聚羧酸类高性能减水剂的合成及复配--

合集下载

浅谈聚羧酸系高效减水剂的作用机理及合成工艺

浅谈聚羧酸系高效减水剂的作用机理及合成工艺

浅谈聚羧酸系高效减水剂的作用机理及合成工艺近几十年来,我国的混凝土工程技术取得了很大进步,高性能混凝土、自密实混凝土的应用越来越广泛,因此,对高效减水剂的要求也越来越高。

聚羧酸系高效减水剂是近几年发展的新型高效减水剂,其主要成分为聚羧酸盐或脂的聚合物,其分散能力强,减水率高,对水泥的适应性好,将是今后高效减水剂研究和发展的重点。

研究开发新型的聚羧酸系减水剂受到国内外广泛关注,代表了高效减水剂的主要发展方向。

1、聚羧酸系高效减水剂的作用机理聚羧酸系减水剂由于其优异性能而引起业内广泛的关注。

为了有效开发这一类型的减水剂,对其减水机理的研究非常重要。

减水剂分散减水机理主要包括以下几个方面。

1.1水化膜润滑作用。

聚羧酸减水剂由于分子结构中存在具有亲水性的极性基,可使水泥颗粒表面形成一层具有一定机械强度的溶剂化水膜。

水化膜的形成可破坏水泥颗粒的絮凝结构,释放包裹于其中的拌合水,使水泥颗粒充分分散,并提高了水泥颗粒表面的润湿性,同时对水泥颗粒及骨料颗粒的相对运动具有润滑作用,所以在宏观上表现为新拌混凝土流动性增大,和易性好。

1.2静电斥力作用。

水泥颗粒的稳定性主要由静电斥力和范德华引力的平衡来决定。

减水剂加入到新拌混凝土中,其中的负离子就会在水泥粒子的正电荷的作用下定向吸附在水泥颗粒表面,形成扩散双电层的离子分布,使得水泥颗粒表面带上电性相同的电荷,产生静电斥力,使水泥颗粒絮凝结构解体,颗粒相互分散,释放出包裹于絮团中的自由水,从而有效地增大拌合物的流动性。

1.3空间位阻作用。

一般认为所有的离子聚合物都会引起静电斥力和空间位阻斥力两种作用力,聚羧酸类减水剂吸附在水泥颗粒表面,虽然使水泥颗粒的负电位降低较小,静电斥力较小,但是由于其主链与水泥颗粒表面相连,支链则延伸进入液相形成较厚的聚合物分子吸附层,从而具有较大的空间位阻斥力,所以在掺量较小的情况下便对水泥颗粒具有显著的分散作用。

1.4引气隔离“滚珠”作用。

聚羧酸减水剂合成、复配工艺技术及设备

聚羧酸减水剂合成、复配工艺技术及设备

聚羧酸减水剂合成、复配工艺技术及设备嘿,朋友!咱今儿来聊聊聚羧酸减水剂这档子事儿。

您知道吗?这聚羧酸减水剂就像是建筑领域的魔法药水,能让混凝土变得乖乖听话!先说合成这一块儿。

这就好比是烹饪一道独特的佳肴,各种原料得精挑细选,比例得拿捏得恰到好处。

就像盐放多了菜齁得慌,放少了又没滋味,合成聚羧酸减水剂的原料要是配比不对,那效果可就大打折扣啦!而且,反应条件那也是至关重要的。

温度、压力、反应时间,这一个个因素就像是大厨掌勺时的火候和时间控制,稍有疏忽,这“菜”可就做砸喽!再谈谈复配工艺技术。

这就像是给一件漂亮的衣服搭配配饰,得讲究个相得益彰。

不同的性能需求,就得用不同的成分和比例来调配。

比如说,要让混凝土的流动性更好,那就得在复配中加点“秘密调料”;要是想增强混凝土的耐久性,那又得换种“配方”。

这可不是随便瞎搞的,得有真本事,有经验!说到设备,那可就是这魔法药水制作的“厨房神器”啦!高质量的设备就像是一套顶级的厨具,能让整个制作过程如虎添翼。

要是设备不给力,一会儿温度控制不好,一会儿搅拌不均匀,那这聚羧酸减水剂能好得了?就像拿着钝刀切肉,费劲又不出效果!您想想,要是建筑工人在施工的时候,混凝土不听话,凝固得太快或者流动性太差,那得多头疼?这聚羧酸减水剂要是合成、复配和设备都搞不好,那不是给建筑工程添乱吗?所以啊,咱得把这每一个环节都当回事,认真钻研,精心操作。

总之,聚羧酸减水剂的合成、复配工艺技术及设备,每一项都关乎着最终的效果,可不能马虎!只有把这些都弄明白了,搞精通了,咱们才能在建筑领域施展出真正的魔法,让那些高楼大厦、桥梁道路都稳稳当当、坚不可摧!您说是不是这个理儿?。

浅谈聚羧酸高性能减水剂的合成及复配技术综述

浅谈聚羧酸高性能减水剂的合成及复配技术综述

浅谈聚羧酸高性能减水剂的合成及复配技术综述本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!0 前言聚羧酸高性能减水剂是应用于水泥混凝土中的一种水泥分散剂,早期开发的产品是以主链为甲基丙烯酸,侧链为羧酸基团和MPEG(Methoxy polyethylene glycol)的聚酯型结构,目前多为主链为聚合丙烯酸和侧链为聚醚Allyl alcoholpolyethylene glycol 的聚醚型结构,聚羧酸减水剂是具有一定长度和数量的亲水性长侧链及带有多样性强极性活性基团主链组成的特殊分子结构表面活性剂。

聚羧酸减水剂产品在润湿环境下,其多个侧链支撑的向外伸展的梳齿结构为水泥粒子的进一步分散提供了充分的空间排列效应,能使水泥分散能力和保持的时间区别于其他类型的减水剂,从而满足混凝土施工流动性及其保持时间。

聚羧酸减水剂的结构多样化使得此类产品的开发和发展更具有意义,工程师可以通过合成技术的“分子设计”方法,改变聚羧酸高效减水剂的梳形结构、主链组成,适当变化侧链的密度与长度,在主链上引入改性基团调整或改变分子结构,而获得适用于不同需求的聚羧酸产品,实现产品的功能化和更佳的适应性。

聚羧酸减水剂产品除了母液合成技术中“分子设计”方法外,也通过添加缓凝剂、引气剂、消泡剂、增稠剂、抗泥剂等小料的方法,使其适应不同季节、不同材料和配合比的混凝土施工需要,最终获得性能优异的复合型高效减水剂。

对于大中型的聚羧酸厂家,从聚羧酸合成技术入手研制混凝土所需要的优质聚羧酸减水剂、获得不同类型的功能型母液是必须的选择,对于复配为主的聚羧酸减水剂应用型小厂,应该能够掌握母液间的复配及辅助小料的物理性复配,由母液特点和小料的物理性复配来解决技术问题。

1 聚羧酸高性能减水剂的合成聚羧酸减水剂产品于2005 年前后陆续投放市场之后,经历了早期的APEG 聚醚类、酯类产品到甲基烯基聚醚的更新,目前,APEG 聚醚类、酯类产品几乎已退出了市场。

聚羧酸盐类高效减水剂的原料与合成工艺

聚羧酸盐类高效减水剂的原料与合成工艺

聚羧酸盐类高效减水剂的原料与合成工艺本文介绍目前国外聚羧酸系高效减水剂合成的主要三种方法,供大家参考,如果需要进一步合作请与本网联系。

(一)可聚合单体直接共聚这种合成方法一般首先需制备具有聚合活性的大单体,如甲氧基聚乙二醇甲基丙烯酸酯,然后将一定配比的单体混合在一起直接采用溶液聚合而得成品。

这种合成工艺的关键在于活性大单体的合成,中间需经比较繁琐的分离纯化过程,成本较高。

日本采用短链甲氧基聚乙二醇甲基丙烯酸酯、长链甲氧基聚乙二醇甲基丙烯酸酯、甲基丙烯酸三种单体直接共聚合成了一种坍落度保持性好的商品混凝土外加剂。

其典型的合成示例如下:在装有温度计、搅拌器、滴液漏斗、N2导人管和回流冷凝管的玻璃反应容器中,装入500份水(质量份,下同),搅拌下通N2除氧,在N2气保护下加热到和摄氏80度,接着在4小时内滴加混合了250份短链甲氧基聚乙二醇甲基丙烯酸酯(EO加成摩尔数为4个)、50份长链甲氧基聚乙二醇甲基丙烯酸酯(EO加成摩尔数为23个)、200份甲基丙烯酸、150份水和13.5份链转移剂3-硫代乳酸的单体水溶液以及40份10%过硫酸按水溶液。

滴加完毕后,再在1h内滴加10份10%过硫酸铰水溶液并保温1h,得到重均相对分子质量为15000的聚合物水溶液为最终成品。

(二)聚合后功能化法该方法主要利用现有聚合物进行改性,通常采用已知分子量的聚羧酸,在催化剂的作用下与聚醚在较高温度下通过酯化反应进行接技,形成接技共聚物。

这种方法受现成的聚羧酸产品种类和规格的限制,调整组成和分子量比较困难。

此外,制备过程中聚羧酸和聚醚的相容性不好,酯化实际操作困难,伴随酯化的不断进行,水分不断逸出,也易出现相分离现象。

典型合成工艺:以烷氧基胺H2N(BO)—R为反应物与聚授酸接技出(BO代表氧化烯基团,n为整数,R为C1~C4烷基),利用聚羧酸在烷氧基胺中的可溶性,使酷亚胺化进行得比较彻底。

反应时,胺反应物加量一般为—COOH摩尔数的10%~20%。

聚羧酸减水剂生产工艺

聚羧酸减水剂生产工艺
但是,也许是涉及技术秘密,目前该领域的研究成果报道较少,尤其是聚羧酸系 高性能减水剂的合成工艺。因此,本文在此予以简介之。
二、聚羧酸系高性能减水剂合成工艺简介。
聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品。聚 酯类:包括酯化和聚合两个过程。聚醚类:只有聚合一个过程。
(一)、聚酯类聚羧酸系高性能减水剂合成工艺。
(3)、中和反应,将反应好的聚合物降温至50C以下,边搅拌边加入片 碱100kg,调节PH值6—乙反应完成,得到含固量为30%勺聚酯类聚羧酸系高 性能减水剂成品。
(二)、聚醚类聚羧酸系高性能减水剂合成工艺
(1)、合成工艺简图:
聚合反应―中和反应―成品
(2)、反应过程如下:
1、聚合反应:计量维生素C:,疏基乙酸:,配以580kg去离子水,泵 入滴定罐A备用,是为A料。计量丙烯酸,配以44kg去离子水,泵入滴定罐B备用,是为B料。往反应釜内加入去离子水930kg,烯丙醇聚氧乙烯醚1800kg,由室温升至55C,加入双氧水(配114kg去离子水),同时滴定A B料,B料3小时滴定完,A料小时滴定完,保温1小时。(温度控制60±2C)。
聚羧酸减水剂生产工艺
一、引言
一般认为, 减水剂的发展分为三个阶段: 以木质素磺酸钙为代表的第一代普通减 水剂阶段; 以萘系为代表的第二代高效减水剂阶段; 以聚羧酸系为代表的第三代 高性能减水剂阶段。
与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点:1.在合成工艺上,聚 羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合 成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、 (甲基)丙烯酸、 烯丙醇聚氧乙烯醚等。2.在分子结构上, 聚羧酸系高性能减水剂的分子结构是线 形梳状结构, 而不是传统减水剂单一的线形结构。 该类减水剂主链上聚合有多种 不同的活性基团,如羧酸基团(一COOH羟基基团(一0H、磺酸基(一S03Na等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的 空间位阻效应。由于其广泛的原料来源,独特的分子结构,故而具有前两代减水 剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已 成为混凝土外加剂研究领域的重点和热点之一。

聚羧酸类减水剂的制备及性能

聚羧酸类减水剂的制备及性能

聚羧酸类减水剂的制备及性能张赐容;黄易云;宁平【摘要】通过采用聚乙二醇单甲醚和丙烯酸在甲基苯磺酸的催化作用下合成得大分子单体聚乙二醇单甲基丙烯酸酯,再将大分子单体与丙烯酸、烯丙基磺酸盐按一定的摩尔比进行聚合,得到聚羧酸系高效减水剂。

研究了单体的不同比例对高效减水剂性能的影响;并将聚羧酸系高效减水剂在高强混凝土中的应用进行了测试和探讨。

结果表明:以聚乙二醇单甲醚、丙烯酸、烯丙基磺酸盐等为原材料合成聚羧酸系减水剂对水泥具有十分优越的分散性和分散稳定性。

在实验中选用了不同的阻聚剂,阻聚剂的品种及用量对酯化反应有较大的影响。

聚羧酸系高效减水剂中添加消泡剂可以降低混凝土的含气量,提高混凝土的强度。

%Poly-carboxyl superplasticizer was prepared by utilizing acrylic acid,sodium allyl sulfonate and PEG-M acrylic ester.The influences of different monomer ratios and reaction conditions on the superplasticizer performance were studied.The superplasticizer was used in high performance concrete,and had excellent water reduce ability in concrete even at low dosage and the strength of the concrete was also improved.Experiments showed that PEG-M,acrylic acid,and sodium allyl sulfonate used as raw materials in preparing poly-carboxyl superplasticizer which was a very good and stable disperser in cement.Different monomers ratio was used in the preparation process of superplasticizer.Carboxyl and sulfonic group content in superplasticizer had a larger influence on the cementhydration.Hydroquinone and phenothiazine as inhibitors were used in the esterification,and the experiments showed that the phenothiazine hadbetter inhibit ability,and the color of finish good was also lighter than that of using hydroquinone.Defoamer was used in poly-carboxyl superplasticizer to reduce air existing in the concrete and to improve the strength of the concrete.【期刊名称】《广州化工》【年(卷),期】2012(040)024【总页数】4页(P75-77,90)【关键词】聚羧酸;高效减水剂;高性能混凝土【作者】张赐容;黄易云;宁平【作者单位】广州从化鳌头凌丰树脂加工厂,广东从化510900;华南理工大学材料科学与工程学院,广东广州510641;华南理工大学材料科学与工程学院,广东广州510641【正文语种】中文【中图分类】TU528纵观我国50多年混凝土外加剂的发展历史,第一代木质素减水剂与第二代萘系减水剂对混凝土综合性能的提高、生产施工方式的改善起到了巨大的作用[1]。

聚羧酸减水剂生产工艺

聚羧酸减水剂生产工艺

聚羧酸减水剂生产工艺一、引言一般认为,减水剂的发展分为三个阶段:以木质素磺酸钙为代表的第一代普通减水剂阶段;以萘系为代表的第二代高效减水剂阶段;以聚羧酸系为代表的第三代高性能减水剂阶段。

与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点:1.在合成工艺上,聚羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。

2.在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构。

该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团(—COOH)、羟基基团(—OH)、磺酸基(—SO3Na)等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的空间位阻效应。

由于其广泛的原料来源,独特的分子结构,故而具有前两代减水剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已成为混凝土外加剂研究领域的重点和热点之一。

但是,也许是涉及技术秘密,目前该领域的研究成果报道较少,尤其是聚羧酸系高性能减水剂的合成工艺。

因此,本文在此予以简介之。

二、聚羧酸系高性能减水剂合成工艺简介。

聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品。

聚酯类:包括酯化和聚合两个过程。

聚醚类:只有聚合一个过程。

(一)、聚酯类聚羧酸系高性能减水剂合成工艺。

1、合成工艺简图冷凝器去离子水↓↓聚乙二醇过硫酸铵↓→→→→→→酯化→→→→→计量槽→→聚合中和成甲基丙烯酸→→→→→→→→→→反应→→→→→计量槽→→反应反应品↑↑↑↑去离子水氢氧化钠2、反应过程如下:(1)、酯化反应(制备大单体):计量聚乙二醇1200料3960kg,将其在水浴中溶化,加入反应釜内,同时加入甲基丙烯酸1140kg,以及小料1份(对苯二酚:5.28kg、吩噻嗪:1.06kg),升温至90℃,加入浓硫酸69.3kg,继续升温至120℃,保持4.5小时,后充氮气2小时,(6㎡/时,每30分钟充1瓶,共4瓶),反应完成,得到减水剂中间大分子单体聚乙二醇单甲基丙烯酸酯和水。

聚羧酸类高性能减水剂的合成及复配--

聚羧酸类高性能减水剂的合成及复配--

HPEG和TPEG实例
• 氧化-还原共轭体系: • 预备:(1)AA36克+去离子水20克 • (2)L-抗坏血酸0.3克+巯基乙酸0.69+去离子水 110 • (3)NOH13克+水260 • 合成前1小时备好 • 流程: • 1.在在配有搅拌和加热装置的四口瓶(1000毫升) 中加入去离子水200克。边搅拌边加入TPEG共365克; 加热搅拌溶解到60度后直接加双氧水(30%浓度)3 克。
• 2.在搅拌保温状态下,开始滴加(1)[滴加 控制时间3h左右];稍后5分钟后开始滴加 (2)[控制滴加时间3.5h左右]。全部滴加完 毕后开启加热到60度。并在此温度范围继 续搅拌1h. • 3.降温到50度以下。在10分钟左右缓慢加入 (3)。调节PH值在6-7。 • 抽检。成品
聚羧酸类高性能减水剂复配
4.具体投料比例(以100公斤MPEG计): MPEG1000-100公斤=100摩尔 MAA=100摩尔*4*86/1000=34.4公斤 对甲苯磺酸=MPGG1000的100公斤*2%=2公 斤 • 对苯二酚=MAA的34.4公斤*1%=0.344公斤
• 5.实验室操作参考: • 把计量好的MPEG1000共200克;对苯二酚 0.69克;对甲苯磺酸4克依次投入干净的有 配套加热的四口烧瓶中,在80度熔化,滴 加计量好的MAA68.8克,滴加时间在30-50 分钟,加完后升温到130度。分别在每一小 时间歇抽真空。收集冷却下来的液体。在 130度反应6小时以上。
1.APEG参考合成工艺
• 国内目前APEG共聚工艺大体是俩种反应体系: 一是采取75度以上温度纯氧化体系;二是45度 左右的氧化-还原体系。 • 各供应商为推广产品也提供不少合成工艺。 • 就目前来看,人们习惯的把每个百分点价格来 讨论减水剂成本。其实产品的成本我认为应该 是同混凝土配合比,同掺量(比如都配成掺量 C*1%的)的成品成本对比。另外还要考虑广 泛的适应性。APEG虽然价格较HPEG和TPEG低, 但是综合成本还是不一定低。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚羧酸类高性能减水剂的合成及复配-- 谢谢聚羧酸类高性能减水剂的合成及复配主要针对目前市场常用羧酸工艺北京科峰技术发展有限公司潘科锋一。

合成总述目前市场所使用聚羧酸类高性能减水剂人们习惯性的分为醚类和酯类。

酯类一般是指用不同分子量的MPEG(甲氧基封端的聚氧乙烯醚)在浓硫酸或者对甲苯磺酸等催化剂作用下与含有不饱和键的羧酸进行酯化。

形成所谓的“大单体”。

然后再用“大单体”和其他含有不饱和键的小分子单体在酸性条件下进行开链共聚,生成聚羧酸类高性能减水剂醚类是指直接用一定分子量的含有不饱和键封端的聚氧乙烯醚直接与其他含有不饱和键的小分子量单体在酸性条件下直接共聚成聚羧酸类高性能减水剂。

目前市场上这种醚大概分为三种:1,APEG(烯丙基封端聚氧乙烯醚).2,HPEG(异丁烯醇封端聚氧乙烯醚)。

3,TPEG(异戊烯醇封端聚氧乙烯醚) 一。

酯类聚羧酸高性能减水剂合成工艺一般酯类聚羧酸高性能减水剂合成所用MPEG的分子量都是在600-1200左右;也有专门跟厂家订做分子量600。

800.1000的。

MPEG是环氧乙烷在碱性条件下,用甲醇做起始剂生产的。

一般成品都经过用醋酸中和后PH值在7左右。

所用含有不饱和键的酸一般为:(甲基)丙烯酸;衣糠酸;马来酸(酐);富马酸等。

目前使用最多的是甲基丙烯酸和衣糠酸。

催化剂一般使用浓硫酸和对甲苯磺酸酯化反应是可逆反应。

在隔绝空气或者厌氧条件下进行。

在酯类聚羧酸高性能减水剂合成中,酯化的好坏对最终产品的性能起决定作用,是控制的关键~酯化温度一般在125-135度。

由于在此温度下MAA有可能自聚。

所以要在反应中加对苯二酚或者吩噻嗪等做阻聚剂。

酯化后聚工艺比较灵活。

一般都在去离子水介质中自由聚合。

国内目前以过硫酸铵(APS)做引发剂参与共聚的小高分子也很多。

比如:(甲基)丙烯酸(AA,MAA);烯丙基磺酸钠(AS);甲基烯丙基磺酸钠(MAS);丙烯酰胺;2-丙烯酰胺-2-甲基丙烯磺酸钠(AMPS);(甲基)丙烯酸甲酯;丙烯酸羟乙酯;醋酸乙烯酯等参考实例:MPEG1000酯化和聚合工艺配方 1.主要原料: MPEG1000;对苯二酚;对甲苯磺酸;甲基丙烯酸(MAA,分子量86);甲基丙烯磺酸钠(MAS,分子量158.2);过硫酸铵(APS) 2.酯化配方: 摩尔比:MAA/MPEG 4/1 对苯二酚用量为MAA 重量的1% 对甲苯磺酸用量为MPEG1000重量的2% 注意:酯化反应是可逆反应。

要提高酯化率就需要把酯化生成水带出或者抽走。

所以有的加入甲苯带水剂;有的采取间歇抽真空抽出反应生成水。

带出或者抽出的水里含有相当多的MAA,可以储存用于后聚工艺生产使用。

3.酯化工艺流程: 把计量好的MPEG;对苯二酚;对甲苯磺酸陆续投入反应釜内,加热到80度熔化。

在缓慢通入氮气的情况下,缓慢滴加计量好的甲基丙烯酸,滴加时间30-50分钟。

滴加完毕后封闭反应釜,停止通氮气并升温到130度。

分别在130度恒温阶段的每1小时间歇抽真空,并收集冷却下来的液体。

在130度恒温7小时。

备注: 抽真空时,通过管道阀门控制:放空阀门,打开真空泵,缓慢关闭阀门,随着反应釜内的真空度增大。

反应釜内的甲基丙烯酸和水通过冷凝器冷却。

注意观察反应釜内,防止爆沸,若发现应慢慢打开阀门减少真空度,防止液体冒锅,直到真空度稳定在一定值釜内不爆沸。

大概抽10分钟左右。

4.具体投料比例(以100公斤MPEG计): MPEG1000-100公斤 100摩尔 MAA 100摩尔*4*86/1000 34.4公斤对甲苯磺酸 MPGG1000的100公斤*2% 2公斤对苯二酚 MAA的34.4公斤*1% 0.344公斤 5.实验室操作参考: 把计量好的MPEG1000 共200克;对苯二酚0.69克;对甲苯磺酸4克依次投入干净的有配套加热的四口烧瓶中,在80度熔化,滴加计量好的MAA68.8克,滴加时间在30-50分钟,加完后升温到130度。

分别在每一小时间歇抽真空。

收集冷却下来的液体。

在130度反应6小时以上。

以上反应在130度恒温7小时左右后,将四口烧瓶整体冷却到50度以下,然后将收集的液体倒回烧瓶。

再加入20%(约67克)的水配成80%的大单体溶液,以保证大单体是液态,便于后聚工艺的取料和计量。

6.聚合工艺: 需要说明的是,因为各个供应商的MPEG存在分子量分布差异和分子量大小不同。

所以后聚合工艺存在很多要调节的数据。

工业生产前应该一小试确定数据为准。

一般情况下,根据以下摩尔比例范围调整: MAA/MPEG-MAA/MAS3-5.5/1/0.0-0.5 后聚合生产温度在90士2度。

大单体和酸及MAS混合液体单独计量滴加,滴加时间为3小时左右5分钟;引发剂一般用过硫酸铵(APS),用量为(MAA+MAA-MPEG+MAS)*2%左右;引发剂水溶液也单独计量滴加,滴加时间为3小时左右5分钟。

链转移剂使用巯基乙酸或者3-巯基丙酸,用量为大单体体重量的1%左右。

反应釜内计量一定数量的去离子水并加热到90士2度。

在搅拌和能调节温度情况下,俩种溶液同时开始滴加,待俩种溶液滴加完毕后。

继续在搅拌状态下恒温3小时。

抽样检测后根据需要浓度补充一定数量的去离子水。

一般最后成品浓度是20%左右。

7.几个供应商的经验比例数据:MAA/MPEG-MAA/MAS 克莱恩 5 / 1 /0 海安石化 4.5/ 1 /0.1科隆 3 / 1 /0.15 奥克 5 / 1 /0.3 以上数据仅供参考。

由于供应商的MPEG 波动。

建议还是要经过小试确定。

二。

酯类产品生产注意和个人观点 (1)一般情况下酯化率和反应釜的罐装度有关。

越小,同时间酯化率越高。

反之亦然。

(2)酯化过程中存在很多不确定因素,很难通过测定数据来计算酯化率,往往以相对酯化率来表示。

若以羧酸的转化率来表示,建议酯化结束后的酯化率应达到99%以上,相对酯化率的稳定反应酯化反应的稳定。

(3)建议使用分子量分布窄的,切PEG含量小于0.5%的MPEG。

条件允许,建议用高效液相色谱进行分析各产物的含量。

(4)MPEG通过酯化才能引入不饱和键。

但酯键键能低,特别是聚合形成减水剂大分子后。

酯键很容易脱落,造成部分酯化逆反应。

从而引起产品PH值降低,降低产品性能。

(5)最近市场好多厂家停止生产酯类产品。

原因是工艺控制麻烦。

对生产和储存设备要求高。

储存稳定性差。

三。

醚类聚羧酸类高性能减水剂一般把聚羧酸类高性能减水剂分为4代: 第一代是MPEG酯化共聚类第二代是烯醇类封端的PEG直接共聚类第三代是:酰胺/亚酰胺型。

第四代是:两性或非离子型目前醚类聚羧酸类高性能减水剂是指用APEG,HPEG,TPEG直接共聚的三种产品 APEG:烯丙醇封端聚氧乙烯醚。

分子量有1200和2400俩种。

大部分使用分子量2400的。

如:APEG2400;F54;540等 HPEG:异丁烯醇封端聚氧乙烯醚。

大部分使用分子量2400的。

有的叫国产封端改性聚醚;GPEG;SPEG;109;608;H004等。

生产使用的起始剂异丁烯醇是国内生产所以得名。

TPEG:异戊烯醇封端聚氧乙烯醚。

大部分使用分子量2400的。

有的叫国外封端改性聚醚。

生产使用的起始剂异戊烯醇(3甲基-2-丁烯醇)是国外生产所以得名。

市场上有108;501等 1.APEG参考合成工艺国内目前APEG共聚工艺大体是俩种反应体系:一是采取75度以上温度纯氧化体系;二是45度左右的氧化-还原体系。

各供应商为推广产品也提供不少合成工艺。

就目前来看,人们习惯的把每个百分点价格来讨论减水剂成本。

其实产品的成本我认为应该是同混凝土配合比,同掺量(比如都配成掺量C*1%的)的成品成本对比。

另外还要考虑广泛的适应性。

APEG虽然价格较HPEG和TPEG低,但是综合成本还是不一定低。

APEG是个不错的产品,虽然聚合活性较差。

但是很容易做出缓凝和早强类聚羧酸高性能减水剂。

特别是缓凝类聚羧酸类高性能减水剂。

相对HPEG和TPEG就不容易做到。

一般用于APEG聚合形成主链的不饱和酸是马来酸(酐);富马酸;丙烯酸等。

甲基丙烯酸由于双键键位所决定的键能较高,不容易打开。

所以很难与APEG直接共聚。

用于APEG的接枝其他基团作用的不饱和小高分子较多。

也比较灵活。

如:烯丙基磺酸钠(AS);甲基烯丙基磺酸钠(MAS);丙烯酰胺;苯乙烯磺酸钠;2-丙烯酰胺-2-甲基丙烯磺酸钠(AMPS);(甲基)丙烯酸甲酯;丙烯酸羟乙酯;醋酸乙烯酯等。

在去离子水中自由共聚一般氧化(引发)剂使用过硫酸铵(或者钾);双氧水。

还原剂使用L-抗坏血酸;甲醛合次亚硫酸氢钠;焦亚硫酸钠等 APEG实例一步直接投料工艺: 1.在配有搅拌和加热装置的四口瓶(1000毫升)中加入去离子水180克。

边搅拌边加入APEG2400共240克(1摩尔);马来酸酐(MA)34.3克(0.35摩尔) 2.升温到60度。

搅拌至全部溶解后依次投入MAS 6克;APS 2.4克。

待全部溶解透明后,继续加热到75-80度。

在此温度范围搅拌保温3小时后,继续加热到85-90度,恒温搅拌30分钟。

3。

加入四口瓶90克去离子水,并降温到55度以下,边搅拌边缓慢加入NaOH(30%浓度)约78克调节PH值到7以上. 成品氧化-还原体系滴加工艺: 预备;(1)甲醛合次亚硫酸氢钠4克+去离子水20克;(2)MA15克+丙烯酰胺7.5克+去离子水64克 3 NaOH10克+水30克合成前1小时溶解备用流程: 1:在配有搅拌和加热装置的四口瓶(1000毫升)中加入去离子水155克。

边搅拌边加入APEG2400共230克;MA11克;双氧水(30%浓度)10克;加热搅拌溶解到35度后直接加醋酸乙烯酯8.5克。

2.在搅拌保温状态下,开始滴加(1)[滴加控制时间1h40min左右];稍后5分钟后开始滴加(2)[控制滴加时间1h左右]。

全部滴加完毕后开启加热到50-55度。

并在此温度范围继续搅拌30min. 3.缓慢加入(3)。

调节PH值在6.5-7范围成品。

抽样检测由于各供应商的APEG产品存在重均分子量不同和分子量分布不同,甚至同一个供应商的不同批次产品都有差异。

建议对每批次的材料经过合成小实验再确定配方工艺。

HPEG和TPEG实例氧化-还原共轭体系: 预备:(1)AA36克+去离子水20克 (2)L-抗坏血酸0.3克+巯基乙酸0.69+去离子水110(3)NOH13克+水260 合成前1小时备好流程: 1.在在配有搅拌和加热装置的四口瓶(1000毫升)中加入去离子水200克。

边搅拌边加入TPEG共365克;加热搅拌溶解到60度后直接加双氧水(30%浓度)3克。

2.在搅拌保温状态下,开始滴加(1)[滴加控制时间3h左右];稍后5分钟后开始滴加(2)[控制滴加时间3.5h左右]。

相关文档
最新文档