2023湖南省高考数学真题试卷
2023年湖南高考数学真题及解析(图片版)

2023年湖南高考数学真题及解析(图片版)2023年湖南高考数学真题及解析(图片版)小编整理了2023年湖南高考数学真题及解析,数学能让我们思考任何问题的时候都比较缜密,而不至于思绪紊乱。
还能使我们的脑子反映灵活,对突发事件的处理手段也更理性。
下面是小编为大家整理的2023年湖南高考数学真题及解析,希望能帮助到大家!2023年湖南高考数学真题及解析学好高中数学三步骤第一步,怎么样学好高中数学首先需要吃透数学书的知识,如何学习知识,如何提高高中数学成绩,同学上课前要做好预习,带着问题来认真听讲,做好布置的,作业。
建议:不管是高一二或者高三同学,怎样学好高中数学一定要把基础知识学扎实的前提下,才能提高数学成绩。
第二步,高中数学在掌握了基础知识之后,再考虑有两种:一种就题论题式思考;一种是思维全面化、系统化思考。
就题论题思考是必要的,拿到陌生题目一定要自己思考,实在思考不出来再去看答案或问别人,这对于你的做题水平的提高是很有帮助的。
第三步,这是拔高提升阶段,这一步对于怎样学好高中数学至关重要,我们有的同学做了很多数学题,可是遇到陌生题就不知从何入手了,那么这样的学生如果第二步做好了,那么他们缺的就是第三步: 对高中数学题目的全面系统化思考做到这一步需要整体思维和系统化思维,需要对各类题型进行总结,进行逻辑上的提炼和升华,同时需要一个思维逻辑高度来全面系统化思考。
高中数学的高考复习方法课后一分钟回忆及时复习数学的基本概念、定义、公式,数学知识点的联系,基本的数学解题思路与方法,是第一轮复习的重中之重。
回归课本,先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要扎扎实实,不要盲目攀高,以免欲速则不达。
复习课的容量大、内容多、时间紧。
要提高复习效率,必须使自己的思维与老师的思维同步。
而预习则是达到这一目的的重要途径。
没有预习,听老师讲课,就抓不住老师讲的重点;而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,从而提高复习效率。
2023年湖南数学高考题

2023年湖南数学高考题2023年湖南数学高考题一、选择题(共10小题,每题2分,共20分)1. 某数列的通项公式为an = 2n + 3,前五项为5,7,9,11,13,求这个数列的第10项是多少?A. 17B. 18C. 19D. 202. 一个圆的直径是8cm,求这个圆的面积和周长之和。
A. 44π cmB. 40π cmC. 48π cmD. 64π cm3. 已知等差数列前三项分别为1,4,7,求第100项的值是多少?A. 297B. 300C. 303D. 3064. 在平面直角坐标系中,点A(3, 4)和点B(7, 1)的斜率为多少?A. -3/4B. -1/3C. 3/4D. 4/35. 若正方形的周长是20cm,求正方形的面积。
A. 16 cm²B. 20 cm²C. 25 cm²D. 30 cm²6. 解方程2x - 5 = 7,求x的值。
A. -1B. 1C. 6D. 87. 设f(x) = 2x² - 3x + 1,求f(3)的值。
A. 13B. 19C. 23D. 258. 若tanA = 4/3,且A为锐角,求sinA的值。
A. 3/5B. 4/5C. 12/13D. 5/139. 一个正方体的边长为3cm,求其体积。
A. 9 cm³B. 18 cm³C. 27 cm³D. 36 cm³10. 两个数的和是8,差是2,求这两个数的乘积。
A. -6B. 2C. 6D. 12二、填空题(共5小题,每题3分,共15分)11. 一个正方形的面积是18 cm²,求它的对角线长。
答案:3√10 cm12. 已知直角三角形的两条直角边分别为3cm和4cm,求斜边的长。
答案:5 cm13. 解方程3x + 2 = 5x - 1,x = __。
答案:3/214. 设函数f(x) = 3x² + 2x - 1,求f(2)的值。
2023年湖南数学高考卷

2023年湖南数学高考卷(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. 设集合A={x|x²3x+2=0},则A中元素的个数为()A. 0个B. 1个C. 2个D. 3个2. 若函数f(x)=ax²+bx+c在区间[0,1]上单调递增,则下列结论正确的是()A. a>0B. b>0C. c>0D. a+b+c>03. 已知等差数列{an}的前n项和为Sn,若S3=9,S6=27,则a4+a5+a6=()A. 9B. 12C. 15D. 184. 在△ABC中,a=8,b=10,cosA=3/5,则sinB的值为()A. 3/5B. 4/5C. 3/4D. 4/35. 若复数z满足|z1|=|z+1|,则z在复平面上的对应点位于()A. 实轴上B. 虚轴上C. y=x上D. y=x上二、判断题(每题1分,共20分)6. 任何两个实数的和仍然是一个实数。
()7. 若函数f(x)在区间[0,1]上连续,则f(x)在[0,1]上必定有最大值和最小值。
()8. 等差数列的通项公式一定是an=a1+(n1)d。
()9. 在直角坐标系中,点P(a,b)到原点的距离等于a²+b²。
()10. 若两个复数相等,则它们的实部和虚部分别相等。
()三、填空题(每空1分,共10分)11. 已知函数f(x)=2x²4x+3,则f(1)=______。
12. 若向量a=(2,3),向量b=(1,2),则2a3b=______。
13. 在等差数列{an}中,已知a1=1,d=2,则a5=______。
14. 在△ABC中,若a=5,b=7,cosB=3/5,则sinA=______。
15. 设复数z=3+4i,则|z|=______。
四、简答题(每题10分,共10分)16. 请证明:对于任意实数x,(x+1)²≥0。
湖南高考数学试题及答案

湖南高考数学试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-6x+8,则f(1)的值为:A. 3B. 1C. -3D. -1答案:B2. 已知向量a=(3,-2),b=(1,2),则向量a+b的坐标为:A. (4,0)B. (2,0)C. (-1,0)D. (1,4)答案:A3. 若复数z满足|z|=1,且z的实部为1/2,则z的虚部为:A. √3/2B. -√3/2C. √3/4D. -√3/4答案:A4. 已知函数f(x)=x^3-3x^2+2,求f'(x)的值为:A. 3x^2-6xB. 3x^2-6x+2C. x^2-3x+2D. x^3-3x^2答案:A5. 已知等差数列{an}的首项a1=1,公差d=2,求前5项和S5的值为:A. 15B. 25C. 35D. 45答案:B6. 若直线l的方程为y=2x+3,且点P(1,0)在直线l上,则直线l与x 轴的交点坐标为:A. (-3/2, 0)B. (-3, 0)C. (3/2, 0)D. (3, 0)答案:A7. 已知圆C的方程为(x-1)^2+(y+2)^2=9,求圆C的半径r的值为:A. 3B. 2√2C. √5D. √10答案:A8. 若双曲线的方程为x^2/a^2-y^2/b^2=1,且焦点在x轴上,求双曲线的离心率e的取值范围为:A. (1, +∞)B. (0, 1)C. (-∞, -1)D. (-1, 0)答案:A9. 已知函数f(x)=ln(x+√(x^2+1)),求f'(x)的值为:A. 1/(x+√(x^2+1))B. 1/xC. 1/√(x^2+1)D. 1/(x-√(x^2+1))答案:A10. 若抛物线y^2=4x的焦点为F,点P(1,2)在抛物线上,则点P到焦点F的距离为:A. 1B. 2C. 3D. 4答案:C二、填空题(每题4分,共20分)11. 已知函数f(x)=x^3-3x^2+2x,求f(0)的值为:______。
2023年湖南高考数学卷子

选择题:1. 函数f(x) = x^3 - 2x^2 + x + 3的极大值点为:A. (1, 3)B. (1, -1)C. (2, 5)D. (2, -1)2. 已知三角形ABC中,∠A = 40°,∠B = 80°,则∠C的度数为:A. 40°B. 60°C. 80°D. 100°3. 已知向量a = (3, 4)与向量b = (x, 2)的夹角为60°,则x的值为:A. 3B. 4/√3C. 2√3D. 64. 设a、b是正数,并且满足a + b = 10,那么a与b的乘积的最大值为:A. 10B. 16C. 20D. 25填空题:1. 若向量a = (2, 3)与向量b = (4, k)垂直,则k的值为____。
2. 设函数f(x) = ax^2 + bx + c,已知f(1) = 2,f(2) = 6,f(3) = 12,则a + b + c的值为____。
3. 设x为正数,若logₓ27 = 3,则x的值为____。
4. 已知三角形ABC,AB = AC,AD是BC边上的高,若AD = 8,BC = 10,则AB的长度为____。
应用题:1. 一个长方体箱子,底面积为16平方米,高为3米。
若将箱子的高和宽同时扩大2倍,那么新的箱子的体积为____立方米。
2. 某公司生产一种产品,已知每个产品的售价是其生产成本的3倍。
若生产100个产品,总成本为6000元,则每个产品的售价是____元。
3. 一个圆形花坛的半径为5米,小明想在花坛中心挖一个与圆相切的正方形花坛。
那么该正方形花坛的边长为____米。
4. 某人在银行定期存款5万元,年利率为3%,存款期为5年。
若利息为本金的2倍,则存款期数为____年。
2023年湖南省高考文科数学试题与答案

2023年湖南省高考文科数学试题与答案试题一
题目描述
某市今年的人口总数是500万,并以每年3%的增长率逐年增长。
假设该市的人口增长率保持不变,那么到2023年底,该市的人口总数是多少?
解答步骤
1. 2023年底距离现在有几年?(记为n年)
2. 计算n年的增长率:3% × n
3. 计算增长的人口数量:500万 ×增长率
4. 计算2023年底的人口总数:500万 + 增长的人口数量
解答
假设n年为2023年底距离现在的年份数,根据解答步骤得到以下计算公式:
2023年底人口总数 = 500万 + (500万 × 3% × n)
请根据具体的年份计算n的值,并代入公式进行计算。
试题二
题目描述
某班级有40名学生,其中25%是男生。
请计算该班级男生人数和女生人数分别是多少。
解答步骤
1. 计算男生人数:40 × 25%
2. 计算女生人数:40 - 男生人数
解答
根据解答步骤得到以下计算公式:
男生人数 = 40 × 25%
女生人数 = 40 - 男生人数
请代入具体数值进行计算。
以上是2023年湖南省高考文科数学试题的部分题目与答案。
如果还有其他问题,请随时提问。
2023年湖南省高考数学真题及参考答案

2023年湖南省高考数学真题及参考答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21012,,,,--=M ,{}062>--=x x x N ,则M ∩=N ()A .{}1012,,,--B .{}2,1,0C .{}2-D .{}22.已知iiz 221+-=,则=-z z ()A .i -B .iC .0D .13.已知向量()1,1=a,()1,1-=b .若()()b a b a μλ+⊥+,则()A .1=+μλB .1-=+μλC .1=λμD .1-=λμ4.设函数()()a x x x f -=2在区间()1,0单调递减,则a 的取值范围是()A .(]2-∞-,B .[)0,2-C .(]2,0D .[)∞+,25.设椭圆12221=+y a x C :()1>a ,14222=+y x C :的离心率分别21,e e .若123e e =,则=a ()A .332B .2C .3D .66.过点()20-,与圆01422=--+x y x 相切的两条直线的夹角为α,则=αsin ()A .1B .415C .410D .467.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:⎭⎫⎩⎨⎧n S n 为等差数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.已知()31sin =-βα,61sin cos =βα,则()=+βα22cos ()A .97B .91C .91-D .97-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据621,,x x x ,其中1x 是最小值,6x 是最大值,则()A .5432,,,x x x x 的平均数等于621,,x x x 的平均数B .5432,,,x x x x 的中位数等于621,,x x x 的中位数C .5432,,,x x x x 的标准差不小于621,,x x x 的标准差D .5432,,,x x x x 的极差不大于621,,x x x 的极差10.噪声污染问题越来越受到重视,用声压级来度量声音的强弱,定义声压级lg20p pL p ⨯=,其中常数()000>p p 是听觉下线的阈值,p 是实际声压.下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为321,,p p p ,则()A .21p p >B .3210p p >C .03100p p =D .21100p p <11.已知函数()x f 的定义域为R ,()()()y f x x f y xy f 22+=,则()A .()00=fB .()01=f C .()x f 是偶函数D .0=x 为()x f 的极小值点12.下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A .直径为m 99.0的球体B .所有棱长均为m 4.1的四面体C .底面直径为m 01.0,高为m 8.1的圆柱体D .底面直径为m 2.1,高为m 01.0的圆柱体声源与声源的距离/m 声压级/dB 燃油汽车1060~90混合动力汽车1050~60电动汽车1040三、填空题:本大题4小题,每小题5分,共20分.13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选修方案共有种(用数字作答).14.在正四棱台1111D C B A ABCD -中,2=AB ,111=B A ,21=AA ,则该棱台的体积为.15.已知函数()()01cos >-=ωωx x f 在区间[]π2,0有且仅有3个零点,则ω的取值范围是.16.已知双曲线()0012222>>=-b a by a x C ,:的左、右焦点分别为21F F ,,点A 在C 上.点B 在y 轴上,B F A F 11⊥,B F A F 2232-=,则C 的离心率为.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知在ABC ∆中,C B A 3=+,()B C A sin sin 2=-.(1)求A sin ;(2)设5=AB ,求AB 边上的高.18.如图,在正四棱柱1111D C B A ABCD -中,2=AB ,41=AA .点2222,,,D C B A 分别在棱1111,,,DD CC BB AA 上,12=AA ,222==DD BB ,32=CC .(1)证明:2222D A C B ∥;(2)点P 在棱1BB 上,当二面角222D C A P --为150°时,求P B 2.19.已知函数()()x a e a x f x-+=.(1)讨论()x f 的单调性;(2)证明:当0>a 时,()23ln 2+>a x f .20.设等差数列{}n a 的公差为d ,且1>d ,令nn a nn b +=2,记n n T S ,分别为数列{}n a ,{}n b 的前n 项和.(1)若31223a a a +=,2133=+T S ,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999=-T S ,求d .21.甲乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为6.0,乙每次投篮的命中率均为8.0,由抽签决定第一次投篮的任选,第一次投篮的人是甲、乙的概率各为5.0.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()i i i q X P X P ==-==011,n i ,,2,1 =,则()∑∑===ni i ni i q X E11,记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()Y E .22.在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点⎪⎭⎫ ⎝⎛210,的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于33.参考答案一、选择题12345678CADDABCB1.解:(][)∞+⋃-∞-∈,,32N ,∴{}2=⋂N M 2.解:i i i z 21221-=+-=,∴i z z -=-3.解:()()b a b aμλ+⊥+∵,∴()()()01222=+=+⋅++λμλμμλb b a a ,∴1-=λμ4.解:由复合函数的单调性可知()a x x y -=在区间()1,0单调递减,∴12≥a,∴a 的取值范围是[)∞+,2.5.解:由题意得:a a e 121-=,232=e ,得2112=-a a ,解得332=a .6.解:易得()5222=+-y x ,故圆心()0,2B ,5=R 记()20-,A ,设切点为N M ,,则22=AB ,5=BM ,可得3=AM 223sin 2sin==∠=AB AM MBA α,2252cos =α∴4152cos 2sin 2sin ααα=7.解:甲:∵{}n a 为等差数列,设其首项为1a ,公差为d ,则()d n n na S n 211++=,∴222111d a n d d n a n S n -+=-+=,211d n S n S n n =-++,故⎭⎬⎫⎩⎨⎧n S n 为等差数列,则甲是乙的充分条件;反之,⎭⎫⎩⎨⎧n S n 为等差数列,即()()()1111111+-=++-=-++++n n S na n n S n nS n S n S n n n n n n 为常数,设为t ,即()t n n S na nn =+-+11,故()11+⋅-=+n n t na S n n ,故()()111-⋅--=-n n t a n S n n ,2≥n ,两式相减有:()tn n a na a n n n 211---=+,即t a a n n 21=-+,对1=n 也成立,故{}n a 为等差数列,∴甲是乙的必要条件综上,甲是乙的充要条件.8.解:∵()31sin cos cos sin sin =-=-βαβαβα,61sin cos =βα,则21cos sin =βα,故()326131sin cos cos sin sin =+=+=+βαβαβα.()()913221sin 2122cos 22=⎪⎭⎫⎝⎛⨯-=+-=+βαβα.二、选择题9101112BDACDABCABD10.解:∵0lg 20lg 20lg2021020121≥⨯=⨯-⨯=-p p p p p p L L ,∴121≥p p,即21p p >∴A 正确;10lg 203232>⨯=-p p L L ,即21lg 32>p p ,∴213210>p p ,∴B 错误;∵40lg20033=⨯=p p L ,∴10010203==p p,∴C 正确;405090lg202121=-≤⨯=-p p L L ,∴2lg 21≤p p ,∴10021≤p p,∴D 正确.11.解:选项A ,令0==y x ,则()()()000000=⨯+⨯=f f f ,故A 正确;选项B ,令1==y x ,则()()()11111f f f ⨯+⨯=,则()01=f 故B 正确;选项C,令1-==y x ,则()()()()()1111122-⨯-+-⨯-=f f f ,则()01=f ,再令1-=y ,则()()()()1122-+⨯-=-f x x f x f ,即()()x f x f =-,故C 正确;选项D,对式子两边同时除以22yx ()022≠y x,得到:()()()2222xx f y y f y x xy f +=,故可设()()0ln 2≠=x x x x f ,故可以得到()⎩⎨⎧=≠=0,00,ln 2x x x x x f ,故D 错误.12.解:选项A,球直径为199.0<,故球体可以放入正方体容器内,故A 正确;选项B,连接正方体的面对角线,可以得到一个正四面体,其棱长为4.12>,故B 正确;选项C,底面直径m 01.0,可以忽略不计,但高为38.1>,3为正方体的体对角线的长,故C 不正确;选项D,底面直径为32.1<,高为m 01.0的圆柱体,其高度可以忽略不计,故D 正确.三、填空题13.64;14.667;15.32<≤ω;16.55313.解:当从这8门课中选修2门课时,共有161414=C C ;当从这8门课中选修3门课时,共有4814242414=+C C C C ;综上共有64种.14.解:如图,将正四棱台1111D C B A ABCD -补成正四棱锥,则2=AO ,22=SA ,261=OO ,故()()667261212313122222121=⋅⋅++=++=h S S S S V .15.解:令()01cos =-=x x f ω得1cos =x ω,又[]π2,0∈x ,则[]ωπω2,0∈x ,∴ππωπ624<≤,即32<≤ω.16.解:由B F A F 2232-=32=,设x A F 22-=,x B F 32=.由对称性可得x 3=,由定义可得,a x 22+=x 5=,设θ=∠21AF F ,则5353sin ==x x θ,∴xax 52254cos +==θ,解得a x =,∴a x AF 221+=,a AF 22=,在21F AF ∆中,由余弦定理可得54164416cos 2222=-+=a c a a θ,即2295a c =可得553=e .四、解答题17.解:(1)由题意得C B A 3=+,∴,π==++C C B A 4,∴4π=C ∴A C A B -=--=43ππ,∵()B C A sin sin 2=-,∴⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-A A ππ43sin 4sin 2,即A A A A sin 22cos 22cos 22sin 222+=⎪⎪⎭⎫⎝⎛-,整理得:A A cos 3sin =又∵1cos sin 22=+A A ,()π,0∈A ∴0sin >A ,∴0cos >A 解得10103sin =A ,1010cos =A (2)∵()552sin cos cos sin sin sin =+=+=C A C A C A B 由正弦定理可知C c B b sin sin =,即22510103=b ,解得102=b 设AB 边上的高为h ,∵ch A bc S 21sin 21==,∴6sin ==A b h 18.解:以C 为原点,CD 为x 轴,CB 为y 轴,1CC 为z 轴建立空间直角坐标系则()2,2,02B ,()3,0,02C ,()1,222,A ,()2,0,22D (1)∵()1,2022-=,C B ,()12022,,-=D A ∴=22C B 22D A ,∴2222D A C B ∥(2)设()t P ,2,0,其中42≤≤t ∴()t P A -=1022,,,()t PC --=3,202,,()1,0,222-=C D ,()12,022-=,A D .设平面22C P A 的一个法向量为()z y x m ,,= ,则⎪⎩⎪⎨⎧=⋅=⋅022PC m P A m 即()()⎩⎨⎧=-+-=-+032012z t y z t x ,令2=z ,则()2,3,1t t m --=.设平面222C A D 的一个法向量为()z y x n '''=,, ,则⎪⎩⎪⎨⎧=⋅=⋅02222C D n A D n即⎩⎨⎧=-'=+'-0202z y z x ,令2=z ,则()2,1,1=n .∵二面角222D C A P --为150°,∴2314826150cos 2=+-=︒⇒=t t ,解得:1=t (舍去)或3=t .∴12=P B 19.解:(1)由题可得()1-='xae x f ①当0≤a 时,()0<'x f ,()x f 在()∞+∞-,单调递减;②当0>a 时,令()0='x f 得ax ln -=∴当()a x ln ,-∞-∈时,()0<'x f ,()x f 在()a ln ,-∞-单调递减;当()∞+-∈,a x ln 时,()0>'x f ,()x f 在()∞+-,a ln 单调递增.(2)由(1)得当0>a 时,()()a a a f x f ln 1ln 2min ++=-=.设()21ln 23ln 2ln 122--=⎪⎭⎫ ⎝⎛+-++=a a a a a a g ,则()a a a g 12-=',令()0='a g 可得22=a ∴当⎪⎪⎭⎫ ⎝⎛∈22,0a 时,()0<'a g ,()a g 在⎪⎪⎭⎫⎝⎛22,0上单调递减;当⎪⎪⎭⎫ ⎝⎛∞+∈,22a 时,()0>'a g ,()a g 在⎪⎪⎭⎫⎝⎛∞+,22上单调递增.∴()02ln 22min >=⎪⎪⎭⎫⎝⎛=g a g ,故()0>a g ,∴当0>a 时,()23ln 2+>a x f .20.解:(1)∵31223a a a +=,∴d a a d 2313+==,即d a =1,nd a n =故nd a n =,∴d n a n n b n n 12+=+=,()21d n n S n +=,()dn n T n 23+=,又2133=+T S ,即21263243=⨯+⨯dd ,即03722=+-d d ,解得3=d 或21=d (舍),故{}n a 的通项公式为:n a n 3=.(2)若{}n b 为等差数列,则3122b b b +=,即da a d a 24321322111+⨯+⨯=+⨯⋅,即0232121=+-d d a a ,∴d a =1或d a 21=,当d a =1时,nd a n =,故()21d n n S n +=,()dn n T n 23+=.又999999=-T S ,即99210299210099=⨯-⨯dd ,即051502=--d d ,∴5051=d 或1=d (舍).当d a 21=时,()d n a n 1+=,d n b n =,故()23d n n S n +=,()dn n T n 21+=.又999999=-T S ,即99210099210299=⨯-⨯dd ,即050512=--d d ,∴5051-=d (舍)或1=d (舍).综上所述:5051=d .21.解:(1)第二次是乙的概率为6.08.05.04.05.0=⨯+⨯.(2)第i 次投篮的人是甲的概率为i p ,则第i 次投篮的人是甲的概率为i p -1,则()2.04.012.06.01+=-+=+i i i i p p p p ,构造等比数列()λλ+=++i i p p 521,解得31-=λ,则⎪⎭⎫ ⎝⎛-=-+3152311i i p p ,又211=p ,∴61311=-p ∴1526131-⎪⎭⎫ ⎝⎛⋅=-i i p ,则3152611+⎪⎭⎫⎝⎛⋅=-i i p .(3)当*∈N n 时,()352118535215216121n n p p p Y E n nn +⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=+-⎪⎭⎫ ⎝⎛-⋅=+++= .11当0=n 时,()0=Y E ,符合上式,故()3521185n Y E n+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-=.22.解:(1)设()y x P ,,∵点P 到x 轴的距离等于点P 到点⎪⎭⎫ ⎝⎛210,的距离,∴2221⎪⎭⎫ ⎝⎛-+=y x y ,化简得412+=x y .故W 的方程为412+=x y .(2)不妨设D B A ,,三点在W 上,且有DA BA ⊥.设⎪⎭⎫ ⎝⎛+41,2a a A ,设DA BA ,的斜率分别为kk 1-,,由对称性不妨设1≤k ,则直线BA 的方程为:()412++-=a a x k y 联立()⎪⎪⎩⎪⎪⎨⎧++-=+=414122a a x k y x y ,整理可得:022=-+-a ka kx x ,则kx x B A =+∴()()ak k y y x x AB B A B A 21222-+=-+-=同理可得:a kk AD 21112++=∴CD AB +a k k 212-+=a kk 21112+++()232221112121k k k k k a k a k k +=⎪⎭⎫ ⎝⎛++≥⎪⎪⎭⎫ ⎝⎛++-+≥设()()313123+++=+=m m m mm m f ,则()()()222112132m m m m m m f +-=-+=',可知()m f 在⎪⎭⎫ ⎝⎛210,上单调递减,在⎪⎭⎫ ⎝⎛021,上单调递增,∴()m f 在()10,上最小值为42721=⎪⎭⎫ ⎝⎛f ,∴()3232≥=+kf CD AB ,由于两处相等的条件不一致,∴矩形ABCD 的周长为()332>+CD AB .。
湖南省常德市(新版)2024高考数学人教版真题(综合卷)完整试卷

湖南省常德市(新版)2024高考数学人教版真题(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领取的钱数不少于其他任何人)的概率是()A.B.C.D.第(2)题的值是()A.B.C.D.第(3)题已知复数满足,则()A.B.C.D.第(4)题若不等式对于任意的恒成立,则实数的取值范围是()A.B.C.D.第(5)题如图所示的圆盘的三条直径把圆分成六部分,往圆盘内任投一飞镖(大小忽略不计),则飞镖落到阴影部分内的概率为()A.B.C.D.第(6)题如图,已知某个几何体的三视图,根据图中标出的尺寸(单位:mm),可得这个几何体的体积是()A.B.C.D.第(7)题设集合,集合,则集合()A.B.C.D.第(8)题已知奇函数的导函数的部分图象如图所示,是最高点,且是边长为的正三角形,那么A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知数列的前n项和为,,,且,则()A.,使得B.,使得C.,使得D.若,则第(2)题已知,下列不等式恒成立的是()A.B.C.D.第(3)题已知函数,若,且在,,处的切线均经过坐标原点,则()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题对圆周率的计算几乎贯穿了整个数学史.古希腊数学家阿基米德(公元前287—公元前212)借助正96边形得到著名的近似值:.我国数学家祖冲之(430—501)得出近似值,后来人们发现,这是一个“令人吃惊的好结果”.随着科技的发展,计算的方法越来越多.已知,定义的值为的小数点后第个位置上的数字,如,,规定.记,集合为函数的值域,则集合______.第(2)题已知抛物线的焦点为F,点A,B在抛物线上.若,则当取得最大值时,___________.第(3)题已知函数,,且的最小值是.若关于x的方程在上有2023个零点,则的最小值是______四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,正方体的棱长为4,点E,F,G分别在棱,,上,且满足,,,平面EFG与平面的交线为直线n.(1)求证:当时,平面EFG;(2)若直线n与平面ABCD所成角的正弦值为,求二面角的正弦值.第(2)题某科技公司生产某种芯片.由以往的经验表明,不考虑其他因素,该芯片每日的销售量y(单位:枚)与销售价格x(单位:元/枚,):当时满足关系式,(m,n为常数);当时满足关系式.已知当销售价格为20元/枚时,每日可售出该芯片7000枚;当销售价格为30元/枚时,每日可售出该芯片1500枚.(1)求m,n的值,并确定y关于x的函数解析式;(2)若该芯片的成本为10元/枚,试确定销售价格x的值,使公司每日销售该芯片所获利润最大.(x精确到0.01元/枚)第(3)题如图,设,,又,试用,表示.第(4)题已知函数(1)当时,求曲线在点处的切线与两坐标轴围成的三角形的面积;(2)当时,恒成立,求的取值范围第(5)题在中,角A,B,C所对应的边分别为a,b,c,已知,(1)求角A.(2)若,所在平面内有一点D满足,且BC平分,求面积的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2023湖南省高考数学真题试卷2023湖南省高考数学试卷真题
2023新高考数学多选题突破的方法是什么
1、多选题的选项在没有十足把握的情况下,要做到“宁缺毋滥”。
高考专家表示,新高考改革下的高考数学的多选题,很有可能采取的评分标准是:选项全对给满分(5分),少选(漏选)给2分,错选、多选和不选给0分。
你只有把一道多选题的正确选项全选对,才能得到这道多选题的满分(5分)。
而如果正确选项有多个,哪怕你只选了正确选项中的任何一个,都可以得到2分。
但是,如果你选的选项中有错误选项,哪怕只有一个错误的选项,也只能得0分。
2、做题顺序上一定要遵循“先易后难”的原则。
“先易后难”是目前最科学合理的做题顺序。
它有助于让我们快速找到最适合自己的做题节奏,能让我们对整套数学试题中的难题做到“合理取舍”,还能调动我们的做题热情、增强我们的做题信心,并有助于激发我们的做题灵感。
这也往往是在高考中能超水平发挥的一个必备条件。
需要注意的是,多选题简单题不一定总是出现在前面,难题也不一定总是出现在后面。
不排除高考题目命题人故意把难题放到前面的情况(事实上,近些年的高考中有过几次这样的情况)。
所以,“先易后难”并不意味着按照考题顺序“从前往后”做答。
2023新高考数学多选题答题技巧有哪些
(1)在数学多选题中,如果存在一对内容互相对立的选项,而其他三项不存在内容对立的情况,那么在此对立两项中至少有一个正确项;若存在两对内容互相对立的选项,则应该从两对对立项中分别选择一个选项作为正确选项。
例如,ABCD四个待选项中,AB互相对立,CD互相对立,则两AB. 组以及CD组中分别择一产生。
当然,该规则也存在例外情况。
(2)在数学多选题中,如果存在两对内容互近选项或类似选项,而这两对选项内容对立,则其中一对互近或类似选项应该为正确选项。
例如,ABCD四个待选项中,AB两项内容相近、类似,CD两项内容相近、类似,而AB组与CD组内容对立,如果判断A项正确,那么AB组都正确:如果判断C项正确,那么CD
组都正确。
(3)做数学多选题时,谨慎选择的意识要更加明确,一般首先选出最有把握的2个选项,同时,在有足够把握确定还有其他正确答案时才继续选择,否则不选,以免选出错误选项。
这样,才能保证该题目得分。
因此,要坚持宁缺勿滥,这一点与单项选择题不同。