、b 、c 为边长的三角形是不是直角三角形,请证明你的猜想.2.如图17-2-6,南北线MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我国反走私艇A 发现正东方有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇曰密切注意,反走私艇A和走私艇C 的距离是13海里,A 、B 两艇的距离是5海里,反走私艇B 和走私艇C 的距离是12海里,若走私艇C 的速度不变,最早会在什么时候进入我国领海?3.阅读下面的材料,然后解答问题:我们新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形, 理解:①根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗?________(填“是”或“不是”);②若某三角形的三边长分别为1、7、2,则该三角形________(填“是”或“不是”)奇异三角形. 探究:在Rt △ABC 中,两边长分别是a 、c ,且a ²=50,c ²=100,则这个三角形是不是奇异三角形?请说明理由, 拓展:在Rt△ABC中,∠C=90º,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a²:b²:c².17.2 勾股定理的逆定理1.C“两直线平行,同位角相等”的逆命题是“同位角相等,两直线平行”,是平行线判定定理,所以逆命题是真命题.2.B“直角都相等”的逆命题是“相等的角是直角”,选项A错误;“同旁内角互补,两直线平行”的逆命题是“两直线平行,同旁内角互补”,选项B正确;“同位角相等”的逆命题是“相等的角是同位角”,选项C错误;“全等三角形的对应角相等”的逆命题是“角对应相等的三角形是全等三角形”,选项D错误,故选B.3.D ∵3²+4²=5²,∴此三角形是直角三角形,选项A不合题意;∵6²+8²=10²,∴此三角形是直角三角形,选项B不合题意;∵1.5²+2²=2.5²,∴此三角形是直角三角形,选项C不合题意;()()()222543≠+,∴此三角形不是直角三角形,选项D符合题意,故选D.4.答案直角解析设三边长分别为8k,15k,17k( k>0),则(8k)²+(15k)²=289k²=(17k)²,由勾股定理的逆定理,可判断此三角形为直角三角形.5.答案直角三角形解析由题意得S₁+S₂=S₃,即222212121212121⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛⋅+⎪⎭⎫⎝⎛ABACBCπππ,∴BC²+AC²=AB²,∴△ABC为直角三角形.6.解析∵AD=3,AE=4,ED=5,∴AD²+AE²=ED².∴∠A=90º,∴DA⊥AB.∵∠C=90º,∴DC⊥BC.∵BD平分∠A BC,∴CD=AD=3.7.B(1)中各数不全是正整数;(2)中5²+12²=13²;(3)中8²+15²=17²;(4)中4²+5²≠6².故有2组勾股数.1.B A.由条件可得∠A+∠B=∠C,且∠A+∠B+∠C=180º,可求得∠C=90º,故△ABC 为直角三角形;B.不妨设a=2,b=3,c=4,此时a²+b²=13,而c²=16,即a²+b²≠c²,故△ABC 不是直角三角形;C .由条件可得到a ²+c ²=b ²,满足勾股定理的逆定理,故△ABC 是直角三角形;D .由条件有a ²+c ²=2222451625143b =⎪⎭⎫ ⎝⎛==+⎪⎭⎫ ⎝⎛,满足勾股定理的逆定理,故△ABC 是直角三角形.故选B . 2.C 连接 AC, ∵∠A BC=90º,AB=4 cm,BC=3 cm,∴AC=5 cm,∵CD=12 cm,DA=13 cm,AC ²+CD ²=5²+12²=169=13²=DA ²,∴△ADC 为直角三角形,∴S 四边形ABCD =S △ACD - S △ABC=21AC •CD-21AB •BC =21×5×12-21×4×3=30-6=24(cm ²).故四边形ABCD 的面积为24 cm ².故选C .3.答案 (1)③ (2)不能确定a ²-b ²是不是0 (3)△ABC 是等腰三角形或直角三角形解析 ∵c ²(a ²-b ²)=(a ²-b ²)(a ²+b ²),∴(a ²-b ²)[c ²-(a ²+b ²)]=0,∴a ²-b ²=0或c ²-(a ²+b ²)=0,即a=b 或a ²+b ²=c ²,∴三角形为等腰三角形或直角三角形,故从第③步开始错误,其原因是不能确定a ²-b ²是不是0. 一、选择题1.A 根据勾股定理的逆定理判断,求出两短边的平方和与最长边的平方,判断是否相等即可.1.5²+2²=2.5².即三角形是直角三角形,故此选项正确.故选A . 2.C A ∵1²+1²≠2²,∴不是勾股数,此选项错误; B .1.5和2.5不是正整数,此选项错误;C .∴7²+24²=25²,且7,24,25是正整数,∴是勾股数,此选项正确;D .∵6²+12²≠13²,∴不是勾股数,此选项错误,故选C .3.A 如图,∵甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m ,甲客轮用15分钟到达点A ,乙客轮用20分钟到达点B ,∴甲客轮走了40×15=600(m),乙客轮走了40×20=800(m).∵A 、B 两点间的直线距离为1000 m ,又∵600²+800²=1000²,∴∠A OB=90º, ∵甲客轮沿着北偏东30º的方向航行, ∴乙客轮沿着南偏东60º的方向航行,故选A .二、填空题4.答案 直角三角形解析化简(a+b )²=c ²+2ab ,得a ²+b ²=c ²,所以该三角形是直角三角形. 三、解答题5·解析(1)四边形ABCD 的面积为25-1-21×1×5-21×1×4-21×1×2-21×2×4=14.5, 周长为AB+BC+CD+AD=2617532026175++=+++.(2)∠D AB 是直角.理由如下:连接BD ,∴AB ²+AD ²=5+20=25,BD ²=25.∴AB ²+AD ²=BD ². ∴△ABD 是直角三角形,且∠D AB 是直角. 一、选择题1.A 根据勾股定理的逆定理,能组成直角三角形的三边长必须满足两条较短边的平方和等于最长边的平方.∵3²+4²=5²,∴长为3,4,5的三条线段能组成直角三角形.故选A .2.A 将里换算成以米为单位,则三角形沙田的三边长分别为2.5千米.6千米,6.5千米,因为2.5²+6²=6.5²,所以这个三角形为直角三角形,直角边长为2.5千米和6千米,所以S=21×6×2.5=7.5(平方千米),故选A . 二、填空题 3.答案 90º解析在网格中,由勾股定理得AC=183322=+,BC=324422=+.AB=507122=+, ∴AC ²+BC ²=AB ².∴由勾股定理的逆定理,知△ABC 为直角三角形,且∠A CB=90º. 1.解析(1)由题表可以得出: n=2时.a=2²-1,b=2×2,c=2²+1;n=3时,a=3²-1,b=2×3,c=3²+1; n=4时,a=4²-1,b=2×4,c=4²+1; ……∴a=n ²-1,b=2n ,c=n ²+1(n >1,且n 为自然数). (2)以a 、b 、c 为边长的三角形是直角三角形, 证明:∵a ²+b ²=(n ²-1)²+4n ²=n ⁴+2n ²+1, c ²=(n ²+1)²=n ⁴+2n ²+1, ∴a ²+b 2=c 2.∴以a 、b 、c 为边长的三角形是直角三角形. 2.解析 设MN 与AC 相交于E ,则∠B EC=90º, ∴AB ²+BC ²=5²+12²=13²=AC ².∴△ABC 为直角三角形,且∠A BC=90。
2020-2021学年人教版八年级下册数学17.2勾股定理的逆定理 同步习题
17.2勾股定理的逆定理同步习题一.选择题1.下列长度的三条线段,能组成直角三角形的是()A.3,4,8B.5,6,10C.5,5,11D.5,12,132.在△ABC中,∠A、∠B、∠C的对边分别是a,b,c.下列条件中,不能说明△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.∠C=∠A﹣∠BC.b2=a2﹣c2D.a:b:c=5:12:133.为了打造“绿洲”,计划在市内一块如图所示的三角形空地上种植某种草皮,已知AB=10米,BC=15米,∠B=150°,这种草皮每平方米售价2a元,则购买这种草皮需()元.A.75a B.50a C.a D.150a4.在下列四个条件:①AB2+BC2=AC2,②∠A=90°﹣∠B,③∠A=∠B=∠C,④∠A:∠B:∠C=5:3:2中,能确定△ABC是直角三角形的条件有()A.①③B.①②③C.①②④D.①②③④5.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b2﹣c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形6.如图,已知△ABC中AC=24,AB=25,BC=7,AB上取一点E,AC上取一点F使得∠EFC=136°,过点B作BD∥EF,则∠CBD等于()A.44°B.56°C.46°D.68°7.如图,在边长为1的正方形方格中,A,B,C,D均为格点,构成图中三条线段AB,BC,CD.现在取出这三条线段AB,BC,CD首尾相连拼三角形.下列判断正确的是()A.能拼成一个直角三角形B.能拼成一个锐角三角形C.能拼成一个钝角三角形D.不能拼成三角形8.下列三角形中,是直角三角形的是()A.三角形的三边a,b,c满足关系a+b>cB.三角形的三边长分别为32,42,52C.三角形的一边等于另一边的一半D.三角形的三边长为20,15,259.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的点C有()个.A.2个B.3个C.4个D.5个10.如图,在△ABC中,AC=8,BC=6,AB=10,P为边AB上一动点,PD⊥AC于D,PE⊥BC于E,则DE的最小值为()A.3.6B.4.8C.5D.5.2二.填空题11.一个三角形的三边的比是3:4:5,它的周长是36,则它的面积是.12.在△ABC中,AB=c,AC=b,BC=a,当a、b、c满足时,∠B=90°.13.如图,在5×3的正方形网格中,△ABC的顶点均在格点上,则∠ABC+∠ACB=.14.如图,有一四边形空地ABCD,AB⊥AD,AB=3,AD=4,BC=12,CD=13,则四边形ABCD的面积为.15.△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列条件中能判定是直角三角形的是.(填写序号)(1)a:b:c=5:12:13,(2)a=1.5,b=2.5,c=2,(3)(a﹣b)2+2ab=c2,(4)∠A:∠B:∠C=3:4:5,(5)a=n2﹣1,b=2n,c=n2+1(n为大于1的正整数)三.解答题16.如图,△ABC中,BC的垂直平分线DE分别交AB、BC于点D、E,且BD2﹣DA2=AC2.(1)求证:∠A=90°;(2)若AB=8,AD:BD=3:5,求AC的长.17.如图所示,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=17.(1)连接BC,求BC的长;(2)判断△BCD的形状,并说明理由.18.阅读下列一段文字,然后回答下列问题.已知平面内两点M(x1,y1)、N(x2,y2),则这两点间的距离可用下列公式计算:MN=.例如:已知P(3,1)、Q(1,﹣2),则这两点间的距离PQ==.特别地,如果两点M(x1,y1)、N(x2,y2)所在的直线与坐标轴重合或平行于坐标轴或垂直于坐标轴,那么这两点间的距离公式可简化为MN=丨x1﹣x2丨或丨y1﹣y2丨.(1)已知A(1,2)、B(﹣2,﹣3),试求A、B两点间的距离;(2)已知A、B在平行于x轴的同一条直线上,点A的横坐标为5,点B的横坐标为﹣1,试求A、B两点间的距离;(3)已知△ABC的顶点坐标分别为A(0,4)、B(﹣1,2)、C(4,2),你能判定△ABC 的形状吗?请说明理由.参考答案一.选择题1.解:A、32+42≠82,不能构成直角三角形,故本选项不符合题意;B、52+62≠102,不能构成直角三角形,故本选项不符合题意;C、52+52≠112,不能构成直角三角形,故本选项不符合题意;D、52+122=132,能构成直角三角形,故本选项符合题意.故选:D.2.解:A、∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,所以∠C=180°×=75°≠90°,故△ABC不是直角三角形;B、因为∠C=∠A﹣∠B,即∠A=∠B+∠C,且∠A+∠B+∠C=180°,所以2∠A=180°,解得∠A=90°,故△ABC是直角三角形;C、因为b2=a2﹣c2,所以a2=b2+c2,故△ABC是直角三角形;D、因为a:b:c=5:12:13,设a=5x,b=12x,c=13x,(5x)2+(12x)2=(13x)2,故△ABC是直角三角形.故选:A.3.解:如图,作BA边的高CD,设与AB的延长线交于点D,∵∠ABC=150°,∴∠DBC=30°,∵CD⊥BD,BC=15米,∴CD=7.5米,∵AB=10米,∴S△ABC=AB×CD=×10×7.5=37.5(平方米),∵每平方米售价2a元,∴购买这种草皮至少为37.5×2a=75a(元),故选:A.4.解:①∵AB2+BC2=AC2,∴∠B=90°,∴△ABC是直角三角形;②∵∠A=90°﹣∠B,∴∠A+∠B=90°,∴∠C=90°,∴△ABC是直角三角形;③∵∠A=∠B=∠C,∴∠C=180°=90°,∴△ABC是直角三角形;④∵∠A:∠B:∠C=5:3:2,∴∠A=180°×=90°,∴△ABC为直角三角形.∴能确定△ABC是直角三角形的有①②③④共4个,故选:D.5.解:如果∠A﹣∠B=∠C,那么△ABC是直角三角形,A正确;如果a2=b2﹣c2,那么△ABC是直角三角形且∠B=90°,B错误;如果∠A:∠B:∠C=1:3:2,设∠A=x,则∠B=2x,∠C=3x,则x+3x+2x=180°,解得,x=30°,则3x=90°,那么△ABC是直角三角形,C正确;如果a2:b2:c2=9:16:25,则如果a2+b2=c2,那么△ABC是直角三角形,D正确;故选:B.6.解:在△ABC中AC=24,AB=25,BC=7,∵242+72=625=252,即AC2+BC2=AB2,∴△ABC为直角三角形,∴∠ACB=90°.过点C作CM∥EF交AB于点M,则CM∥BD,如图所示.∵CM∥EF,∠EFC=136°,∴∠MCF=180°﹣∠EFC=44°,∴∠BCM=∠ACB﹣∠MCF=46°.又∵CM∥BD,∴∠CBD=∠BCM=46°.故选:C.7.解:由网格图可得:AB2=22+32=4+9=13,CB2=22+12=4+1=5,CD2=22+22=4+4=8,∴CB2+CD2=5+8=13=AB2,∴线段AB,BC,CD首尾相连拼成的三角形是直角三角形,故选:A.8.解:A、三角形的三边满足关系a+b>c,不符合勾股定理的逆定理,故本选项不符合题意;B、∵(32)2+(42)2≠(52)2,∴此三角形不是直角三角形,故本选项不符合题意;C、三角形的一边等于另一边的一半无法判断三角形的形状,故本选项不符合题意;D、∵152+202=252,∴此三角形是直角三角形,故本选项符合题意.故选:D.9.解:如图,C1,C2,C3,C4均可与点A和B组成直角三角形.故选:C.10.解:∵△ABC中,∠C=90°,AC=8,BC=6,AB=10,82+62=102,∴△ABC是直角三角形,∠C=90°,连接CP,∵PD⊥AC于D,PE⊥CB于E,∴四边形DPEC是矩形,∴DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,∴DE=CP==4.8,故选:B.二.填空题11.解:设三角形的三边是3x:4x:5x,∵(3x)2+(4x)2=(5x)2,∴此三角形是直角三角形,∵它的周长是36,∴3x+4x+5x=36,∴3x=9,4x=12,∴三角形的面积=×9×12=54,故答案为:54.12.解:∵a2+c2=b2时,△ABC是以AC为斜边的直角三角形,∴当a、b、c满足a2+c2=b2时,∠B=90°.故答案为:a2+c2=b2.13.解:方法一:如图,取格点D,连接AD、CD,根据网格和勾股定理,得AD=DC==,AC==,∴AD2+DC2=AC2,∴∠ADC=90°,∴∠DAC=45°.∴∠DAC=∠ABC+∠ACB=45°.故答案为:45°.方法二:如图,取格点D,连接BD,根据网格和勾股定理,得AB==,AC==,BC=5,在△ABD中,AD=1,BD==,AB=,∵=,==,==,∴==,∴△ABC∽△DAB,∴∠BAC=∠ADB=180°﹣45°=135°,∴∠ABC+∠ACB=180°﹣135°=45°.故答案为:45°.14.解:如图,连接BD,∵在Rt△ABD中,AB⊥AD,AB=3,AD=4,根据勾股定理得,BD=5,在△BCD中,BC=12,CD=13,BD=5,∴BC2+BD2=122+52=132=CD2,∴△BCD为直角三角形,∴S四边形ABCD=S△ABD+S△BCD=AB•AD+BC•BD=×3×4+×12×5=36.故答案为:36.15.解:(1)(5x)2+(12x)2=(13x)2,符合勾股定理的逆定理,能够判断△ABC是直角三角形,符合题意;(2)(1.5)2+(2)2=(2.5)2,符合勾股定理的逆定理,能够判断△ABC是直角三角形,符合题意;(3)由(a﹣b)2+2ab=c2,可得:a2+b2=c2,符合勾股定理的逆定理,能够判断△ABC 是直角三角形,符合题意;(4)∠A:∠B:∠C=3:4:5,此时∠C=100°,不能够判断△ABC是直角三角形,不符合题意;(5)(n2﹣1)2+(2n)2=(n2+1)2,符合勾股定理的逆定理,能够判断△ABC是直角三角形,符合题意;故答案为:(1)(2)(3)(5).三.解答题16.(1)证明:连接CD,∵BC的垂直平分线DE分别交AB、BC于点D、E,∴CD=DB,∵BD2﹣DA2=AC2,∴CD2﹣DA2=AC2,∴CD2=AD2+AC2,∴△ACD是直角三角形,且∠A=90°;(2)解:∵AB=8,AD:BD=3:5,∴AD=3,BD=5,∴DC=5,∴AC===4.17.解:(1)∵∠A=90°,∴BC===15;(2)△BCD是直角三角形,理由:∵BC2=152=225,BD2=82=64,CD2=172=289,∴BC2+BD2=CD2=289,∴△BCD是直角三角形.18.解:(1)AB==;(2)AB=丨5﹣(﹣1)丨=6;(3)△ABC是直角三角形理由:∵AB==,BC==5,AC==,∴AB2+AC2=()2+()2=25,BC2=52=25.∴AB2+AC2=BC2∴△ABC是直角三角形.。
新人教版初中数学八年级下册17.2.1 勾股定理的逆定理
8.(2018·南通)下列长度的三条线段能组成直角三角形的是( A )
A.3,4,5
B.2,3,4
C.4,6,7
D.5,11,12
9.(2019·益阳)已知 M,N 是线段 AB 上的两点,AM=MN=2, NB=1,以点 A 为圆心,AN 长为半径画弧;再以点 B 为圆 心,BM 长为半径画弧,两弧交于点 C,连接 AC,BC,则△ABC 一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
答案显示
1.如果两个命题的题设和结论刚好相反,那么这样的两个命题 叫做__互__逆___命__题___,如果把其中一个命题叫做原命题,那么 另一个叫做它的__逆__命__题____.
2.一般地,如果一个定理的逆命题经过证明是正确的,那么它 也是一个定理,称这两个定理互为_逆__定___理__.
3.下列命题的逆命题正确的是( A ) A.两条直线平行,内错角相等 B.若两个实数相等,则它们的绝对值相等 C.全等三角形的对应角相等 D.若两个实数相等,则它们的平方也相等
17.(2019·河北)已知:整式 A=(n2-1)2+(2n)2,整式 B>0. 尝试 化简整式 A. 解:A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1 =(n2+1)2.
发现 A=B2,求整式 B. 解:∵A=B2,B>0,∴B=n2+1.
联想 由上可知,B2=(n2-1)2+(2n)2,当 n>1 时,n2-1,2n,
(30°,60°,45°)的和的形式; (2)用旋转法将△CPB 绕点 C 顺时针旋转 90°到△CP′A 的位置.
解:如图,将△CPB 绕点 C 顺时针旋转 90°得△CP′A,则 P′C =PC=2,P′A=PB=1,∠BPC=∠AP′C,连接 PP′. 因为∠PCP′=90°,所以 PP′2=22+22=8. 又因为 P′A=1,PA=3, 所以 PP′2+P′A2=8+1=9,PA2=9. 所以 PP′2+P′A2=PA2. 所以∠AP′P=90°. 易知∠CP′P=45°, 所以∠BPC=∠AP′C=∠AP′P+∠CP′P=90°+45°=135°.
2019-2020人教版八年级数学下册17.2勾股定理的逆定理同步课件(共32张)
17.2 勾股定理的逆定理
第十七章 勾股定理
17.2 勾股定理的逆定理
考场对接
第十七章 勾股定理
考场对接
题型一 识别二次根式
例题 1 满足下列条件的△ABC 中, 不是直角三角形的是( D ).
A.b2=c2-a2
B.a∶b∶c=3∶4∶5
C.∠C=∠A-∠B
D.∠A∶∠B∶∠C=12∶13∶15
中,有 EF2=(a2)2+(a4)2=156a2, 在 Rt△ADF 中,有 AF2=(a2)2+a2=54a2,在 Rt△ABE
中,有
13 BE=a-4a=4a,
所以
AE2=a2+(34a)2=1265a2,所以
AF2+EF2=AE2,所以△AFE
为直角三角形, 且∠AFE=90°, 即 AF⊥EF.
谢 谢 观 看!
12=36.
第十七章 勾股定理
锦囊妙计 求不规则图形的面积
在求不规则图形的面积时, 关键是通过将其分割或拼接, 转化为求规则图形 的面积, 这是转化思想的具体应用.
第十七章 勾股定理
题型五 利用勾股定理的逆定理解决实际问题
例题 8 如图 17-2-7 所示, 甲、乙两船同时从 A 港出发, 甲船沿北 偏东 35°的方向, 以每小时 9 海里的速度向 B 岛驶去, 乙船沿另 一个方向, 以每小时 12 海里的速度向 C 岛驶去, 3 小时后两船同 时到达目的地. 如果两船航行的速度不变, 且 C, B 两岛相距 45 海里, 那么乙船航行的方向是南偏东多少度?
则△ABC 是( A ).
A.直角三角形 C.钝角三角形
B.锐角三角形 D.以上都不对
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A D C
B 八年级17.2《勾股定理的逆定理》检测题
一、填空题
1、在△ABC 中,∠A ∶∠B ∶∠C=1∶2∶3,则BC ∶CA ∶AB=________.
2、如图,△ABC 中,∠C=90°,BD 平分∠ABC ,DE 垂直平分AB ,E 为垂足,且DE=1cm ,则AB=________,BC=________,AC=________.
3、在△ABC 中,∠C=90°
(1)若a=5,b=12,则c=________. (2)若b=7,c=9,则a=________.
(3)若c=10,a ∶b=3∶4,则a=________,b=________.
(4)若a=b=3,则c= ;
(5)若a=1,c=2,则b= ;
(6)若cm BC A 2,30=︒=∠,则AB= AC= .
(7)若c=b +1,b -a=1,则a=________,b=________,c=________.
4、直角三角形的两条边是3和4,则斜边是____________________.
5、已知直角三角形的两边长为3厘米和5厘米,则第三边长为
6、已知等边三角形的边长为2厘米,则它的高为 ;若等边三角形的边长为a ,则它的高为 ,面积为 .
7、一个直角三角形的三边长为连续的整数,则它的三边长分别为 ;一个直角三角形的三边长为连续的三个偶数,则它的周长为 .
8、等腰三角形的周长为36厘米,底边上的高为12厘米,则该三角形的面积为 .
9、已知:在△ABC 中,∠B=45°,∠C=60°,AB=26,则BC= ,ABC S ∆= . 择10、已知:△ABC 中,AB=15,BC=14,AC=13,则ABC S ∆= .二、选题 1、以下列各组数为边长,能组成直角三角形的是( )
(A )3,4,5 (B )2,3,4 (C )5,10,15 (D )4,5,6
2、下列条件①∠A=∠B=∠C ; ②∠A+∠B=∠C ; ③∠A=∠B=300;④∠A+∠B=450;⑤∠A=∠B=450;能判断△ABC 是直角三角形的条件有( )
(A )2个 (B )3个 (C )4个 (D )所有的条件都不能判断
3、下列各组数中,能组成直角三角形的三边长的组数有( )
(1)25、7、24;(2)16、20、12;(3)1、2、3;(4)9、40、41;(5)32、42、52。
A 、2组
B 、3组
C 、4组
D 、5组
4、一个等腰三角形的腰2cm ,底边上的高线的长是cm 1,那么它的周长是( ) (A )()cm 32+ (B )()cm 322+ ( C )()cm 522+ (D )cm 32
5、如图ΔABC 中,AD ⊥BC 于D ,若AB=13,AC=8,则=-22DC BD ( )
A 、105
B 、233
C 、105
D 、233
三、解答题
C A
B D。