含参变量反常积分

合集下载

含参变量反常积分

含参变量反常积分

|∫
d
d −η
f ( x, y )dy |< ε ,
则称含参量反常积分

d
c
f ( x, y )dy 在 [a, b] 上一致收敛.
例6 证明 ∫
+∞
0
cos x 2 dx关于在上内闭一致收敛 p ( −1,1) p x
即证 ∀[ p0 , p1 ] ⊂ ( −1,1),

+∞
0

+∞
0
2 2 +∞ cos x 1 cos x cos x 2 dx = dx + ∫ dx = I1 + I 2 p p p ∫ 0 1 x x x
sin xy dy y
在,)上一致收敛(其中但在 [δ + ∞ δ > 0),
(,)内不一致收敛。 0 +∞
分析
A > A0 要证:∀ε > 0, ∃A0 > 0, 使得当时,
对一切,都有 x ∈ [δ , +∞ )
|∫
+∞ A
sin xy dy |< ε y

+∞
令 u=xy, 得
+∞ sin u sin xy ∫ A y dy = ∫ Ax u du 其中 A > 0. +∞ sin u 由于 ∫ du 收敛,故 0 u 就有 ∀ε > 0, ∃A0 > c,使得当时, A > A0 +∞ sin u |∫ du |< ε A u A0 取N = 时 则当A > N 时有 Aδ > A0, δ 对一切 x ∈ [δ,+ ∞ ), 有 Ax ≥ Aδ > A0, +∞ sin xy +∞ sin u 从而 | = ∫ A y dy | | ∫ Ax u du |< ε +∞ sin xy 所以 ∫ [δ + ∞ 一致收敛. dy 在,) 0 y

含参量反常积分

含参量反常积分

01
工程问题建模
含参量反常积分在工程问题建模中具有 重要应用,如流体动力学、电磁学等领 域。
02
03
金融数据分析
含参量反常积分在金融数据分析中具 有广泛应用,如风险评估、投资组合 优化等领域。
THANKS
感谢观看
收敛性
当参数在某个范围内变化时,含参量 反常积分的值是有限的,则称该含参 量反常积分在该范围内收敛。
收敛性的判定方法
柯西准则
如果存在一个正数$alpha$,使得在积分区间上,被积函数的绝对值小于$alpha$,则 该含参量反常积分收敛。
狄利克雷判别法
如果被积函数在积分区间上单调有界,且参数的变化范围有限,则该含参量反常积分收 敛。
02
CATALOGUE
含参量反常积分
含参量反常积分的定义
含参量反常积分
在数学中,含参量反常积分(或含参量不定积分)是一种特殊的反常积分,其中积分上 限或下限是参数。
定义
设函数f(x, a)在区间[a, b]上连续,且对于每一个固定的a值,f(x, a)在[a, b]上可积。那 么含参量反常积分∫f(x, a)dx在[a, b]上的值是函数F(x, a)在[a, b]上的增量,其中F(x, a)
含参量反常积分
目 录
• 反常积分简介 • 含参量反常积分 • 含参量反常积分的收敛性 • 含参量反常积分的应用 • 含参量反常积分的展望
01
CATALOGUE
反常积分简介
反常积分的定义
反常积分是指定积分在某个区间上发 散或无界的积分,通常表示为∫f(x)dx ,其中f(x)是定义在某个区间上的函数 ,而这个区间可能是无穷区间或者不 连续的区间。
解决数学问题

反常积分与含参变量的积分

反常积分与含参变量的积分

(ii)若函数g在[a,b]上增且,g( x) 0, 则 [a,b],使
b
b
a f ( x)g( x)dx g(b) f ( x)dx.
推论 设函数f在[a,b]上可积,若g为单调函数,
则 [a,b],使
b
b
a f ( x)g( x)dx g(a)a f ( x)dx g(b) f ( x)dx.
收敛,则
f ( x)dx 必收敛,并有
a
a
a f ( x)dx a | f ( x) | dx.

|
f
( x) | dx
收敛,则由Cauchy准则,
a
0,G a,u1 u2 G,有
u2 | f ( x) | dx u2 | f ( x) | dx .
u1
u1
又 u2 f ( x)dx u2 | f ( x) | dx .
这说明无穷积分与级数之间存在着内在的联系.
定理 .无穷积分
f (x)dx 收敛 a
对任意数列
An,n N,
An [a. ),
A1
a, lim n
An
级数 Ak1 f (x)dx 收敛于同一个数,且 k 1 Ak
f (x)dx
Ak1 f (x)dx
a
k 1 Ak
证明提示:
f (x)dx lim
g(u1)
f ( x)dx
a
u1 f ( x)dx
a
| g(u2 ) |
u2 f ( x)dx
a
a
f ( x)dx
2M 2M .
4M
4M
根据柯西准则,证得 a f ( x)g( x)d收x 敛。
定理(阿贝尔(Abel)判别法)

含参变量的反常积分

含参变量的反常积分

充分性 若 0, N c, M A1 , A2 N ,

则令 A2 , 得
A2 A1
f ( x , y )dy .


c
M
f ( x , y )dy .
这就证明了 I ( x )

f ( x , y )dy 在 J 上一致收敛.
*例2 证明含参量的反常积分
( y)
1
g( A1 , y ) A g( A1 , y ) A

魏尔斯特拉斯(Weierstrass) M 判别法
设有函数 F(x), 使得
f ( x , y ) F ( x ) , a x , y .
若 F ( x )dx 收敛, 则
对A, A a ,
A
A
f ( x , y )dx
a
A
f ( x , y )dx
a
A
f ( x , y )dx 2 M .
于是, A1 , A2 A, y , 由积分第二中值定理,
A
A2
1
f ( x , y ) g ( x , y )dx
或简单地说含参量积分(1)在 上一致收敛.
注1 由定义, I ( y ) 充要条件是

a
f ( x , y )dx 在 上一致收敛的
( A) sup
y

a

A
f ( x , y )dx 0 ( A ).

注2 由定义, I ( y )

f ( x , y )dx 在 上不一致收敛
若I ( y)

a
f ( x , y )dx 在 上一致收敛, 则

数学分析3课件:19-2 含参量反常积分

数学分析3课件:19-2 含参量反常积分

sin
bx
x
sin
ax
abcosxydy,故
I 0 e px(abcosxydy)dx 0 dxabe pxcosxydy.
由于e pxcosxy e px及0 e pxdx收敛,根据魏尔斯特拉斯M判别法,
0 e pxcosxydx在区间[a,b]上一致收敛.
又e pxcosxy在[0,) [a,b]上连续,故由定理19.11,积分换序值不变,
(x,
y)dx
c
dyab
f
(x,
y)dx.
证毕
定理 19.12 设f (x, y)在区域[a,) [c,)上连续, 若
(i) a f (x, y)dx对于y在任何闭区间[c, d ]上一致收敛, c f (x, y)dy 对于x在任何闭区间[a, b]上一致收敛.
(ii) 下列积分有一个收敛 :
0
e
px
sin ax x
dx
arctan
a p
(p 0).
e px
sin ax 在0 x
p
连续, 0 e px
sin ax x
dx一致收敛(0
sin ax x
dx
在0 p 上一致收敛, e px关于x单减且 | e px | 1,阿贝尔判别法)
0 e px
sin ax dx在0 x
p
上连续, 从而
0
sin ax dx x
lim
p0
0
e
px
sin ax x
dx
lim
p0
arctan
a p
2
sgn
a.
练习4
计算
I
0
ex

含参变量的反常积分dini定理

含参变量的反常积分dini定理

含参变量的反常积分dini定理一、反常积分的基本概念反常积分也称为广义积分,是一种积分范围超越常规定积分的积分。

在定义上,反常积分可以看作是对定积分的推广,其积分区间可以是无穷区间,也可以是其他非正常区间。

反常积分具有广泛的应用,包括物理学、工程学、概率论等领域。

二、含参变量的反常积分含参变量的反常积分是指在积分过程中包含参数的积分。

这种积分在处理一些复杂问题时非常有用,例如物理中的热传导问题、弹性力学中的应变问题等。

含参变量的反常积分在处理这些问题的过程中,通过引入参数来简化问题,使问题得到更有效的解决。

三、Dini定理的背景和意义Dini定理是数学分析中的一个重要定理,它涉及到含参变量的反常积分。

Dini定理的背景可以追溯到19世纪末,当时数学家开始关注含参变量的反常积分。

Dini定理的意义在于,它提供了一种判断含参变量的反常积分收敛性的方法,从而为解决一系列相关问题提供了理论支持。

四、Dini定理的证明过程Dini定理的证明过程相对复杂,需要使用到实数性质、微积分基本定理等知识点。

在证明过程中,首先需要引入一个与被积函数有关的辅助函数,然后通过分析这个辅助函数的性质,逐步推导出Dini定理的结论。

具体证明过程可以参考数学分析教材或相关论文。

五、Dini定理的应用举例Dini定理的应用非常广泛,下面举几个具体的例子来说明其应用。

1. 在物理学中的应用:在研究波动方程时,Dini定理可以用来判断波动方程解的存在性和唯一性。

例如,在研究弦振动时,通过引入参数和利用Dini定理,可以证明弦振动方程解的存在性和唯一性。

2. 在工程学中的应用:在电气工程中,Dini定理可以用来判断电路中的电流和电压是否收敛。

例如,在分析交流电路时,通过引入角频率作为参数,并利用Dini定理判断电流和电压的收敛性,从而为电路的分析和设计提供依据。

3. 在概率论中的应用:在随机过程和概率论中,Dini定理可以用来判断随机过程的样本函数的收敛性。

§19.2含参变量的反常积分

§19.2含参变量的反常积分
使得 : f ( x1, y)dy 0 .
一般地, 取M n max n, A2 n1 , (n 2), 则有


A2 n A2 n1 M n及xn [a, b], 使得 :

A2 n
A2 n 1
f ( xn , y)dy 0
()
由上述所得到的数列 An 是递增的,且 lim An n
n
f ( x, y)dy A
n 1
An 1
An 1 逐项求导 I ( x) f ( x, y )dy n1 An n 1
An 1 An
An
注: 其中 un ( x)
f ( x, y )dy
Ak 1 Ak

n 1

An 1 An
f ( x, y )dy lim
n
n
f ( x, y )dy
c
lim
k 1 An 1
n c
f ( x, y )dy
f ( x, y)dy
cos xy dx 在 (, ) 上一致收敛. 例 2 证明 0 1 x 2

证 : y (, ), 有 :
1 而 dx收敛, 2 0 1 x
由M 判别法,

cos xy 1 , 2 2 1 x 1 x
cos xy dx在(, )内一致收敛. 0 1 x 2

sin u du u

取A0 N 1 N , 取x0


2( N 1)
(0, ), 使 :
sin u p A0 x0 u du 2 0 . A0 (此时,0 A0 x0 ) 2 所论积分在(0, )非一致收敛.

含参变量反常积分的几种计算方法

含参变量反常积分的几种计算方法

含参变量反常积分的几种计算方法摘 要:含参变量反常积分是一类比较特殊的积分,由于它是函数又是以积分形式给出,所以它在积分计算中起着桥梁作用,并且计算难度较大,本文主要总结含参变量反常积分的几种方法,利用这几种方法,可以进行一系列的积分运算,这样可使含参变量反常积分运算更易理解和掌握。

关键词:含参变量反常积分 积分号下积分法 积分号下微分法 收敛因子 留数定理在进行含参变量反常积分的运算时,首先要验证条件(包括确定含参变量及其变化范围,把问题归结为能利用含参变量反常积分运算性质的某一种,还要验证所用性质应满足的条件),在验证条件时,判别一致收敛至关重要,判别法通常采用魏尔斯特拉斯判别法、狄利克雷判别法、阿贝尔判别法、柯西判别准则或用定义判别,然而在验证一致收敛时并不简单,这使得含参变量反常积分的计算有一定的难度,经过验证后,就可以利用含参变量反常积分的性质具体进行运算。

本人在学习过程中,通过大量的、不断的练习,进行探索和归纳,总结出几种含参变量反常积分的计算方法,这几种方法运算技巧强,便于理解和掌握,下面分述于后。

一 积分号下积分法要对含参变量反常积分()(),y ag f x y dx +∞=⎰实现积分号下求积分,须验证以下条件:(1) (),f x y 在,x a y c ≥≥上连续; (2) (),a f x y dx +∞⎰在[),y c ∈+∞上内闭一致收敛,(),cf x y dx +∞⎰在[),x a ∈+∞上内闭一致收敛;(3) (,)c ady f x y dx +∞+∞⎰⎰及(),a cdx f x y dy +∞+∞⎰⎰至少有一个收敛,则 ()(),,accadx f x y dy dy f x y dx +∞+∞+∞+∞=⎰⎰⎰⎰例1 利用20u e du +∞-⎰u=x α令2()0(0)x e dx ααα+∞-∀>⎰,求2e d αα+∞-⎰的值。

分析:2x e dx +∞-⎰这个积分在概率论中非常有用,它的值可以用多种方法求出,但在这里利用积分号下积分法求解,是很值得借鉴的,而且须验证的条件又显然成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

|e
x
sin x | e
0 x
而积分
所以


0
e0 x dx 收敛,


0
e x sin x dx 在 [0 ,) (0 0) 内一致收敛
狄利克雷判别法;
若 (i) N c, 含参量反常积分 f ( x, y)dy 对参数x在[a, b] c
sin ydy 关于 x [0,) 不一致收敛.
在上式两端对 y 求导,得
d ( y ) f ( x, y ) dx dy a
定理证毕。
含参量反常积分的性质
• 连续性
设f ( x, y)在[a, b] [c,)上连续, 含参量反常积分
I ( x)
c
f ( x, y)dy 在[a, b]上一致收敛, 则I ( x)在[a, b]上连续.

A2
A1
f ( x, y )dy .
一致收敛的充要条件; 含参量反常积分
c
f ( x, y)dy 在 [a, b] 上一致收敛的充要
条件是:对任一趋于 的递增数列 An (其中 A1 c ),函数
项级数

n 1

An1
An
f ( x, y )dy un ( x) 在 [a, b] 一致收敛.



M
f ( x, y )dy ,
则称含参量反常积分 c f ( x, y)dy 在 [a, b] 上一致收敛于 I ( x) .
3 、 含参量反常积分一致收敛的判别方法
一致收敛的柯西准则: 含参量反常积分
c
f ( x, y)dy 在 [a, b] 上一致收敛的充要
条件是 0, M c, A1 , A2 M , x [a, b], 都有


A
f ( x, y y ) dx
又 f ( x, y) 在 [a, A; c, d ] 上连续,所以

A
a
f ( x, y ) dx
作为 y 的函数在 [c, d ] 连续,于是
0, 0, 当| y | 时,
从而,当 | y | 时,有

A
n 1

魏尔斯特拉斯M判别法:
设有函数
g ( y ) ,使得
f ( x, y) g ( y), a x b, c y .
若 g ( y)dy 收敛, 则
c c
f ( x, y)dy 在[a, b]上一致收敛.
魏尔斯特拉斯(Weierstrass)判别法
若 且


函数g ( x, y) e xy 对每个x [0, d ]单调且对任何
0 y d , x 0都有 g ( x, y ) e xy 1.
由阿贝耳判别法知, 含参量反常积分


0
e
xy
sin x dx 在 x
[0, d ] 上一致收敛.
例3 : 证明含参量反常积分 在 [a,) 上一致收敛 (a 0).
I ( x)
c
f ( x, y)dy, x [a, b]
称为定义在 [a, b] 上的含参量 x 的无穷限反常积分, 或 简称为含参量反常积分.
2、 含参量反常积分一致收敛的定义
对于含参量反常积分 c f ( x, y)dy 和函数 I ( x)

若 0, N 0, M N , x [a, b], 都有
A
A
从而 y [c, d ]

所以
A
A
f ( x, y ) dx F ( x ) dx
A
A


a
f ( x, y) dx 关于 y [c, d ] 一致收敛。
例1 解


0
e x sin x dx 在 [0 ,) (0 0) 内一致收敛
因为
证:
cos xy 1 由于y R有 , 2 2 1 x 1 x dx 而反常积分 收敛 2 0 1 x 故有魏尔斯特拉斯M判别法知
含参量反常积分


0
cos xy dx 在 (,) 上一致收敛. 2 1 x
xy sin x 例2 : 证明含参量反常积分 e dx 0 x 在 [0, d ] 上一致收敛. sin x 证 : 由于反常积分 dx 收敛 0 x (当然, 对于参量y, 它在[0, d ]上一致收敛)
N
上一致有界,
(ii ) x [a, b], 函数g ( x)关于y是单调递减且当y 时
对参量x, g ( x, y)一致地收敛于0, 则含参量反常积分


c
f ( x, y) g ( x, y)dy
在[a, b]上一致收敛.
阿贝耳判别法:
若 (i )


c
f ( x , y )dy 在[a , b]上一致收敛;
a
f ( x, y y ) dx f ( x, y ) dx
a
A
| I ( y y ) I ( y ) |
定理证毕。

A
a
f ( x, y y ) dx f ( x, y ) dx
a
A


A
f ( x, y y ) dx


A
f ( x, y ) dx 3
在 [c, d ] 可导,且
d f ( x, y) dx f ( x, y) dx a y dy a
证明
因为 f y ( x, y) 在 [a, ; c, d ] 连续,由连续性定理
a
( y)
f y ( x, y) dx 在 [c, d ]连续,
况可类似处理。
1 、 含参量反常积分的定义设 f ( x, y) 是定义在无界区域 R ( x, y) a x b, c y 上,

若对每一个固定的 x [a, b] , 反常积分




c
f ( x, y)dy
都收敛,则它的值是 x 在区间 [a, b] 上取值的函数,表为
a
b

c
f ( x, y)dy

c
dy
b
a
f ( x, y)dx.
注:
(i)
设f ( x, y)在[a,] [c,)上连续, 若
f ( x, y)dx 关于y在任何闭区间[c, d ]上一致收敛, f ( x, y)dy 关于x在任何闭区间[a, b]上一致收敛;
a c
A A
A
A


c
g ( y) dy 收敛,所以由广义积分一致收敛的柯西
准则,有
0, A0 c, A, A A0 , | g ( y) dy |
A
A
从而 x [a, b]

所以
A
A
f ( x, y ) dy g ( y ) dy
A
A
注:
连续性定理说明, 在一致收敛的条件下, 极限运算
与积分运算可以可以交换顺序.
即:
x x0 c
lim


f ( x, y)dy

c
f ( x0 , y)dy

c
x x0
lim f ( x, y)dy.
• 可微性
设f ( x, y)与f x ( x, y)在区域[a, b] [c,)上连续, 若
一致收敛。
证明 因为

A
f ( x, y ) dx | f ( x, y ) | dx F ( x) dx
A A
A


a
F ( x) dx 收敛,所以由广义积分一致收敛的柯西
准则,有
0, A0 a, A, A A0 , | F ( x) dx |
2. 积分顺序交换定理
设 f ( x, y) 在 [a, ; c, d ] 上连续,



a
f ( x, y) dx 关于 y
在 [c, d ] 上一致收敛,则 I ( y) a f ( x, y) dx 在 [c, d ]
可积,并且

d
c
dy

a
f ( x, y) dx dx f ( x, y) dy
I ( x)
c
f ( x, y)dy 在[a, b]上收敛,
'


c
f x ( x, y)dy 在[a, b]上一
c
致收敛, 则I ( x)在[a, b]上可微, 且 I ( x)
f x ( x, y)dy.
注 : 可微性定理表明在定理条件下,求导运算和积分运算
可以交换.即
a c

d
3. 积分号下求导的定理 设 f ( x, y), f y ( x, y) 在 [a, ; c, d ] 上连续,a f ( x, y) dx f y ( x, y ) dx 关于 y 在 [c, d ] 上一致收敛,则 收敛,


a
I ( y)

a
f ( x, y) dx


0
e
ux 2
dx
证:
u [a,), 有 e
而无穷积分 e
0
ux2
e
ax2
.
ax2
dx收敛
故有魏尔斯特拉斯M判别法知
含参量反常积分
相关文档
最新文档