一种基于SPWM控制的逆变器设计与仿真

合集下载

电压型单相SPWM半桥逆变器电路仿真实验

电压型单相SPWM半桥逆变器电路仿真实验

电压型单相SPWM半桥逆变器电路仿真实验实验目的掌握电压型单相SPWM半桥逆变器仿真模型的建立及模块参数和仿真参数的设置。

理解电压型单相SPWM半桥逆变器的工作原理及仿真波形。

实验设备:MA TLAB/Simulink/PSB实验原理电压型单相SPWM半桥逆变器如图6-1所示。

图6-1 电压型单相SPWM半桥逆变器电路实验内容启动Matlab,建立如图6-2所示的电压型单相SPWM半桥逆变器结构模型图。

图6-2 电压型单相SPWM半桥逆变器模型双击各模块,在出现的对话框内设置相应的模型参数,如图6-3、6-4、6-5、6-6、6-7所示。

图6-3 直流电压源Ed/1-1模块参数图6-4 直流电压源Ed/1-2模块参数图6-5 通用桥模块参数图6-6 PWM发生器模块参数图6-7 负载模块参数系统仿真参数设置如图6-8所示。

图6-8 系统仿真参数运行仿真模型系统即可得到输出端负载电流和输出端负载电压的仿真波形,如图6-9所示。

图6-9 电压型单相SPWM半桥逆变器仿真波形(输出频率为50Hz)在PWM发生器模块中,将半桥逆变器输出电压频率设置为200Hz,此时的仿真波形如图6-10所示。

图6-10 电压型单相SPWM半桥逆变器仿真波形(输出频率为200Hz)改变PWM发生器模块的输出电压频率参数,或改变负载模块的参数,即可得到不同工作情况下的仿真波形。

例如将半桥逆变器输出电压频率设置为25Hz,此时的仿真波形如图6-11所示。

图6-11 电压型单相SPWM半桥逆变器仿真波形(输出频率为25Hz)实验总结1、 总结电压型单相SPWM 半桥逆变器的工作原理。

如上图。

采用双极性方式时,在r u 的半个周期内,三角波载波是有正有负,所得的PWM 波也是有正有负。

仍然在调制信号r u 和载波信号c u 的交点时刻控制各开关器件的通断。

在r u 的正负半周,对各开关器件的控制规律相同。

即当r c u u >时,给1T 以导通信号,给2T 以关断信号,这时如o 0i >,则1T 通,如o 0i <,则1D 通,不管哪种情况都是输出电压o d u U =。

基于三相并网逆变器SPWM及SVPWM控制的仿真研究

基于三相并网逆变器SPWM及SVPWM控制的仿真研究

基于三相并网逆变器SPWM及SVPWM控制的仿真研究三相并网逆变器是一种常见的电力电子设备,用于将直流电能转化为交流电能并连接到电网中。

在实际应用中,为了提高逆变器的性能和控制精度,常常采用了SPWM和SVPWM控制策略。

本文对基于三相并网逆变器的SPWM和SVPWM控制进行了仿真研究。

首先,介绍了三相并网逆变器的基本工作原理。

三相并网逆变器由整流器和逆变器两个部分组成。

整流器将电网中的交流电转化为直流电,逆变器将直流电转化为交流电并注入电网中。

同时,逆变器还需要提供电网中的电能质量控制,包括功率因数修正和谐波消除等。

接着,详细介绍了SPWM和SVPWM控制策略。

SPWM控制是一种常见的逆变器控制方法,通过调节逆变器输出电压的幅值和频率来实现对电网的注入电能控制。

SVPWM控制是一种更精确的控制方法,将逆变器输出电压分解为两个三角波信号,并通过调节三角波波形的占空比和相位来精确控制逆变器输出电压。

其优点是能够实现连续变化的电压和频率控制,提高了系统的运行稳定性和效率。

然后,搭建了三相并网逆变器的仿真模型,并分别进行了SPWM和SVPWM控制的仿真实验。

在仿真实验中,选择了逆变器的输出电压波形、频率和相位作为控制目标,通过调节SPWM和SVPWM控制的参数来实现对逆变器输出电压的控制。

仿真结果表明,SVPWM控制相比于SPWM控制具有更高的控制精度和稳定性,在电网注入电能方面效果更好。

最后,对仿真结果进行了分析和讨论。

在仿真实验中,SPWM控制的输出电压存在较大的气动调节误差,而SVPWM控制的输出电压更接近于理想波形,控制精度更高。

此外,SVPWM控制可以实现更高的电压变化速率和更精确的相位控制,更适用于一些对控制精度要求较高的应用场景。

综上所述,基于三相并网逆变器的SPWM和SVPWM控制是一种有效的控制策略。

本文通过仿真研究发现,SVPWM控制相比于SPWM控制具有更高的控制精度和稳定性,可以满足一些对电网注入电能控制要求较高的应用需求。

三相SPWM逆变器的调制建模和仿真详解

三相SPWM逆变器的调制建模和仿真详解

三相SPWM逆变器的调制建模和仿真详解随着电力电子技术的发展,SPWM正弦脉宽调制法正逐渐被人们熟悉,这项技术的特点是通用性强,原理简单。

具有开关频率固定,控制和调节性能好,能消除谐波,设计简单,是一种比较好的波形改善法。

它的出现为中小型逆变器的发展起了重要的推动作用。

由于大功率电力电子装置的结构复杂,若直接对装置进行实验,且代价高费时费力,故在研制过程中需要借助计算机仿真技术,对装置的运行机理与特性,控制方法的有效性进行试验,以预测并解决问题,缩短研制时间。

MATLAB软件具有强大的数值计算功能,方便直观的Simulink建模环境,使复杂电力电子装置的建模与仿真成为可能。

本文利用MATLAB/Simulink为SPWM逆变电路建立系统仿真模型,并对其输出特性进行仿真分析。

首先介绍的是三相电压型桥式逆变电路原理,其次阐述了SPWM逆变器的工作原理及特点,最后详细介绍了三相电压源SPWM逆变器的建模与仿真结构,具体的跟随小编一起了解一下。

一、三相电压型桥式逆变电路三相电压型桥式逆变电路如图1所示,电压型三相桥式逆变电路的基本工作方式也是180导电方式,即每个桥臂的导电角度为180,同一相上下2个桥臂交替导电,各相开始导电的角度依次相差120。

这样,在任一瞬间,将有3个桥臂同时导通。

可能是上面一个臂下面2个臂,也可能是上面两个臂下面一个臂同时导通。

因为每次换流都是在同一相上下两个桥臂之间进行的,因此也被称为纵向换流。

当urU》uc时,给上桥V1臂以导通信号,给下桥臂V4以关断信号,则U相相对于电源假想中点N的输出电压uUN=Ud/2。

当urU《uc时,给V4导通,给V1关断,则uUN=Ud/2。

V1和V4的驱动信号始终是互补的。

当给V1(V4)加导通信号时,可能是V1(V4)导通,也可能是二极管VD1(VD4)续流导通。

二、SPWM逆变器的工作原理及特点SPWM,他是根据面积等效原理,PWM波形和正弦波是等效的,对于正弦波的负半周,也可以用同样的方法得到PWM波形。

(完整版)三相SPWM逆变器仿真

(完整版)三相SPWM逆变器仿真

三相SPWM逆变器仿真一、原理分析1、基本原理按照输出交流电压半周期内的脉冲数,脉宽调制(PWM)可分为单脉冲调制和多脉冲调制;按照输出电压脉冲宽度变化规律,PWM可分为等脉宽调制和正弦脉宽调制(SPWM)。

等脉宽调制产生的电压波形中谐波含量仍然很高,为了使输出电压波形中基波含量增大,应选用正弦波作为调制信号u R。

这是因为等腰三角形的载波u T上、下宽度线性变化,任何一条光滑曲线与三角波相交时,都会得到一组脉冲宽度正比于该函数值的矩形脉冲。

而且在三角载波u T不变条件下,改变正弦调制波u R的周期就可以改变输出脉冲宽度变化的周期;改变正弦调制波u R的幅值,就可改变输出脉冲的宽度,进而改变u D中基波u D1的大小。

这就是正弦脉宽调制(sine pulse width modulated,SPWM)。

2、正弦脉宽调制方法(此处仅介绍了采样法)SPWM是以获得正弦电压输出为目标的一种脉宽调制方式。

这里就以应用最普遍的三相电压源型逆变电路来讨论SPWM具体实现方法。

下图就是三相电压源型PWM逆变器主电路结构图:图—1上图为一三相电压源型PWM逆变器,VT1~VT6为高频自关断器件,VD1~VD6为与之反并联的快速恢复二极管,为负载感性无功电流提供通路。

两个直流滤波电容C串联接地,中点O’可以认为与三相Y接负载中点O等电位。

逆变器输出A、B、C三相PWM电压波形取决于开关器件VT1~VT6上的驱动信号波行,即PWM的调制方式。

假设逆变电路采用双极性SPWM控制,三相公用一个三角形载波u T,三相正弦调制信号u RA、u RB、u RC互差120o,可用A相来说明功率开关器件的控制规律,正如下图中所示。

当u RA>u T时,在两电压的交点处,给A相上桥臂元件VT1导通信号、下桥臂元件VT4关断信号,则A相与电源中点O’间的电压u AO’=E/2。

当u RA<u T时,在两电压的交点处给VT4导通信号、VT1关断信号,则u AO’=-E/2。

SPWM波控制逆变器双闭环PID调节器的建模与仿真

SPWM波控制逆变器双闭环PID调节器的建模与仿真

SPWM波控制逆变器双闭环PID调节器的建模与仿真随着电力行业的快速发展,逆变器的应用越来越广泛,逆变器的好坏会直接影响整个系统的逆变性能和带载能力。

逆变器的控制目标是提高逆变器输出电压的稳态和动态性能,稳态性能主要是指输出电压的稳态精度和提高带不平衡负载的能力;动态性能主要是指输出电压的THD(Total Hannonic Distortion) 和负载突变时的动态响应水平。

在这些指标中对输出电压的THD 要求比较高,对于三相逆变器,一般要求阻性负载满载时THD 小于2%,非线性满载(整流性负载)的THD 小于5%.这些指标与逆变器的控制策略息息相关。

文中主要介绍如何建立电压双环SPWM 逆变器的数学模型,并采用电压有效值外环和电压瞬时值内环进行控制。

针对UPS 单模块10 kVA 单相电压型SPWM 逆变器进行建模仿真。

通过仿真,验证了控制思路的正确性以及存该控制策略下的逆变器所具有的鲁棒性强,动态响应快,THD 低等优点。

并以仿真为先导,将其思想移植到具体开发中,达到预期效果。

1 三电平逆变器单相控制模型的建立带LC 滤波器的单相逆变器的主电路结构如图1 所示。

图1 中L 为输出滤波电感,C 为滤波电容,T1,T2,T3,T4 分别是用来驱动IGBT 的三电平的SPWM 波,U0 为输出负载两端的电压。

在建立控制系统的仿真模型时,需要采集负载两端的电压与实际要求的电乐值做比较,然后通过调节器可以得到所需要调节的值。

在此仿真模型中,驱动波形采用的是三电平的SPWM 波形,具体的产生原理在这不做详细描述。

在Matlah 的Simlink 库中SPWM 波的产生如图2 所示,这里调制比设为0.8。

图1 三电平逆变器单相主电路图2 四相SPWM 产生电路。

三相电压型SPWM逆变器仿真分析及应用

三相电压型SPWM逆变器仿真分析及应用

三相电压型SPWM逆变器仿真分析及应用三相电压型SPWM逆变器是一种常见的电力电子装置,用于将直流电能转换为交流电能。

它广泛应用于可再生能源发电系统、电动汽车充电系统、UPS电源等领域。

本文将对三相电压型SPWM逆变器进行仿真分析,并讨论其在实际应用中的一些关键技术。

首先,我们来介绍一下三相电压型SPWM逆变器的工作原理。

该逆变器由六个开关管组成,三个开关管连接到每个电压型逆变器的输入端,三个开关管连接到中性点。

逆变器的输入是直流电压,输出是三相交流电压。

逆变器的工作原理是通过不同开关管的开关状态,控制直流电压经过逆变器的辅助电路,从而产生所需的交流电压。

在SPWM控制策略下,通过对开关管的PWM波形进行调制,可以实现对输出电压的调节。

接下来,我们进行三相电压型SPWM逆变器的仿真分析。

首先,我们需要建立逆变器的数学模型,并设计控制策略。

然后,利用数值计算软件进行仿真模拟,得到逆变器的输出波形和性能参数。

最后,对仿真结果进行分析和验证。

在仿真过程中,我们可以通过调节PWM波形的频率、幅值和相位等参数,观察输出电压的变化情况。

同时,可以对逆变器的效率、谐波含量、响应时间等性能指标进行评估和改进。

通过仿真分析,可以帮助我们更好地理解逆变器的工作原理和特性,并为实际应用中的设计和优化提供参考。

除了仿真分析,三相电压型SPWM逆变器还有一些关键技术需要注意。

首先是开关管的选择和驱动电路的设计,要保证开关管具有足够的电流和电压承受能力,并且能够快速开关。

其次是PWM控制策略的设计,包括调制波形的产生方法和控制方法的选择,以实现输出电压的精确控制。

此外,还需要考虑逆变器的过电流保护、温度保护、短路保护等安全措施。

综上所述,三相电压型SPWM逆变器是一种常见的电力电子装置,在可再生能源发电系统、电动汽车充电系统、UPS电源等领域有广泛应用。

通过仿真分析和关键技术的研究,可以提高逆变器的性能和可靠性,推动其在实际应用中的进一步发展。

单相和三相逆变器SPWM调制技术的仿真与分析

目录1.引言 .......................................................................................... - 2 -2.PWM控制的基本原理........................................................... - 2 -3.PWM逆变电路及其控制方法............................................... - 3 -4.电路仿真及分析 ...................................................................... - 4 -4.1双极性SPWM波形的产生 . (4)4.2三相SPWM波形的产生 (6)4.3双极性SPWM控制方式单相桥式逆变电路仿真及分析-7-5.双极性SPWM控制方式的单相桥式逆变电路和三相逆变电路比较分析 .................................................................................. - 12 -6.结论 ........................................................................................ - 13 -7.参考文献 ................................................................................ - 13 -1. 引言PWM 技术的的应用十分广泛,目前中小功率的逆变电路几乎都采用了PWM 技术。

它使电力电子装置的性能大大提高,因此它在电力电子技术的发展史上占有十分重要的地位。

PWM 控制技术正是有赖于在逆变电路中的成功应用,才确定了它在电力电子技术中的重要地位。

基于SPWM逆变器控制系统的建模与仿真

C i L馋 电 球 】 I :
21 00年 7月 2 5日第 2 7卷第 4 期
Tee o P we c n lg lc m o rTe h oo y J 1 5,2 1 u.2 0 0,Vo.2 .4 1 7 No
文 章编号 :0 93 6 (0 0 0 —0 40 1 0 —6 4 2 1 )40 0 —4
c r e tfe b c o t o Ss lc e sa b te c e .Fia l t esmu a i n r s l ft es lc e o to c e h w u r n e d a k c n r ¨ ee t d a e t rs h me nl y h i lt e u t o h ee t d c n r l h me s o o s s
(S h o fOp ia e t i l n o u e g n e i g co l t l o c Elc rc d C mp t rEn i e r ,Un v r i f a a n i e st o y
S a g a o ce c n c n l g h n h if rS in e a d Te h oo y,S a g a 0 0 3,Ch n ) h nh i 0 9 2 ia
Ab ta t n d u l l o o to y t m,i r e o o t i e tr c n r l fe t h n e t r mu ta h e e t e sa e s r c :I o b e o p c n r 1 s e - s n o d rt b an b te o to f c ,t e iv re s c iv h t t e f e b c e o p i g n t i p p r a e n sa e f e b c e o p ig,t e S W M t e t a d lwa s a l h d e d a k d c u l .I h s a e ,b s d o t t e d a k d c u l n n h P ma h ma i l c mo e s e t b i e , s a d t e et r p s d c n r l c e sa ec mp r d,b n l zn h o n h n t h wo p o o e o t o h me r o a e s y a a y ig t e c mma d ta s e u c i n o h y a c ta k n r n f r n t ft e d n mi r c — f o

PSIM仿真设计单相桥式SPWM逆变器

PSIM仿真设计单相桥式PWM逆变器一、实验目的1.加深对SPWM基本原理的理解2.熟悉双极性脉冲宽度调制和单极倍频正弦脉宽调制的原理。

3.掌握PSIM仿真软件基本操作并搭建单相SPWM仿真验证双极性脉冲宽度调制和单极倍频正弦脉宽调制;实验验证单级倍频正弦脉宽调制的特点。

二、实验设备表4-1 实验所需设备表三、实验原理(一)、单相桥式电路(H桥)拓扑及其工作原理电压型全桥逆变电路共有四个开关管:T1、T2、T3、T4和四个续流二极管二极管D1、D2、D3、D4,如图4.1所示。

当T1、T4导通时,V ab=V D;当T2、T3导通时,V ab=-V D;当T1、T3导通时V ab=0;当T2、T4导通时,V ab=0(其中T1、T2不能同时导通;T3、T4不能同时导通)。

因此控制四个开关管的通断可以控制输出电压在V D、-V D、0之间变化。

(二)、SPWM 的原理采样控制理论有一个重要的原理——冲量等效原理:大小、波形不相同的窄脉冲变量,例如电压V(t),作用于惯性系统(例如RLC电路)时,只要它们的冲量,即变量对时间的积分相等,其作用效果相同。

V DV o 图3-1 单相桥式逆变电路的拓扑结构图3-2 用SPWM电压等效正弦电压如果将图3-2所示的标准正弦波等分成很多份,那么一个连续的正弦波也可以看作是一系列幅值为正弦波片段的窄脉冲组成。

如果每个片段的面积分别与①、②、③…所示一系列等宽不等高的矩形窄脉冲的面积相等,那么从冲量等效的观点看,由①、②、③…这些等宽不等高矩形脉冲波构成的阶梯波和标准正弦波是等效的。

进一步,如果让图3-1所示逆变器产生如图3-2所示一系列幅值为±U d 的等高不等宽矩形电压窄脉冲,每个电压脉冲的面积(冲量)分别与①、②、③…面积相等,于是图3-2中的登高不等宽的脉冲电压和正弦电压也是冲量等效的。

作用于R、L、C惯性系统后基本是正弦波。

※(三)、双极性正弦脉冲宽度调制(重点)图3-3 双极性正弦脉宽调制输出波形基于载波的SPWM如图3-3所示,图中的高频三角波v c成为载波,正弦波v r称为调制波或参考调制波。

PSIM仿真设计单相桥式SPWM逆变器

PSIM仿真设计单相桥式PWM逆变器一、实验目的1.加深对SPWM基本原理的理解2.熟悉双极性脉冲宽度调制和单极倍频正弦脉宽调制的原理。

3.掌握PSIM仿真软件基本操作并搭建单相SPWM仿真验证双极性脉冲宽度调制和单极倍频正弦脉宽调制;实验验证单级倍频正弦脉宽调制的特点。

二、实验设备表4-1 实验所需设备表三、实验原理(一)、单相桥式电路(H桥)拓扑及其工作原理电压型全桥逆变电路共有四个开关管:T1、T2、T3、T4和四个续流二极管二极管D1、D2、D3、D4,如图4.1所示。

当T1、T4导通时,V ab=V D;当T2、T3导通时,V ab=-V D;当T1、T3导通时V ab=0;当T2、T4导通时,V ab=0(其中T1、T2不能同时导通;T3、T4不能同时导通)。

因此控制四个开关管的通断可以控制输出电压在V D、-V D、0之间变化。

(二)、SPWM 的原理采样控制理论有一个重要的原理——冲量等效原理:大小、波形不相同的窄脉冲变量,例如电压V(t),作用于惯性系统(例如RLC电路)时,只要它们的冲量,即变量对时间的积分相等,其作用效果相同。

V DV o 图3-1 单相桥式逆变电路的拓扑结构图3-2 用SPWM电压等效正弦电压如果将图3-2所示的标准正弦波等分成很多份,那么一个连续的正弦波也可以看作是一系列幅值为正弦波片段的窄脉冲组成。

如果每个片段的面积分别与①、②、③…所示一系列等宽不等高的矩形窄脉冲的面积相等,那么从冲量等效的观点看,由①、②、③…这些等宽不等高矩形脉冲波构成的阶梯波和标准正弦波是等效的。

进一步,如果让图3-1所示逆变器产生如图3-2所示一系列幅值为±U d 的等高不等宽矩形电压窄脉冲,每个电压脉冲的面积(冲量)分别与①、②、③…面积相等,于是图3-2中的登高不等宽的脉冲电压和正弦电压也是冲量等效的。

作用于R、L、C惯性系统后基本是正弦波。

※(三)、双极性正弦脉冲宽度调制(重点)图3-3 双极性正弦脉宽调制输出波形基于载波的SPWM如图3-3所示,图中的高频三角波v c成为载波,正弦波v r称为调制波或参考调制波。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求, 不再 受 分裂 电容 的制 约 , 是通 常是 通过 空 间矢 但
方 案 的复杂 程度 。无论 是分 裂 电容式 三桥 臂还 是 四 桥 臂式 的逆 变器 拓 扑结 构 , 都是 通 过 引 出 中线来 调
b lt fi rils se i n r a e iiy o neta y tm si c e s d. Ke r y wo ds: W M ;nv ae ; ATLAB; o b e o p c n r l SP i e rM d u l -l o o to
ቤተ መጻሕፍቲ ባይዱ0 引 言
近 年 来 , 着 生产 生 活 中对 电源 质 量要 求 的不 随

要: 设计一种基 于 S WM控制 的逆 变器 , P 通过增加 B ot os 升压 电路 , 成 了逆 变器母 线 电压 的闭环 控制 , 完 同
时用 S WM 的占空比对逆 变器输出 电压进行 闭环 , P 从而实现双闭环控制 , 增加了逆变器 的功率和对不平 衡负载情 况
的处理 , 并运用 MA L B对控制策略进行仿真 验证 , 明双闭环控制和增加 B ot TA 证 os 的逆变 器设计 能够提 高逆变器 对
De i n a d i u a i n o n I e t r Ba e n PW M nt o sg n S m l to f a nv r e s d o S Co r l
Y N i - e, U A G J g w iL n
,I h n n Z A G Y 币 L eg , H N u S
三线制 , 但是这种逆变器只能给平衡负载供电, 在带
不平 衡 负 载 逆 变 器 中越 来 越 多地 采 用 了三 相 四线 制, 其主 要 区别在 于 三 相 四线 制 系统 通 过 不 同 的方
( 分 裂 电 容 式 )
( )三相 四桥 臂 b

图 1 逆变器拓 扑结 构

td b d i g Bo s o v re ,a d t e co e - o p c n rlo so tu ot g si lme td b sn u y r t fS — e y a d n o t n e t r n h l s d lo o to f t u p t l e wa mpe n e yu i g d t ai o P c i v a o W M.S h o b e l o o to sa c mp ih d o t e d u l o p c n rlwa c o l e .T e c n r ls a e y w s v rf d b s h o to t t g a e i e y MAT AB.T e r s l rv h t r i L h eut po e ta s t e p we f h n e tra d t e a i t fh n l g te c n i o f n a a c d la r n ra e ,a d t e fs e p n e a h o r e i v r n h b l yo a d i o d t n o b l n e d a e i ce s d n h t s o s — ot e i n h i u o a r
三相 四桥臂 的拓 扑结 构 主要是 在逆 变拓 扑结 构
式做 出了零 点 0, 为 第 四条 线 。根 据 引 入 中点 的 作 形式 不 同 , 以分 成 分 裂 电容 式 和三 相 四桥 臂 两 种 可
如图 1 示。 所
中再增加一对开关管, 通过这对开关管增加一对桥 ! 臂, 这种拓扑结构抛开了分裂电容式对电容的高要 ; 摹


童 . 曼 塑 … … … . … … … … 一 … … … 篁 … … …. … … … … … … … . …

… .
种 基 于 S W M 控 制 的 逆 变 器 设 计 与 仿 真 P
杨静伟 , 刚 , 卢 李声晋 , 玉峰 , 勇 张 周
( 西北工业大学 , 陕西西安 70 7 ) 10 2
为这种 拓 扑结构 的瓶 颈 , 同时 , 由于交流 电中带有 较
大 的谐 波 , 也对分 裂 电容提 出了更 高 的要 求 。
断提 升 , 逆变 器 的使 用越 来 越 广 泛 。通 常 把 直 流 电
变成 交 流 电的过 程 叫 做逆 变 , 成 逆 变 功 能 的 电路 完
称 为逆 变 电路 。逆 变 技术 的应 用大 大提 高 了 电能 的 使用 效率 以及 电源 的 质 量 , 因此 对 于节 约 能 源 等 方 面有 着重 要 的意 义 。传统 的逆 变器 系统 常采 用 三相
( ot et nP l eh ia U i r t, i n7 0 7 , h a N r w s r o t ncl n es y X 10 2 C i ) h e yc v i a n
Abs r c : nv re a e n S t a t An i et rb s d o PW M o r lwa e i n d.Thec o e c nto sd sg e l s d—lo o to fisbu ot g si e n— o p c n rlo t sv la ewa mplme
不平衡负载工况 的处理能力 , 并提高惯性系统 的快速 响应性 。 关键词 :P S WM; 逆变器 ; T A MA L B仿真 ; 双闭环控制
中图 分 类 号 : M3 T 4 文献标识码 : A 文章 编 号 :04 7 1 (0 2 0 - 0 3 0 10 - 0 8 2 1 )9 0 6・ 3 -
相关文档
最新文档