流体包裹体测定计算和分析
第三章 流体包裹体

三 淬火法
是测定熔融包体均一温度的基本方法,加 热达到预置温度和恒温时间后→瞬时落 入水中→快速冷却把包体变化固定下来。 (一)LGHC-1型高温淬火炉 操作方便,控温、控时自动化.一次能 同时测定多个样品,测温效率高,最高 使用温度1250℃。
(二)熔融包裹体的均一化现象和温度测定 • 气体的变化包括:气体消失、扩散聚集 和新生气泡等。 • (1)气体发生消失的现象主要见于介质密 度较小的两相熔熔包裹体中,在升温过 程中气泡开始缩小时的温度为包裹体的 初熔温度,气泡消失时的温度为其均一 化温度。
获得成岩成矿的可靠信息 可测T、 P、C、D (密度)、盐度 、同位 素组成 pH Eh粘度 年龄等。 找矿勘探
第二节 包裹体的成因与分类
• 一般认为只有符合均匀体系,封闭 体系和等容体系这三个基本条件的 包裹体才能提供有价值的信息。
•
•
一
均匀捕获和不均匀捕获
•
通常认为包裹体是从均匀介质中捕获 的。如果天然矿物中固相,液相,气 相之间比例稳定,则为均匀捕获。 在单个矿物中,有时会看到一群包裹 体,具有可变的相比例,则为不均匀 捕获。有下列几种情况:
四 石盐子矿物的溶化 • 含石盐包裹体的均一方式有三种 (1)石盐在气泡消失之前溶化 (TsNaCl<Th); (2)石盐与气泡同时消失(TsNaCl=Th); (3)石盐在气泡消失之后溶化(Th <TsNaCl)。
五 CO2和H2O-- CO2流体包裹体测压 • 在已知CO2摩尔百分数和均一温度的条件 下,可以通过H2O、CO2体系的P-X相图 求取均一时的压力,即最小捕获压力。
二 流体等容线+独立的地质温度计
这是上述方法的一个发展,该法使用一个单独 估算的捕获温度来确定源于Th点等容线上的一 特定位置。
流体包裹体测温实验

流体包裹体显微测温实验一、实验目的在已经具备一定有关流体包裹体的基础知识下,通过老师的演示及讲解:(1)了解流体包裹体岩相学基础,能够识别出不同类型的包裹体;(2)明白不同流体包裹体体系下的冷冻—均一法测温方法;(3)能观察到在不同温度下流体包裹体发生的不同的相变;(4)通过对包裹体的观察,可明确在NaCl-H2O体系流体包裹体下的三个温度——初熔温度、冰点温度、均一温度;在NaCl-H2O-CO2体系流体包裹体下的四个温度——液态二氧化碳变为固态二氧化碳温度、固态二氧化碳熔融温度、笼形物分解温度、均一温度。
二、实验原理(1)包裹体研究理论前提:1. 均匀体系。
包裹体形成时,被捕获的流体是均匀体系,即主矿物是在均匀体系中生长的。
2. 封闭体系。
充填(滞留)在晶体缺陷中的流体为主矿物封闭,形成独立的封闭体系,没有外来物质的加入和内部物质的逸出。
3. 等容体系。
包裹体形成后,体积基本恒定不变,保持等容体系的特点,因而可以利用各种与之有关的物理化学相图。
(2)冷冻—均一法:1. 冷冻法:指在包裹体冷却到室温以下时观察液相向固相转变(即固化)过程。
基本原理是通过在冷台上改变温度,观察包裹体所发生的相变过程。
符合拉乌尔定律——对于稀浓度溶液而言,溶液的冰点下降数值与溶质的种类及性质无关,而仅仅取决于溶解在水(溶剂)中的溶质的浓度;对于具有相同浓度的各种溶质,其冰点的下降温度也相同。
2. 均一法:根据包裹体的基本假设和前提,包裹体所捕获的流体为原始均匀的单一相流体,它们充满着整个包裹体空间。
随着温度下降,流体(气体或液体)的收缩系数大于固体(主矿物)的收缩系数,包裹体将沿着等容线演化,一直到两相界面的位置,如果原来捕获的是大于临界密度的流体,则分离出一个气相,气体逸出后,由于表面张力的影响,气体在有利位置形成球形的气泡;如果原来捕获的是小于临界密度的富气体流体,则气体在流体中凝聚出一个液相,形成具有一个大气泡的两相包裹体。
流体包裹体成分分析

9/5/2017
16
熔体包裹体的成分分 析及方法
Three types of melt inclusions 电子探计分析(EPMA) 对熔融包裹体的大多数研究都用电 子探针分析主要元素。该方法可以 评价包裹体组分和多相性,并提供 岩浆混 合和 / 或 结晶分 异的证 据 。 EPMA 是测定包裹体中主要元素、 Cl、F、S的最精确方法。
ICP-MS法测定: REE and重金属元素 残渣 包裹体中稀土和 加一定量的去离子水在超声波清洗器中处理10分钟,用高速 离心机分离10分钟,吸取清液.
用离子色谱仪分析阴离子中的F-、Cl-、 用原子吸收光谱法测定 2+ +、Ca2+、Mg2+等 SO4 、-NO3 。另取样用 pH 电位法分 Na 、 K 析HCO3 和CO32主要阳离子
3
9/5/2017
包裹体的打开
目前打开包裹体的方法,常用的有 三种,即机械压碎法、研磨法和热 爆法。
9/5/2017
4
分析仪器和方法
包裹体群体气、液相成分代 表性仪器分析方法:包括四 极质谱仪、电感耦合等离子 (ICP)质谱仪和离子色谱 法。
9/5/2017
5
单个包裹体的成分测 定
单个包裹体的成分测定按照实验方 法又可以分为非破坏性和破坏性两 种,其中激光显微拉曼光谱、傅里 叶变换红外显微光谱、同步辐射X 射线荧光和核微探针等属于非破坏 性分析方法,激光剥蚀电感耦合等 离子体质谱、扫描电镜和二次离子 质谱等则为破坏性分析方法。
9/5/2017
6
9/5/2017
7
流体包裹体的研究方法及获取的信息

SR XRF spectrum of a natural brine inclusions (pegmatite). Dotted line: blank = quartz spectrum.
Estimated concentration in ppm: Mn: 1031; Fe: 5710; Cu: 105; Zn: 1613; As: 42; Br: 76; Rb: 421; Sn: 28; Sb: 155; Cs: 886
Heinrich et al., 2003
Analysis of the ionic content of fluid inclusion Laser Ablation – Inductively Coupled Plasma –Mass Spectrometry (LA-ICP-MS)
detector: time of flight spectrometer => quasi simultaneous detection of 68 isotopes
Accceleration of electron => X Ray emission 8 to 30 keV; focus of X-ray => matter interaction
1) ionization of deep electronic orbital (K, L or M => Z > 11)
Spectrometry (LA-ICP-MS)
Heinrich et al., 2003
6 to 8 orders of magnitude in concentration depending on the detector: (TOF, quadrupole, MC)
分析测试技术-流体包裹体研究方法

固体颗粒与包裹体中子晶的区别在于固体颗 粒仅在部分包裹体中出现,而且在量上变 化很大,而子矿物相对其它相倾向于以稳 定的比例出现。
不混溶包裹体
镜下整体呈现出个体较大,体壁较厚,散乱的分布的特点。均 一温度很高,一般大于200℃,也有一部分不均一。 该类包裹体可进一步 分为两类。第一类个 体大,一般大于10 μm ,形状多为次棱角状 。气相部分为黑色, 液相部分则为浅灰色 ,气泡并不来回跳动 ,孤立状产出。
名称成分晶系一般习性近似的折双折射率备注石盐nacl立方立方体154各向同性无色白黄浅蓝绿色钾盐kcl立方立方体149各向同性晶棱常被园化百硬石膏caso4菱柱体157157161o可能出现白或黄色苏打石nahco3137150158很高一般形成双晶闪突起明显菱形camg碳酸盐camgco3三方149166高突起无色百色黄褐色氯化铁fecln各种晶系菱形或六方不同淡绿色naalco3oh2纤维束状146615421596赤铁矿fe2o3三方不能应用红色棕褐色板各种成分不同自形粒状不能应用反光镜下可与氧化物区别各种成分单斜156160160低到中包裹体中常见子矿物的光学特征包裹体中常见子矿物的光学特征4熔融包裹体中相的识别1玻璃质
➢含石盐子晶的两
相包裹体:由石盐
子晶和盐水溶液组成。
➢含石盐子晶的三相包裹体
由石盐子晶、盐水溶液和气态烃组成。
斜方硫中的流体包裹体
均一温度:95~105℃
5、亚稳定性
室温下,流体包裹体不能形成新核而呈稳定相存在, 这种现象称为亚稳定性。
自然界中,流体如果在低于或等于室温的条件下被 均匀捕获,其在室温下常呈单一相存在;如果在 较高温度被捕获,室温下应有气泡出现。但有时 气泡并不出现,这是由原来均匀的包裹体冷却到 室温时气泡和子矿物均不能成核所致。气泡不能 成核是亚稳定性的主要特征。
4流体包裹体实验解析

六、注意事项
? 1、先升高镜头,将薄片放在载物台后,然后徐徐 下降镜头,注意不要速度太快,
? 以免损坏薄片。 ? 2、先装上低倍物镜,如(×4或×10),在视域
中找到目标后,浏览流体包裹体的分布及数量,然 后再换更大倍数的镜头。在换装镜头时,要小心翼 翼,避免镜头磕碰。 ? 3、如果目镜或物镜镜头不清晰,不要用手或其它 工具搽拭,应用专用的镜头纸或专用麂皮搽拭。由 于包裹体很小,在显微镜视域中不仅应水平移动薄 片,以看清片子中的包裹体,而且应上下移动镜筒, 也会在不同的深度上发现包裹体。要注意的是,上 下移动镜筒时要清楚移动的方向,避免在向下移动 时使镜头接触和压坏载物台上的薄片。
五、实验步骤
? 1、将双面抛光薄片放在显微镜载物台上,先将镜头 提到较高高度,然后徐徐降低直至眼睛所见的薄片中 物体景象清晰为止。选择洁净透明度好且结晶程度好 的晶粒观察,最好选择无色或浅色晶粒。如果在一个 视域中找不到理想的,可以换个视域再找。
? 2、遵循从低倍到高倍镜下观察的顺序,先用低-中倍 (×10)物镜扫描,多发现主矿物颗粒中具有有一 定方向,有规律排列或呈条带状的小黑点,小于10μm 的包裹体通常呈小的暗色斑点成群或枝蔓状出现,然 后转换成较高倍数的物镜进行详细观察。
包裹体测温总结

包裹体均一温度的测定与分析油气充注时间及油气成藏期次分析是现代油气地质研究的一个热点问题,成藏期次的确定有助于正确认识油气藏的形成规律。
目前确定成藏期次比较成熟和通用方法是烃类流体包裹体均一温度法(朱光有等,2004)。
流体包裹体是指地层中的岩石在埋藏成岩过程中所捕获的液态或气态流体,它记录了与地层所经历的地质历史事件有关的信息,这些信息为认识地质历史提供了重要依据。
20世纪90年代以来,流体包裹体在油气成藏研究中得到了广泛应用,已成为当代石油地质领域研究油气藏形成期次最重要、最有效的一种方法(赵力彬等,2005)。
20世纪70年代以来,随着油气地球化学的发展,流体包裹体技术在石油地质研究中得到了广泛的应用,20世纪80年代后期,包裹体技术开始用于我国的油气勘探,特别在最近二十多年来倍受石油地质学家的重视。
通过对油气包裹体岩相学鉴定、荧光特征、均一温度测定和成分分析,可以重建油气成藏史,探讨油气运移、聚集成藏规律(林硕等,2010)。
1.图1 技术路线图利用流体包裹体资料研究油气充注史,目前已成为成藏期研究的有效手段。
其研究思路主要是结合工区的地质背景,进行包裹体的岩相学观察,初步确定包裹体的期次,然后对包裹体进行均一温度的测定,最后通过对所测均一温度进行解释分析确定成藏时间及期次。
技术路线图如图1所示:2. 包裹体的定义及其类型流体包裹体是指成岩成矿流体(气液的流体或硅酸盐熔融体)在矿物结晶生长过程中,被包裹在矿物晶格缺陷或穴窝中的、至今尚在主矿物中封存并与主矿物有着相的界限的那一部分物质(刘德汉等,2007)。
包裹体在主矿物结晶生长过程中被捕获之后,便不受外来物质的影响,它与主矿物有着相的界限,并成为独立体系,包裹体与主矿物共存,一直保留至今。
根据包裹体成因可将流体包裹体分为三种类型:原生、次生和假次生包裹体(图2)。
原生包裹体与主矿物同时形成,是在矿物结晶过程中被捕获的包裹体,常沿矿物的生长(结晶)面分布。
流体包裹体研究方法

流体包裹体研究方法一、野外样品采集和室内样品加工1、野外样品采集这里只叙及构造岩的显微样品的采集与制备。
微观构造研究的首要工作就是野外标本的采集。
构造岩主要产于脆性断层及韧性剪切带内,因此,在野外充分观察的基础上,首先就是以垂直断裂带(面)或剪切带片(麻)理走向作剖面,对构造岩作初步分带,并沿带取样。
第一块样应从未变形岩石开始。
取构造岩最好是定向标本。
定向的方法是:将标本从露头上敲下,再放回原来位置,在标本上选取一平面,用记号笔画上水平线(利用罗盘测量),并标出其方向(一般在右侧用箭头表示),再测出倾向及倾角。
其次是做好记录。
记录包括:标本号、倾向及倾角、采样处片(麻)理产状、线理或断层擦线产状等,并尽可能作详细素描。
2、室内样品加工首先是用记号笔将野外编号和定向线一一标好,再标出要切制的薄片面,然后送磨片室切制薄片。
若只需切一片,破碎岩薄片一般要平行擦线、垂直断面;糜棱岩薄片则是尽量平行矿物拉伸线理、垂直片(麻)理,这样做出来的切片可直接用来判断运动方向或剪切运动指向(注意:一定要通过手标本恢复到野外产状)。
糜棱岩如果要做三维有限应变测量,除平行线理、垂直面理的切片外,一般是垂直线理及面理再切一片。
并常用该片做岩组测量,因为该片所切矿物数量最多,信息也最多,而组构图可以旋转到平行矿物线理的方向上。
如果岩石本身矿物线理及面理不十分发育,应变测量则需作三个互为垂直的切片(根据三个切片的实际产状和测量结果用计算机拟合)。
二、显微镜下观察和冷热台下测定1、显微镜下观察对每个包裹体应做的观察内容包括如下几个方面。
⑴包裹体的大小:应该注明包裹体两个或三个方向上的尺寸(以μm表示)。
这一点很重要,因为有些包裹体的性质,特别是密度、形状可能随包裹体的大小有规律地变化;通常与CO2包裹体比较,水溶液包裹体很少有规则的形状。
⑵包裹体的形状:大多数包裹体具有不规则的形状,然而如果包裹体具有诸如带晶面的形状(负晶形)、球形、椭球形和扁平形等形状时,需要注意。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体包裹体测定计算和分析
流体包裹体测定是一种实验手段,用于测量流体中的悬浮颗粒物的量和粒径分布。
这一测定方法能够对气固两相流体中的颗粒物得到良好的分析和测定,并给出相应的计算和结果,以帮助更好地了解气固两相流体中的悬浮颗粒物的性质和特性。
本文的主要目的是给出一些有关流体包裹体测定的计算方法,以及对测定结果的一些分析。
二、流体包裹体测定的计算方法
1.据流体的压力和温度条件计算颗粒物量。
在流体包裹体测定中,需要先根据流体的压力和温度条件计算颗粒物量,以及流体中各种颗粒物的相对含量等信息。
这一计算可以通过热力学原理和潜热技术实现。
2.计算流体包裹体的形状。
流体包裹体测定需要计算一个流体包裹体的形状,即颗粒物的尺寸和形状,以及包裹体的体积和重量等。
这些信息能够通过重力法和拉曼成像等测试手段获得。
3.计算流体包裹体的运动参数。
在流体包裹体测定中,需要参照流体的性质和流动参数,来计算悬浮颗粒物的运动参数,如滞后系数、加速度和摩擦系数等,以便得到更精确的测定结果。
三、流体包裹体测定的结果分析
1.粒物粒度分析。
流体包裹体测定可以得到流体中悬浮颗粒物的粒度分布参数,这些参数能够反映出悬浮物质的介质性质,例如颗粒物尺寸、分散性、浓度等。
2.相悬浮颗粒物的浓度和分布特征分析。
通过流体包裹体测定,
可以得到关于悬浮颗粒物的分布特征,以及各相悬浮颗粒物的浓度等信息。
这些信息可以帮助更好地了解悬浮物质的性质和行为,从而有助于优化工业过程。
四、总结
通过本文,我们介绍了流体包裹体测定的计算方法和结果分析方法。
这一测定方法能够准确地测量气固两相流体中存在的悬浮颗粒物的量和尺寸,还可以给出悬浮物质的分布特征,从而能够为进一步优化工业流程提供参考。
总之,流体包裹体测定是一项重要的实验技术,其结果可以提供宝贵的信息,有助于深入理解和优化气固两相流体的过程。