数学建模案例之单变量最优化
数学建模的最优化方法

充要条件 : 若f (x*) 0,2 f (x*)正定,则x*是极小点
唯一极小 (全局极小)
f 0.298
f 0
f (x1 x2) 2x12 2x1x2 x22 3x1 x2
多局部极小
f 0.298
求解方法:搜索算法(数值迭代)
在迭代的每一步,确定一个搜索方向和一个步长,使沿此方向和 此步长走一步到达下一点时,函数f(X)的值下降.
3.拟牛顿法
为克服牛顿法的缺点,同时保持较快收敛速度的优点,利用第 k 步 和第 k+1 步得到的X k ,X k1 ,f ( X k ) ,f ( X k1 ) ,构造一个正定
矩阵 G k1 近似代替 2 f ( X k ) ,或用H k1 近似代替( 2 f ( X k )) 1 ,将
牛顿方向改为:
产销量的最佳安排 某厂生产一种产品有
甲、乙两个牌号,讨论在产销平衡的情况下如何 确定各自的产量,使总利润最大. 所谓产销平衡 指工厂的产量等于市场上的销量.
总利润为: z(x1,x2)=(p1-q1)x1+(p2-q2)x2
符号说明
z(x1,x2)表示总利润;
p1,q1,x1 分别表示甲的价格、成本、销量; p2,q2,x2 分别表示乙的价格、成本、销量; aij,bi,λi,ci(i,j =1,2)是待定系数.
0.9997 0.9998 1E-8
最优点 (1 1) 初始点 (-1 1)
1.最速下降法(共轭梯度法)算法步骤:
无 约
⑴ 给定初始点 X 0 E n ,允许误差 0 ,令 k=0;
束
⑵ 计算f X k ;
优
⑶ 检验是否满足收敛性的判别准则:
化
f X k ,
数学建模~最优化模型(课件)

投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法
二次多项式近似及单变量最优化例题课件

目 录
• 二次多项式近似 • 单变量最优化问题 • 二次多项式近似在单变量最优化问题中的应用 • 实际应用案例分析
01
二次多项式近似
二次多项式的基本形式
二次多项式的基本形式为ax² + bx + c,其中a、b、c为待定系数。
二次多项式是一种常见的数学函数形式,其一般形式为ax² + bx + c,其中a、b 、c为实数,且a≠0。这个形式的多项式在数学、物理和工程等领域有广泛的应 用。
在给定风险和收益要求的 情况下,如何确定各种资 产的配置比例以获得最优 的投资组合。
最优路径确定路径以使总 距离最短或总时间最少。
03
二次多项式近似在单变量最优化 问题中的应用
利用二次多项式近似求解单变量最优化问题
确定目标函数
首先需要确定要优化的目 标函数,并了解其特性。
02
单变量最优化问题
单变量最优化问题的定义
定义
目标
单变量最优化问题是指在给定条件下 ,找到一个单变量的最优值,使得某 个目标函数达到最小或最大值。
最小化或最大化的目标函数,通常是 一个单变量的函数。
条件
约束条件和边界条件,约束条件通常 指变量的取值范围,边界条件通常指 函数在某些点的取值。
单变量最优化问题的求解方法
实际应用案例的解析与解答
案例一
假设某公司生产一种产品,其总成本与产量之间的关系可以用二次多项式表示 。通过利用二次多项式近似求解单变量最优化问题,可以找到使总成本最小的 产量水平。
案例二
在物理学中,弹簧振子的振动周期与其长度和弹簧常数有关。通过构建二次多 项式近似模型,可以求解使振动周期最小的弹簧长度。
《数学建模》PPT课件

( x2
x1)
f
f (x2 ) (x2 ) f
2 1 ( x1) 22
1
f
( x1 )
f
(x2 )
3
f
( x1 ) x1
f (x2 ) x2
2 (12 f (x1)f (x2 ))1/2
如函数的导数容易求得,一般首先考虑使用三次插值
法,因为它具有较高效率。对于只需要计算函数值的方
法中,二次插值法是一个很好的方法,它的收敛速度较
优化模型
(2)多项式近似法 该法用于目标函数比较复杂的情 况。此时寻找一个与它近似的函数代替目标函数,并用 近似函数的极小点作为原函数极小点的近似。常用的近 似函数为二次和三次多项式。
二次内插涉及到形如下式的二次函数数据拟合问题:
mq() a2 b c
其中步长极值为:
b
2a
完整版课件ppt
求解单变量最优化问题的方法有很多种,根据目标函 数是否需要求导,可以分为两类,即直接法和间接法。 直接法不需要对目标函数进行求导,而间接法则需要用 到目标函数的导数。
完整版课件ppt
4
优化模型
1、直接法 常用的一维直接法主要有消去法和近似法两种: (1)消去法 该法利用单峰函数具有的消去性质进行
反复迭代,逐渐消去不包含极小点的区间,缩小搜索区 间,直到搜索区间缩小到给定允许精度为止。一种典型 的消去法为黄金分割法(Golden Section Search)。黄金 分割法的基本思想是在单峰区间内适当插入两点,将区 间分为三段,然后通过比较这两点函数值的大小来确定 是删去最左段还是最右段,或同时删去左右两段保留中 间段。重复该过程使区间无限缩小。插入点的位置放在 区间的黄金分割点及其对称点上,所以该法称为黄金分 割法。该法的优点是完整算版课法件p简pt 单,效率较高,稳定性好5 。
第一章 单变量最优化

5.回答第一步中提出的问题
何时售猪可以达到最大收益 我们数学模型得到的答案是在8天之后,可以获 得净收益133.20美元。
– 只要第一步中的假设成立,得到的结果就是正确的。 – 由于我们处理的是一个实际问题,在第一步中会存在
一个风险因素存在,因此通常有必要研究集中可供选 择的方案,这一过程称为灵敏性分析。
数学建模方法
马永奎 Yk_ma@ 郑黎明 zheng@
第1章 单变量的最优化
概述
解决最优化问题是数学的一些最常见的应 用。
– 列举例子,例如取得最好的成绩,达到最小的消耗,
在一定目标下使成本最低等等。
共同的数学模式:有一个或者多个可以控 制的变量,控制这些变量(实际中受限) ,达到最优结果。
1.1五步法
概要介绍数学建模的一般过程-五步法。(以典 型的单变量极大-极小化问题为例)
– 一头猪重200磅,每天增重5磅,饲养花费45美分/天
,猪的市场价格65美分/磅,但每天下降1美分,求猪 的最佳出售时间。
解决问题的数学建模分五个步骤:
1.1五步法
– 1.提出问题 – 2.选择建模方法
x / x dx r r / r dr x
我们称这个极限值为x对r的灵敏性,记为S(x,r) 在售猪问题中,我们在点r=0.01和x=8得到:
dx 7 2800 2 dr 25r
dx r 0.01 7 因此 S x, r 2800 dr x 8 2
3.推导模型的数学表达式
P R C p w 0.45t (0.65 0.01t ) 200 5t 0.45t
– 令y=P是最大化的目标变量,x=t是自变量。我们的问
单变量函数的优化方法

虽然单变量函数优化方法具有较 高的算法效率,但仍有优化的空 间。未来的研究可以致力于改进 现有的单变量函数优化算法,提 高其求解速度和精度。
应用拓展
目前单变量函数优化方法的应用 领域还有限,未来可以进一步拓 展其应用范围,将其应用到更广 泛的领域中,如机器学习、数据 挖掘、图像处理等。
THANKS FOR WATCHING
函数的性质包括连续性、可导性、奇偶性、周期性等,这些性质对于函数的优化 和求解非常重要。
单变量函数的特性
单变量函数是指自变量只有一个的函数,其图像为平面上的曲线。
单变量函数具有一些特性,如单调性、极值点、拐点等,这些特性对于函数的优化和求解同样重要。
03 单变量函数的优化方法
导数法
导数法是一种基于函数导数来寻找函数极值的方法。通过求导数,可以判 断函数的单调性,进而确定函数的极值点。
计算复杂度
黄金分割法的计算复杂度相对较低,因为它不需要计算函数的导 数值。
插值法与其他方法的比较
适用范围
插值法适用于已知离散数据点的情况,而其他方法可能适用于更广 泛的情况。
计算复杂度
插值法的计算复杂度相对较低,但其他方法可能在某些情况下具有 更低的计算复杂度。
精度和稳定性
插值法在处理离散数据点时具有较高的精度和稳定性,但在处理连续 函数时可能不如其他方法精确和稳定。
06 结论
单变量函数优化方法的重要性
实际应用
单变量函数优化方法在许多实际问题中都有广泛应用,如数学建模、工程设计、经济分析等。通过对单变量函数进行 优化,可以找到函数的最大值或最小值,从而解决实际问题中的最优化问题。
理论价值
单变量函数优化方法是数学优化的一个重要分支,其理论研究对于数学的发展和深化具有重要意义。通过对单变量函 数优化方法的研究,可以促进数学理论的发展和进步。
数学建模案例之单变量最优化

数学建模案例之单变量最优化生猪的最佳销售时间问题1:一头猪重200磅(1磅=0.454公斤),每天增重5磅,饲养每天需花费45美分。
猪的市场价格为每磅65美分,但每天下降0.01美元,求出售猪的最佳时间。
1.问题分析与假设、符号说明涉及的变量:猪的重量w(磅),饲养时间t≥0(天),t天内饲养猪的化费Q(美元),猪的市场价格p(美元/磅),售出生猪所获得的总收益R(美元),我们最终获得的净收益C(美元)。
涉及的常量:猪的初始重量200(磅),饲养每天的花费0.45(美元),生猪每天的增加重量s(磅),当前的市场价格0.65(美元),生猪价格每天的下降比例系数r。
变量之间的联系:假设1:猪的重量从初始的200(磅)按每天s=5(磅)增加,于是有关系:w(磅)=200(磅)+s(磅/天)×t(天)假设2:当前的市场价格0.65(美元/磅),生猪价格每天的下降比例系数r=0.01,那么出售时生猪的价格为:p(美元/磅)=0.65(美元/磅)- r(美元/磅.天)×t(天)因此,我们有如下关系式:饲养生猪的总的费用为:Q(美元)=0.45(美元/天)×t(天)售出生猪时获得的总收益为:R(美元)=p(美元/磅)×w(磅)最终获得的净收益为:C(美元)=R(美元)-Q(美元)当生猪卖出时获得最大净收益的时间即为最佳出售时间,因此原问题转换成数学表述就是求P达到最大时的时间t≥0,其中P的表达式为:=-=⨯-⨯=-+-C t R t Q t p w t rt st t()()()0.45(0.65)(200)0.452.建立数学模型根据前面的分析,原问题的数学模型如下:max ()..()(0.65)(200)0.45,0C t s t C t rt st t t =-+-≥ (1.1)其中,r ,s 为模型参数,此处取值为s=5,r=0.01。
3.模型求解当s=5,r=0.01时,这是一个单变量t 的函数的最优化问题,而且()C t 是一个连续可微的函数。
最优化理论在数学建模中的应用

IP 结果输出
OBJECTIVE FUNCTION VALUE
1) 632.0000
VARIABLE VALUE REDUCED COST
X1 64.000000 -2.000000
X2 168.000000 -3.000000
X3
0.000000 -4.000000
货机装运
模型求解
OBJECTIVE FUNCTION VALUE
货物2:前仓10,后仓5;
1) 121515.8
VARIABLE VALUE REDUCED COST 货物3: 中仓13, 后仓3;
X11 0.000000 400.000000 X12 0.000000 57.894737
货物4: 中仓3。
0.946237
ROW SLACK OR SURPLUS DUAL PRICES
2) 0.000000
0.731183
3) 0.000000
0.003226
1)舍去小数:取x1=64,x2=167,算出目标函数值z=629,与 LP最优值632.2581相差不大。
2)试探:如取x1=65,x2=167;x1=64,x2=168等,计算函数 值z,通过比较可能得到更优的解。
j=4
58.6
53
59.4
57.2
62.4
若选择队员i参加泳姿j 的比赛,记xij=1, 否则记xij=0
目标 函数
45
Min Z
cij xij
IP可用LINGO直接求解
Model: Max=2x1+3x2+4x3; 1.5x1+3x2+5x3<600; 280x1+250x2+400x3<60000; @gin x1; @gin x2; @gin x3; end
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模案例之单变量最优化
在现实生活中,我们经常需要对一些变量进行优化,以获得最佳的结果。
这个过程就被称为单变量最优化。
在数学建模中,单变量最优化是一个非常常见的问题。
下面以公司海外销售业绩最大化为例,介绍单变量最优化的数学建模方法。
假设公司想要通过调整价格来提高其在海外市场的销售额。
现在,该公司销售一种产品,定价为P(单位:美元),该产品的销售量是一个衰减函数,即随着价格的上升,销售量逐渐减少。
为了简化问题,我们假设销售量Q(单位:件)与价格P之间的关系可以用一个二次函数来近似表示。
那么,我们可以将该问题建模为一个单变量最优化问题。
首先,我们需要找到销售量与价格之间的函数关系。
假设销售量与价格之间的关系可以用以下二次函数来表示:
Q=aP^2+bP+c
其中,a、b、c是待定系数。
接下来,我们需要根据已知的数据来确定这些系数的值。
假设我们已经知道了两个数据点,即在价格P1下销售量为Q1,价格P2下销售量为Q2、我们可以将这两个点代入上式,得到以下两个方程:
Q1=aP1^2+bP1+c
Q2=aP2^2+bP2+c
通过解这个方程组,我们可以确定a、b、c的值。
具体的解法可以使用最小二乘法,即通过最小化误差平方和的方法,求得最佳的a、b、c的估计值。
接下来,我们需要确定如何调整价格来使销售额最大化。
为了简化问题,我们假设该公司的成本是固定的,并且每一件产品的利润是固定的。
那么,该公司的总利润可以表示为:
Profit = (P - Cost) * Q
其中,Cost是单位产品的成本,P是产品的价格,Q是销售量。
我们的目标是使总利润最大化。
通过将Profit表达式代入销售量与
价格之间的函数关系,可以得到总利润关于价格的函数。
我们可以使用微
分法来求解这个问题,即通过求导数来找到函数的驻点。
驻点处的导数为0,表示函数取得极值。
我们可以找到极值点来确定价格的最佳取值。
最后,我们可以使用数值方法,如牛顿法或二分法,来求得函数的极
值点。
这些方法可以通过迭代的方式,逐步逼近极值点,直到满足停止准
则为止。
利用上述的数学建模方法,我们可以得到一个关于价格的最佳调整方案,使得公司在海外市场的销售额最大化。
这个过程中需要使用到数学建
模的方法,包括确定函数关系、最小二乘法、微分法和数值优化方法等。
总结起来,单变量最优化是一个非常实用的数学建模方法。
通过建立
合适的数学模型,可以找到最优的解决方案,从而提高效益和效率。
在以
上的案例中,我们通过建立产品销售量与价格之间的二次函数关系,以及
利润与价格之间的函数关系,找到了使销售额最大化的最佳价格调整方案。
这个过程需要运用最小二乘法、微分法和数值优化方法等数学工具,体现
了数学建模在实际问题中的应用价值。