流体包裹体研究方法
第三章 流体包裹体

三 淬火法
是测定熔融包体均一温度的基本方法,加 热达到预置温度和恒温时间后→瞬时落 入水中→快速冷却把包体变化固定下来。 (一)LGHC-1型高温淬火炉 操作方便,控温、控时自动化.一次能 同时测定多个样品,测温效率高,最高 使用温度1250℃。
(二)熔融包裹体的均一化现象和温度测定 • 气体的变化包括:气体消失、扩散聚集 和新生气泡等。 • (1)气体发生消失的现象主要见于介质密 度较小的两相熔熔包裹体中,在升温过 程中气泡开始缩小时的温度为包裹体的 初熔温度,气泡消失时的温度为其均一 化温度。
获得成岩成矿的可靠信息 可测T、 P、C、D (密度)、盐度 、同位 素组成 pH Eh粘度 年龄等。 找矿勘探
第二节 包裹体的成因与分类
• 一般认为只有符合均匀体系,封闭 体系和等容体系这三个基本条件的 包裹体才能提供有价值的信息。
•
•
一
均匀捕获和不均匀捕获
•
通常认为包裹体是从均匀介质中捕获 的。如果天然矿物中固相,液相,气 相之间比例稳定,则为均匀捕获。 在单个矿物中,有时会看到一群包裹 体,具有可变的相比例,则为不均匀 捕获。有下列几种情况:
四 石盐子矿物的溶化 • 含石盐包裹体的均一方式有三种 (1)石盐在气泡消失之前溶化 (TsNaCl<Th); (2)石盐与气泡同时消失(TsNaCl=Th); (3)石盐在气泡消失之后溶化(Th <TsNaCl)。
五 CO2和H2O-- CO2流体包裹体测压 • 在已知CO2摩尔百分数和均一温度的条件 下,可以通过H2O、CO2体系的P-X相图 求取均一时的压力,即最小捕获压力。
二 流体等容线+独立的地质温度计
这是上述方法的一个发展,该法使用一个单独 估算的捕获温度来确定源于Th点等容线上的一 特定位置。
流体包裹体测试方法简介1

流体包裹体测试⽅法简介1流体包裹体分析⽅法简介⼀、流体包裹体分析测试意义流体包裹体作为成岩成矿的流体标本,其物质成分是相关地质过程的密码,通过对其进⾏定性或定量分析,可获得古流体的详细资料(如矿物形成和变化的PVTX条件),进⽽为地质过程特别是成矿作⽤的研究提供多⽅⾯信息。
⼆、流体包裹体分析⽅法及步骤简介迄今为⽌,针对流体包裹体所进⾏的单包裹体⾮破坏性分析主要采⽤显微测温法和显微激光拉曼光谱法,间接或直接获得流体包裹体成分。
具体分析测试步骤如下:1、将岩⽯样品制成两⾯抛光的包裹体⽚;2、在岩相学显微镜下对制成的包裹体⽚进⾏观察拍照,镜下观察包裹体的赋存状态,包裹体类型,尺⼨形态,分布特征,以及包裹体中的⽓相百分数,以挑选合适的包裹体进⾏后续的测试分析;3、包裹体⽚的前处理(浸泡,清洗),以适合显微测温和显微激光拉曼光谱分析;4、包裹体显微测温分析,利⽤岩相学显微镜配置Linkam冷热台对流体包裹体样品进⾏显微测温,通过测定包裹体低温相变温度和均⼀温度,获得包裹体流体盐度和包裹体最低估计捕获温度;5、显微激光拉曼光谱测定,利⽤Renishaw RM2000激光拉曼探针分别对样品原位采集拉曼光谱,通过分析识别采集到的特征拉曼光谱,对包裹体成分进⾏鉴定,主要针对⽓相。
三、分析测试报价分析测试项⽬分析费⽤预算包裹体⽚磨制30元/⽚包裹体⽚观察鉴定100元/⽚包裹体⽚前处理20元/⽚砂岩胶结物:1000元/⽚显微测温分析脉岩:800元/⽚包裹体成分:300元/点激光拉曼光谱分析矿物成分:150元/点附注:⼀般三个⽉内可完成⼤约30件样品的分析测试和分析报告。
砂岩胶结物每⽚视包体发育情况可测~10个包裹体PVT参数;脉岩每⽚可测20-30个包裹体PVT参数.联系⼈:丁俊英博⼠137********,jyding@/doc/bd7c0ef09e31433239689316.html ;吴昌志副教授189********, wucz@/doc/bd7c0ef09e31433239689316.html .个⼈⽹页:/doc/bd7c0ef09e31433239689316.html /Faculty.aspx?Id=126。
流体包裹体研究进展

流体包裹体研究进展1.流体包裹体的分类及区分流体包裹体是成岩成矿流体(含气液的流体或硅酸盐熔融体)在矿物结晶生长过程中,至今尚在主矿物中封存并与主矿物有着明显的相边界的那一部分物质。
1.1流体包裹体的分类流体包裹体成分复杂且成因多样,其分类研究多年来一直是随着测试手段的改进和研究内容的深化而变化。
早期的分类研究主要是以定性描述为主,随着流体包裹体研究水平额度不断发展,出现了以成因、成分、相态和不同包裹体之间的相互关系为主要依据的各种分类。
具有代表性的包括:(1)1953-1976年:最有代表性的是1969年Ermakov提出的分类方案,他根据包裹体的成分和成因,建立了21个类型,并且根据相的相对比例,建立了一种应用很广的分类。
另外一些人也建立了不同的分类方案,例如,许多分类方案是根据仍宜选用的气液比而划分的,然而气液比由于其连续变化而不易精确测定,限定了其广泛应用。
(2)1985-2003年:最有代表的芮宗瑶的分类方案,他根据捕获时的流体特征将包裹体分为由均一体系形成的和由非均一体系形成的。
其中,均一体系形成的包裹体又分为原生包裹体、次生包裹体、假次生包裹体和出溶包裹体;非均一体系形成的包裹体包括液相+固相、液体+气体或液体+蒸气、两种不混溶流体3类。
(3)2003年至今:有些学者在著作及文献中阐述了一些流体包裹体类型的划分方案,多以流体包裹体的物理状态、成因、形成期次等指标为划分依据。
其中,卢焕章等根据包裹体相数的不同,将流体包裹体分为纯液体包裹体、纯气体包裹体、液体包裹体、气体包裹体、含子矿物包裹体、含液体CO2包裹体、含有机质包裹体和油气包裹体等8类。
1.2流体包裹体的区分在流体包裹体的诸多分类中,按捕获时间与主晶矿物形成时间的关系可分为原生和次生流体包裹体。
原生包裹体是矿物形成时包裹周围的流体而形成的,而次生包裹体的形成晚于主晶矿物,一般与后期主晶矿物的改造事件有关。
二者由于形成时间和方式不同而携带了不同的信息。
2 包裹体研究方法

FN2-3-10,2124m,长4+5,油层
FN2-3-8(荧光), 2124m,长4+5,油层
早期油气包裹体(峰2井,水层)
10 μm
35 μm
FN2-4-8,2129m,长4+5,水层
10 μm
FN2-4-7(偏光), 2129m,长4+5,水层
35 μm
FN2-4-3,2129m,长4+5,水层
椭圆型, 随机分布, 串珠状分 布
油气有机质含量 高,早期油气运 移成藏流体的含 油饱和度高
晚期
椭圆型, 不规则状, 串珠状分 布,加大 边。
油气有机质含量 低,晚期油气运 移成藏流体的含 油饱和度低
五、油气包裹体与油气聚集成藏期次
6. 油、水井(层)的油气包裹体特征
油/ 水层 包体 类型 GOI (%) 荧光 产状 包裹类型组合
包体放射性同位素年代分析 含油气包体脉体年代分析 包 体 测 试 均一温度 油气成藏年代学研究
油气包裹体油气成分、成熟度、油源、 运移、期次等研究
冰点温 度
共结点温度
包裹体形成时流体环境条件 (温度\深度\盐度)
包 裹 体 显 微 镜 研 究 流 体 包 裹 体 分 类:
1. 按相态分类: (1) 固体包裹体 (2) 液态包裹体 (3) 气态包裹体 (4) 多相包裹体 2. 按照形成时间分类: (1) 原生包裹体 : 与主矿物同时形成; (2) 次生包裹体 :在矿物形成后,沿裂隙充填 分布,裂隙切穿矿物边缘和多个矿物边界; (3) 假次生包裹体: 在矿物形成后,沿裂隙充 填分布, 裂隙限在矿物内部, 没有穿透矿物边缘,是 早期裂隙,之后矿物又生长裂隙愈合。 3. 按照包裹体形态特征分类
流体包裹体研究进展、地质应用及展望

流体包裹体研究进展、地质应用及展望一、本文概述流体包裹体,作为地球内部流体活动的重要记录者,一直以来都是地质学领域的研究热点。
它们以微小包裹体的形式被固定在矿物晶体中,为我们提供了了解地球内部流体性质、活动历史以及成矿作用的关键信息。
本文旨在综述流体包裹体的研究进展,包括其形成机制、分析方法以及地质应用等方面的内容,并对未来的研究方向进行展望。
通过梳理流体包裹体的研究历程,我们可以更好地理解地球内部流体系统的运作机制,为资源勘探、环境评价等领域提供理论支持和实践指导。
二、流体包裹体的形成与演化流体包裹体,作为地质作用中重要的记录者,其形成与演化过程对于理解地壳内流体活动、物质迁移以及成矿作用等具有重要意义。
包裹体的形成通常与岩浆活动、变质作用、构造活动等地质过程密切相关。
在岩浆活动中,随着岩浆冷却和结晶,其中的挥发分和溶解物被捕获在矿物晶格中,形成原生包裹体。
而在变质作用中,由于温度、压力的变化,原有岩石中的矿物发生重结晶,其中的流体被包裹在新的矿物中,形成次生包裹体。
包裹体的演化过程则是一个复杂的物理化学过程。
随着地质环境的变化,包裹体中的流体可能发生相变、溶解-沉淀、氧化还原等反应,导致其成分、形态、大小等发生变化。
这些变化不仅记录了地质历史中的流体活动信息,也为研究地壳内流体性质、运移路径和成矿机制提供了重要线索。
近年来,随着科学技术的进步,尤其是微区分析技术的发展,使得对流体包裹体进行更加精细的研究成为可能。
例如,通过激光拉曼光谱、电子探针等手段,可以对包裹体中的流体成分进行定性定量分析;而通过显微测温、压力计算等方法,则可以揭示包裹体的形成温度和压力条件。
这些技术的发展为深入研究流体包裹体的形成与演化提供了有力工具。
未来,随着研究方法的不断完善和创新,我们对流体包裹体的认识将更加深入。
通过综合应用多种技术手段,结合地质背景分析,有望揭示更多关于地壳内流体活动、物质迁移和成矿作用的细节信息。
矿床成因研究中的流体包裹体特征分析

矿床成因研究中的流体包裹体特征分析矿床成因研究一直是地球科学领域的热点问题之一。
其中,流体包裹体特征分析作为研究矿床成因的重要手段之一,被广泛应用于地质学、地球化学和矿床学等领域。
本文将围绕流体包裹体特征分析展开讨论,以期加深对矿床形成机制的理解和预测能力。
1. 流体包裹体的定义和类型流体包裹体是指在矿物或岩石中由固体、液体或气体组成的微小空腔。
根据包裹体形成时的环境和过程,流体包裹体可以分为三种类型:熔融包裹体、气液包裹体和固相包裹体。
熔融包裹体主要存在于岩浆矿床中,记录了岩浆的生成和演化过程;气液包裹体主要存在于热液矿床中,记录了流体的成分和温度压力变化;固相包裹体主要存在于变质矿床中,记录了岩石的变质过程和成分变化。
2. 流体包裹体的提取和研究方法为了研究流体包裹体的特征及其对矿床成因的指示作用,研究人员通常需要提取和分析其中的包裹体。
提取包裹体的常用方法包括显微镜下手动或机械切割、高温高压流体爆裂和离子切割等。
提取后的包裹体可以进行各种物理和化学分析,如显微镜观察、热重分析、红外光谱分析、质谱分析等。
通过对这些分析结果的综合研究,可以了解到包裹体中流体的成分、密度、温度、压力等参数,进而推断矿床形成的环境和过程。
3. 流体包裹体特征的解读和示意研究过程中,根据流体包裹体内部的特征和组成,我们可以获得一些关键信息,有助于揭示矿床的成因和形成机制。
比如,通过测量流体包裹体中的真密度和盐度,可以初步判断矿床形成的温度范围和成因类型。
此外,通过固相包裹体中的矿物组成和显微结构分析,可以推测矿床形成过程中的热力学条件和物质交换机制。
而气液包裹体中的气体组分和稳定同位素分析,则可以揭示矿床的流体来源和演化路径。
4. 流体包裹体在矿床成因研究中的应用案例流体包裹体特征分析方法在矿床成因研究中已经得到广泛应用,并取得了一些重要的突破。
例如,通过对矿物中包裹体的研究,科学家们发现了一种新型金属矿床形成的机制,即“岩浆–热液-岩浆”相互作用过程。
流体包裹体的研究方法及获取的信息

SR XRF spectrum of a natural brine inclusions (pegmatite). Dotted line: blank = quartz spectrum.
Estimated concentration in ppm: Mn: 1031; Fe: 5710; Cu: 105; Zn: 1613; As: 42; Br: 76; Rb: 421; Sn: 28; Sb: 155; Cs: 886
Heinrich et al., 2003
Analysis of the ionic content of fluid inclusion Laser Ablation – Inductively Coupled Plasma –Mass Spectrometry (LA-ICP-MS)
detector: time of flight spectrometer => quasi simultaneous detection of 68 isotopes
Accceleration of electron => X Ray emission 8 to 30 keV; focus of X-ray => matter interaction
1) ionization of deep electronic orbital (K, L or M => Z > 11)
Spectrometry (LA-ICP-MS)
Heinrich et al., 2003
6 to 8 orders of magnitude in concentration depending on the detector: (TOF, quadrupole, MC)
应用流体包裹体研究油气成藏以塔中奥陶系储集层为例

应用流体包裹体研究油气成藏以塔中奥陶系储集层为例1. 本文概述随着全球能源需求的不断增长,对油气资源的勘探与开发显得尤为重要。
在我国,塔里木盆地作为重要的油气生产基地,其奥陶系储集层的研究对于理解油气成藏机制、提高油气勘探成功率具有重要意义。
本文旨在通过应用流体包裹体技术,对塔中奥陶系储集层油气成藏过程进行深入研究,以期为该区域的油气勘探提供科学依据。
流体包裹体作为地质流体活动的直接记录者,能够提供油气藏形成和演化的重要信息。
本文首先对流体包裹体的基本概念、形成机制及其在油气成藏研究中的应用进行概述。
接着,详细介绍了塔中奥陶系储集层的地质背景、流体包裹体的岩相学特征及其在油气成藏过程中的作用。
通过分析流体包裹体的显微测温数据,探讨了油气成藏的温度、压力条件及其演化历史。
结合区域地质资料,建立了塔中奥陶系储集层油气成藏的动力学模型,并对油气勘探前景进行了评价。
本文的研究成果不仅有助于深化对塔中奥陶系储集层油气成藏机制的认识,而且对于指导我国类似盆地的油气勘探具有重要的实践意义。
2. 塔中奥陶系储集层地质概况塔中地区位于中国塔里木盆地中央隆起带的东部,是一个典型的油气富集区。
该地区的奥陶系储集层是塔里木盆地内重要的油气储层之一,其发育和分布对于油气成藏具有重要的控制作用。
奥陶系储集层主要由碳酸盐岩组成,包括石灰岩、白云岩和泥质灰岩等。
这些碳酸盐岩在沉积过程中经历了多期构造运动和成岩作用,形成了复杂的储集空间系统。
储集空间主要包括溶蚀孔洞、裂缝和晶间孔等,其中溶蚀孔洞是最主要的储集空间类型。
这些储集空间的形成与分布受到了多种因素的控制,包括沉积环境、成岩作用、构造运动以及流体活动等。
在地质历史上,塔中地区经历了多期的构造运动和热液活动,这些活动对于奥陶系储集层的形成和演化产生了重要影响。
构造运动导致了储集层的褶皱和断裂,形成了有利于油气运移和聚集的构造格局。
热液活动则提供了丰富的流体来源和能量,促进了储集空间的溶蚀和扩大,同时也为油气的生成和运移提供了有利条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体包裹体研究方法
一、野外样品采集和室内样品加工
1、野外样品采集
这里只叙及构造岩的显微样品的采集与制备。
微观构造研究的首要工作就是野外标本的采集。
构造岩主要产于脆性断层及韧性剪切带内,因此,在野外充分观察的基础上,首先就是以垂直断裂带(面)或剪切带片(麻)理走向作剖面,对构造岩作初步分带,并沿带取样。
第一块样应从未变形岩石开始。
取构造岩最好是定向标本。
定向的方法是:将标本从露头上敲下,再放回原来位置,在标本上选取一平面,用记号笔画上水平线(利用罗盘测量),并标出其方向(一般在右侧用箭头表示),再测出倾向及倾角。
其次是做好记录。
记录包括:标本号、倾向及倾角、采样处片(麻)理产状、线理或断层擦线产状等,并尽可能作详细素描。
2、室内样品加工
首先是用记号笔将野外编号和定向线一一标好,再标出要切制的薄片面,然后送磨片室切制薄片。
若只需切一片,破碎岩薄片一般要平行擦线、垂直断面;糜棱岩薄片则是尽量平行矿物拉伸线理、垂直片(麻)理,这样做出来的切片可直接用来判断运动方向或剪切运动指向(注意:一定要通过手标本恢复到野外产状)。
糜棱岩如果要做三维有限应变测量,除平行线理、垂直面理的切片外,一般是垂直线理及面理再切一片。
并常用该片做岩组测量,因为该片所切矿物数量最多,信息也最多,而组构图可以旋转到平行矿物线理的方向上。
如果岩石本身矿物线理及面理不十分发育,应变测量则需作三个互为垂直的切片(根据三个切片的实际产状和测量结果用计算机拟合)。
二、显微镜下观察和冷热台下测定
1、显微镜下观察
对每个包裹体应做的观察内容包括如下几个方面。
⑴包裹体的大小:应该注明包裹体两个或三个方向上的尺寸(以μm表示)。
这一点很重要,因为有些包裹体的性质,特别是密度、形状可能随包裹体的大小有规律地变化;通常与CO2包裹体比较,水溶液包裹体很少有规则的形状。
⑵包裹体的形状:大多数包裹体具有不规则的形状,然而如果包裹体具有诸如带晶面的形状(负晶形)、球形、椭球形和扁平形等形状时,需要注意。
⑶气泡大小:应该在一定温度下测量气泡的直径,或是在温度超过CO2临界点时测量CO2+H2O混合包裹体中富CO2相的大小,以便随后在加热或冷却时引起包裹体的任何泄露能够鉴别出来。
⑷体积百分数:应该记录温度超过CO2临界点(31.3℃)时(一般是+40℃)CO2+H2O 混合包裹体中富CO2相(内部相)的估计体积(或面积),其目的是计算包裹体中CO2的摩尔分数。
⑸包裹体丰度:每平方毫米还有包裹体的个数。
⑹包裹体的产状:包裹体岩相学和产状的研究十分重要,包裹体产在岩石什么显微构造中,它们的成因类型和成分类型。
一个包裹体可以产于很多条件或环境中,简言之,包裹体可以呈单个产出,或成群产出,沿愈合裂隙(包裹体轨迹)产出,沿次颗粒边界产出,或是沿晶体各生长面产出,以及伴随着变形薄层(叶理)产出。
2、冷热台下测定
抛光的样品必须切成小片,使之符合冷热台腔的大小。
切片的大小也要由包裹体的分布来确定。
冷热台下测定以下几项内容。
⑴冰点温度(T i):指溶液过冷却后结冰后,回升温度时冰最后融化的温度。
⑵初熔温度(T c):如果确定看到的是最初熔化现象,那么就看到了体系的共结熔化现象。
⑶均一温度(T h)和均一相态:指包裹体中两个流体相均一到一相时的温度。
要注意均一到气相(g),还是均一到液相(l),或者是在临界点附近或临界点通过弯月面的消失而达到的。
⑷熔化(溶解)温度(T m):例如:T m-clath表示CO2.23/4H2O或其他气体水合物的最后熔化温度(如甲烷水合物);T m-hyd表示NaCl.2H2O、MgCl2.12H2O、CaCl2.6H2O或其他水合物的最后熔化温度;T m-dm表示未定名子矿物的最后熔化温度。
三、激光拉曼、电子和离子探针分析
1、激光拉曼探针
单个包裹体的非破坏性分析法——拉曼光谱法。
已经证明,激光激发拉曼光谱是到目前已发展起来的对单个包裹体不加破坏进行分析的最有效的方法。
可是,这一方法仅限于测定部分固相、气相和液相的存在及其数量。
激光束聚焦在包裹体上,可激发出特征的拉曼光谱,这种光谱用光学滤光器和光电检测系统进行分析。
激光束聚焦可以分析只有几微米的流体包裹体。
鉴定的子矿物可以为NaCl、KCl、CaCl2、硬石膏等晶体,以及包裹体溶液中的半定量结果,另外还可以检测包裹体中的烃类:CH4、C2H2、C3H8等和非烃的CO2、N2、H2S和SO2等。
定量分析基于测量记录下来的光谱上峰的相对面积,将它们对分子有效截面进行校正,并标准化成100%和(或)与标准相对应。
将拉曼光谱的结果与显微测温以及气象色谱所得结果进行比较常常可以得到令人满意的结果。
2、电子和离子探针分析
电子探针主要分析固体成分,如住矿物、子矿物、熔体包裹体成分;离子探针专门分析包裹体中离子成分。
四、成分分析的其他方法
有气相色谱、质谱、中子活化、同位素测定等。
五、超微样品研究方法
方法分为五类:①表面法,将超微结构在晶体表面的露头点显示出来;②缀饰法,在透明晶体内以沉淀颗粒缀饰超微结构,以显示超微结构的位置;③透射电子显微术,用它可以以极高放大倍率研究从0.1~0.4μm厚度样品中的超微结构,这是应用最广泛的一种技术;④X射线衍射法,利用X射线散射的局部差异来显示超微结构;⑤场离子显微术,它可以显示单个原子的位置。
构造流体包裹体是微观地质现象,与显微构造关系密切,因此运用透射电子显微镜(TEMS)和扫描电子显微镜(SEMS)可以得到许多微观信息,特别是SEMS中的背射电子(BSE)图像分辨率更高,可以提供成分不同的颗粒间的衬度,能定量确定显微组构要素。
因此,近年不少学者应用电子显微镜新技术进行这方面的研究。