含参变量正常积分

合集下载

13-高等数学第十三讲 含参量的积分

13-高等数学第十三讲 含参量的积分

387第十三讲 含参量积分§13.1 含参量正常积分一、知识结构 1、含参积分 定义含参积分 ⎰=dcdy y x f x I ),()(和⎰=)()(),()(x d x c dy y x f x F .含参积分提供了表达函数的又一手段 .我们称由含参积分表达的函数为含参积分. (1)含参积分的连续性 定理1 若函数),(y x f 在区域] , [ ] , [d c b a D ⨯=上连续, 则函数⎰=dcdy y x f x I ),()(在] , [b a 上连续.定理2 若函数),(y x f 在矩形域{}b x a x d y x c y x D ≤≤≤≤=),()( ),(上连续, 函数)(x c 和)(x d 在] , [b a 上连续,则函数⎰=)()(),()(x d x c dy y x f x F 在] , [b a 上连续.(2)含参积分的可微性定理3 若函数),(y x f 及其偏导数x f 都在矩形域] , [ ] , [d c b a D ⨯=上连续, 则函数⎰=dcdy y x f x I ),()(在] , [b a 上可导, 且⎰⎰=dcdcx dy y x f dy y x f dxd ),(),(.即积分和求导次序可换.定理4 设函数),(y x f 及其偏导数x f 都在矩形域] , [ ] , [q p b a D ⨯=上连续, 函数)(x c 和)(x d 定义在] , [b a 上其值域含于] , [q p 上的可微函数, 则函数⎰=)()(),()(x d x c dy y x f x F 在] , [b a 上可微, 且 ()())()(,)()(,),()()()(x c x c x f x d x d x f dy y x f x F x d x c x '-'+='⎰.(3) 含参积分的可积性定理5 若函数),(y x f 在区域] , [ ] , [d c b a D ⨯=上连续, 则函数388⎰=dcdy y x f x I ),()(和⎰=badx y x f y J ),()(分别在] , [b a 上和] , [ d c 上可积.定理6 若函数),(y x f 在区域] , [ ] , [d c b a D ⨯=上连续, 则⎰⎰⎰⎰=badcdcbadx y x f dy dy y x f dx ),(),(.即在连续的情况下累次积分可交换求积分的次序. 二、解证题方法例1 求⎰+→++αααα122.1limx dx例2 计算积分 dx xx I ⎰++=121)1ln(.例3 设函数)(x f 在点0=x 的某邻域内连续. 验证当||x 充分小时, 函数⎰---=xn dt t f t x n x 01)()()!1(1)(φ的1-n 阶导数存在, 且 )()()(x f x n =φ.§13.2 含参量反常积分一、知识结构 1、含参无穷积分含参无穷积分: 函数),(y x f 定义在) , [] , [∞+⨯c b a 上 (] , [b a 可以是无穷区间) .以⎰+∞=cdy y x f x I ),()(为例介绍含参无穷积分表示的函数)(x I .2. 含参无穷积分的一致收敛性逐点收敛(或称点态收敛)的定义:∈∀x ] , [b a ,c M >∃>∀ , 0ε,使得ε<⎰+∞Mdy y x f ),(.定义 1 (一致收敛性)设函数),(y x f 在) , [] , [∞+⨯c b a 上有定义.若对389c N >∃>∀ , 0ε, 使得当N M >,∈∀x ] , [b a 都有ε<-⎰Mcx I dy y x f )(),(即ε<⎰+∞Mdy y x f ),( 成立, 则称含参无穷积分⎰+∞cdy y x f ),(在] , [b a 上(关于x )一致收敛.定理1(Cauchy 收敛准则) 积分⎰+∞=cdy y x f x I ),()(在] , [b a 上一致收敛⇔,0>∀εM A A M >∀>∃21, , 0 , ∈∀x ] , [b a⇒ε<⎰21),(A A dy y x f 成立 .3、含参无穷积分与函数项级数的关系 定理2 积分⎰+∞=c dy y x f x I ),()(在] , [b a 上一致收敛⇔对任一数列}{n A )(1c A =,n A ↗∞+, 函数项级数∑⎰∑∞=∞=+=111)(),(n A A n nn nx udy y x f 在] , [b a 上一致收敛.4、含参无穷积分一致收敛判别法定理3(Weierstrass M 判别法)设有函数)(y g ,使得在) , [] , [∞+⨯c b a 上有)(|),(|y g y x f ≤.若积分∞+<⎰+∞)( cdy y g , 则积分⎰+∞cdy y x f ),(在] , [b a 一致收敛.定理4(Dirichlet 判别法) 设⑴对一切实数,c N >含参量积分⎰Ncdy y x f ),(对参量x在] , [b a 上一致有界; ⑵对每个x ∈] , [b a ,函数),(y x g 关于y 是单调递减且当+∞→y 时,对参量x ,),(y x g 一致地收敛于0,则含参量反常积分⎰+∞),(),(dy y x g y x f 在] , [b a 上一致收敛.定理5(Abel 判别法) 设⑴含参量积分⎰+∞cdy y x f ),(在] , [b a 上一致收敛; ⑵对每个x ∈] , [b a ,函数),(y x g 为y 的单调函数且对参量x ,),(y x g 在] , [b a 上一致有界,则含390参量反常积分⎰+∞),(),(dy y x g y x f 在] , [b a 上一致收敛.5、含参无穷积分的解析性质含参无穷积分的解析性质实指由其所表达的函数的解析性质. (1)连续性定理6 设函数),(y x f 在) , [] , [∞+⨯c b a 上连续.若积分⎰+∞=cdy y x f x I ),()(在] , [b a 上一致收敛, 则函数)(x I 在] , [b a 上连续. (化为级数进行证明或直接证明)推论 在定理6的条件下, 对∈∀0x ] , [b a , 有 ⎰⎰⎰∞+∞+∞+→→⎪⎭⎫ ⎝⎛==cccx x x x dy y x f dy y x f dy y x f .),(lim ),(),(lim000 (2)可微性定理7 设函数f 和x f 在) , [] , [∞+⨯c b a 上连续.若积分⎰+∞=cdy y x f x I ),()(在] , [b a 上收敛,积分⎰+∞cx dy y x f ),(在] , [b a 一致收敛.则函数)(x I 在] , [b a 上可微,且⎰+∞='cx dy y x f x I ),()(.(3)可积性定理8 设函数),(y x f 在) , [] , [∞+⨯c b a 上连续.若积分⎰+∞=cdy y x f x I ),()(在] , [b a 上一致收敛, 则函数)(x I 在] , [b a 上可积, 且有⎰⎰⎰⎰+∞+∞=baccbady y x f dy dy y x f dx ),(),(.定理9 设函数),(y x f 在) , []) , [∞+⨯∞+c a 上连续.若⑴⎰+∞adx y x f ),(关于y 在任何闭区间] , [d c 上一致收敛,⎰+∞cdy y x f ),(在任何闭区间] , [b a 上一致收敛;⑵积分⎰⎰+∞+∞acdy y x f dx ),(与⎰⎰+∞+∞cadx y x f dy ),(中有一个收敛,则另一个也收敛,且391⎰⎰⎰⎰+∞+∞+∞+∞=accady y x f dy dy y x f dx ),(),(.6、含参瑕积分简介(略)二、解证题方法例1 证明含参量非正常积分⎰+∞sin dy yxy 在) , [∞+δ上一致收敛,其中0>δ.但在区间) , 0 (∞+内非一致收敛.例2 证明含参无穷积分⎰∞++021cos dx xxy 在+∞<<∞-y 内一致收敛.例3 证明含参量反常积分⎰+∞-0sin dx xx exy在] , 0 [d 上一致收敛.例4 证明:若函数),(y x f 在) , [] , [∞+⨯c b a 上连续,又⎰+∞cdy y x f ),(在) , [b a 上收敛,但在b x =处发散,则⎰+∞cdy y x f ),(在) , [b a 上不一致收敛.例5 计算积分⎰+∞->>-=) , 0 ( , sin sin a b p dx xaxbx eI px例6 计算积分.sin 0dx xax ⎰+∞例7 计算积分⎰+∞-=0.cos )(2rxdx er xϕ例8(北京理工大学2008年)请分别用两种不同方法求()dx xx xI cos 1cos 1lncos 12αααπ-+⋅=⎰,1<α。

参变量积分

参变量积分
0
由复合函数的连续性
f (a( y ) t (b( y ) a( y )), y )(b( y ) a( y ))
在[0,1][c,d]上连续,由定理1,
F ( y)
在[c,d]上连续.
b( y )
a( y )
f ( x, y)dx
数学分析选讲
多媒体教学课件
定理4设f(x,y), fy(x,y)在矩形[a,b,c,d]上连续, a(y), b (y) 存在,且当y[c,d]时,


0
sin t dt 收敛,故对任意>0,存在M>0,使对任意 t
数学分析选讲
A >M>0,有
多媒体教学课件
sin t | dt | . A t 因此当Aa>M时,对任意x[a,+),有

Ax aA M ,
从而
|
Ax sin xy sin t dt || dy | . A t y
b( y )
a( y )
f ( x, y)dx
数学分析选讲
多媒体教学课件
证明:作积分变换 x a( y ) t (b( y ) a( y )), 则
F ( y)
b( y )
a( y )
1
f ( x, y)dx
f (a( y ) t (b( y ) a( y )), y )(b( y ) a( y ))dt ,
多媒体教学课件
定理5设函数f(x,y)在矩形[a,b,c,d]上连续,,是

d
c
dy f ( x, y )dx dx f ( x, y )dy
b b d a a c

含参变量的正常积分

含参变量的正常积分

x
lim d f (x x, y) f (x, y) dy
x0 c
x
由拉格朗日中值定理

lim
x0
d
c fx (x x, y)dy
fx在=R上==连=续=,由 ==定理1
d
c
lim
x0
fx(x
x, y)dy

d
c fx (x, y)dy
固定x, 作积分
d
I (x) f (x, y)dy
c
(1)
此积分是x的函数, 其定义域为x [a,b],
则称此函数为定义在[a,b]上
y
含参量x的(正常)积分,
d
R
简称含参量积分.
c
oa
x bx
一般地,设有二元函数f (x, y),
如果可积
(x, y) G (x, y) a x b,c(x) y d (x)
形区域R [a,b][c,d]上连续,则函数
JI ((xy))
db ca
ff
((xx,,
yy))ddyx
在[ca, db]上连续。
注:(1). 设 f (x, y)在R [a,b][c,d]上连续,则
x0 [a,b],有 :
d
d
lim f (x, y)dy lim f (x, y)dy
d
d
f
(x, y)dy

d


f (x, y)dy
dx c
c x
证明分析 : x [a,b],设x充分小, x x [a,b],
要证, I (x)在[a,b]上可微,且
I(x)

第十九章含参量积分

第十九章含参量积分

0 a +t
2
2
∫ 从而当 a 2 + b2 ≠ 0 时,
π
2 ln(a2 sin2
x
+ b2
cos2
x)dx
=
π
ln
a
+
b
.
0
2
∫ (2) 令 I (a) = π ln(1− 2a cos x + a2)dx 0
(Ι) 当 a < 1 时, 1 − 2a cos x + a 2 ≥ 1 − 2 a + a 2 > 0 ,因而, ln(1 − 2a cos x + a 2 )
∫ ∫ I / (b) =
π 2 0
2 b cos2 x
a2
sin
2
x
+
b2
cos2
dx x
=
2 b
π 2
1
dx = π ,
0 1+ ( a tan x)2
a+b
b
∫ 由于 I (0) =
π
2 ln(a2 sin2
x)dx

ln
a
,因此
0
2
∫ I (b) = b π dt + π ln a = π ln a + b
1
∫ Ⅰ) 当 y > 1时, F ( y) = (−1)dx = −1 0
当 y < 0 时, F ( y) = 1 .
∫ ∫ ∫ 1
y
1
Ⅱ) 当 0 ≤ y ≤ 1时, F ( y) = f (x, y)dx = f (x, y)dy + f (x, y)dy = 1− 2 y .

含参量积分的分析性质及其应用

含参量积分的分析性质及其应用

含参量积分的分析性质及其应用班级:11数学与应用数学一班成绩:日期: 2012年11月5日含参量积分的分析性质及其应用1. 含参量正常积分的分析性质及应用1。

1含参量正常积分的连续性定理1 若二元函数),(y x f 在矩形区域],[],[d c b a R ⨯=上连续,则函数()x ϕ=⎰dcdy y x f ),(在[a,b]上连续.例1 设)sgn(),(y x y x f -=(这个函数在x=y 时不连续),试证由含量积分⎰=1),()(dx y x f y F 所确定的函数在),(-∞+∞ 上连续.解 因为10≤≤x ,所以当y<0时,x —y>0,则sgn (x —y )=1,即f (x ,y)=1.-1,x<y 则⎰==101)(dx y F .当10≤≤y 时, f (x ,y)= 0,x=y ,1,x 〉y则⎰⎰-=+-=yyy dx dx y F 01.21)1()(1, y 〈0当y 〉1时, f (x,y)=-1,则⎰-=-=101)1()(dx y F ,即F (x)= 1-2y ,0≤y<0—1 y>1又因).1(1)(lim ),0(1lim 1F y F F y y =-===→→F(y )在y=0与y=1处均连续,因而F(y )在),(+∞-∞上连续。

例2 求下列极限:(1)dx a x ⎰-→+11220limα; (2)⎰→220cos lim xdx x αα.解 (1)因为二元函数22α+x 在矩形域R=[-1,1]⨯[—1.1]上连续,则由连续性定理得dx a x ⎰-+1122在[-1,1]上连续.则⎰⎰⎰--→-→==+=+1122110112201lim lim dx x dx a x dx a x αα。

(2)因为二元函数ax x cos 2在矩形域]2,2[]2,0[ππ-⨯=R 上连续,由连续性定理得,函数⎰202cos axdx x 在]2,2[ππ-上连续.则.38cos lim 2020220==⎰⎰→dx x axdx x α例3 研究函数=)(x F dx y x x yf ⎰+122)(的连续性,其中f (x )在闭区间[0,1]上是正的连续函数。

含参变量的常义积分

含参变量的常义积分
由于被积函数
f ( x, c( x) t(d( x) c( x)))(d( x) c( x))
在矩形区域 [ a ,b][0 ,1]上连续, 由定理1 得函数
F(x) 在[a, b]连续.

b
I( y) a f ( x, y)dx
在[ c , d ]上连续. 证 设 y [ c, d], 对充分小的 y , 有y y [c, d ](若 y 为区间的端点, 则仅考虑 y 0 或 y 0 ), 于是


*例3 计算积分
I
1 ln(1 x) 0 1 x2 dx
dy
y A dy B dy
b( y)
a( y) f y ( x, y)dx f (b( y), y)b( y)
f (a( y), y)a( y) .
例1 设 F ( y) y2 sin yx dx, 求 F( y). yx 解 由定理4,得
F( y)
y2
sin y3 sin y2
b f ( x, y)dx.
a y

证 对于 [c, d ] 内任意一点 y, 设 y y [c, d ] (若y 为
区间的端点, 则讨论单侧函数), 则
I( y y) I( y)
b
I( y) liym0afy( x, yy)dx
b

a
lim
y0
f y ( x,
y

y)dx
b
a f y ( x, y)dx
定理4 (F ( y) 的可微性) 设 f ( x, y), fx ( x, y) 在
一、含参量正常积分的定义
设 f ( x, y)是定义在矩形区域 R [ a, b][ c, d]上的

第9章 含参变量积分

第9章 含参变量积分

∫N
f (x, y)dy ≤ M ;
c
(2)对每个 x ∈[a, b] ,函数 g(x, y) 关于 y 是单调递减的且当 y → ∞ 时,对参量 x ,
+∞
∫ g(x, y) 一致收敛于 0,则含参量反常积分 f (x, y)g(x, y)dy 在[a,b] 一致收敛。 c
定理 5(阿贝尔判别法)设
敛。
判别法则
定 理 1 ( 柯西 准 则 )含参 量 无 穷积分 (1 ) 在 [a,b] 上 一 致收 敛的 充 要条 件是 :
∀ε > 0, ∃M > c,当A1, A2 > M时,∀x ∈[a,b] ,有
∫| A2 f (x, y)dy |< ε A1
定理 2(魏尔斯特拉斯 M-判别法)设有函数 g( y) ,使得
∫ I '(x) =
+∞
c fx (x, y)dy
+∞
∫ 定理 3(可积性)设 f (x, y) 在[a,b]×[c, +∞) 上连续,若 I (x) = f (x, y)dy 在[a,b] 上 c
一致收敛,则 I (x) 在[a, b] 上可积,且
b
+∞
+∞
b
∫a dx∫c
∫ f (x, y)dy = c
∫ y(x) = 1
x
n−1
(x − t) f (t)dt, x ∈[a,b]
(n −1)! a
是微分方程 y(n) (x) = f (x) 的解,并且满足条件 y(a) = y' (a) = = y(n−1) (a) = 0 。
证明:设 F (x, t) = (x − t)n−1 f (t) ,则 f (x, t), fx (x,t) 在[a, b]×[a, b] 上连续,因此有

高等数学含参变量的正常积分

高等数学含参变量的正常积分
1 定义
设 f ( x, y) 是定义在矩形域 R(a x b, c y d ) 上的二元 函数, 当
x 取 [a, b] 上某定值时,函数
f ( x, y) 则是定义在 [c, d ]
上以 y为自变量的一元函数.若此时 f ( x, y)在 [c, d ]上可积,
则其积分值是 x 在 [a, b]上取值的函数,表为
I(x) f ( x, y)dy 在 [a, b] 上可微, 且 c d d d f ( x, y )dy f ( x, y )dy c x dx c
运算与积分运算可交换顺序。
同理:对于 J(y) f ( x, y )dx,在[c, d ]上可微,且
b d b f ( x , y )dx f ( x , y )dx a y dy a

0
cos x 1 1 dx 1 dx 0 1 cos x 1 cos x
1 1 dx 0 1 cos x
1 2 1 2 2 1 2 1
1
x I ( y ) dx 0 (1 x 2 )( 1 xy)
1
x y y 0 1 x 2 1 x 2 1 xy dx 1 ln 2 y ln (1 y ) 2 1 y [a, b]
c
d
称为含参量 x 的正常积分,或简称含参量积分.
类似地称
J ( y) f ( x, y) dx
a
b
为含参变量
y 的积分。
I ( y ) 是一个由含参变量的积分所确定的函数,
2. 性质 (i)、 连续性 :
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d
I( x x) I( x) c | f ( x x, y) f ( x, y) | d y
这说明 I( x)在[a,b] 连续
同理可证, 若 f ( x, y)在矩形域 R [a,b][c,d]上连 续, 则含参变量的积分
b
J ( y) a f ( x, y)d x
a
I2 (u)

d du
d
H(u, y)d y
c
d
c Hu (u, y)d y
d
c f (u, y)d y I(u)
所以 I1(u) I2 (u), 从而 I1(u) I2(u) k ( k 为常数 )
当 u = a 时,I1(a) I2(a) 0, 于是,k = 0
d
I( x) c f x ( x, y)d y
由 x 的任意性,及定理 19.1知I ( x ) 在 [a, b]
有连续的导函数.
在定理的条件下,求导和求积分可交换次序,
也说可在积分号下求导数
定理19.4(可微性) 如果函数 f ( x, y), f x ( x, y)
在矩形 R [a,b][ p,q] 上连续,
2
[
1 2
ln(1
x2
)

t
arctan
x
ln(1 t x) 1 0

1 1 t2

1 2
ln 2

4
t

ln(1 t)

I I(1) I(0)
1
I(t)d t

1 0
1 1 t2

1 2
ln
0
2


4
t

ln(1
t)
d t


1 ln 2arctan 2

4
例2. 求 I
1 ln(1 x) 0 1 x2 d x.
解: 考虑含参变量 t 的积分所确定的函数
I(t)
1 ln(1 tx) 0 1 x2 d x.
显然, I(0) 0, I 的偏导数
(1 x2
(1) x )(1

I, tx
)
ln(1 t x 1 x2
例1

1
lim
dx
0 1 x2 2
解: 记
I( )
1
dx
1 x2 2
因为

,
1


,
1

1 x2


2
都是 , x 的连续函数
所以 I( ) 在 0 连续,从而
lim I() I(0)
0
1 dx 01 x2

arctan x |10
lim
x x0
I(x)

I( x0 )
d
d

c f ( x0, y)d y
lim f ( x, y)d y
c x x0
即在定理的条件下,极限运算与积分运算的顺序
是可交换的,或说可在积分号下取极限 .
定理19.2(连续性) 如果函数 f ( x, y) 在区域
G {( x, y) | c( x) y d( x), a x b}
f ( x x, y) f ( x, y) fx ( x x, y)x
所以
I( x x) I( x)
d f ( x x, y) f ( x, y) dy
x
c
x
d
c f x ( x x, y)d y
因此
| I( x x) I( x) d x
由于 f ( x, y) 在闭区域 R 上连续, 所以一致连续,即
0, 0 , ( x1, y1), ( x2, y2 ) R, 只要 x1 x2 , y1 y2 就有 f ( x1, y1 ) f ( x2 , y2 ) 所以, 0, 0, 当 x 时, 就有
的 n 阶导数存在, 且 (n)( x) f ( x).
下面讨论含参量积分的连续性、
可微性和可积性.
y d(x) G
y c(x)
O
x
连续性定理
定理19.1 (连续性)(积分号下取极限) 若 f ( x, y) 在矩形区域 R [a,b][c,d] 上连续, 则函数
d
I( x) c f ( x, y)d y, x [a, b]
在[a, b]上连续.
上连续,又函数 c( x) 与 d(x) 在区间 [a,b]上连续,
d(x)
则函数 F ( x) f ( x, y)d y, x [a, b] c( x)
在[ a, b ]上连续.
证 对积分用换元积分法,令
y c( x) t(d( x) c( x)), 于是 dy (d( x) c( x))dt
| I( x x) I( x) d f ( x, y)d y |
x
c x
证: 对任意的 x, x x [a,b]
I( x x) I( x) d f ( x x, y) f ( x, y)
x
c
dy x
由拉格朗日中值定理,存在 (0,1) 使得
分析 对任何 x ∈ [a, b], 要证:lim I( x x) I( x) x0 即 0, 0, 当 x 时, 就有
I( x x) I( x)
证 设 x, x+Δx ∈ [a, b], d I( x x) I( x) c [ f ( x x, y) f ( x, y)]d y
d(x)
F ( x) f ( x, y)d y c( x)
在 [ a, b ] 上连续
可微性定理
定理19.3 (可微性) (积分号下求导数)
若 f ( x, y)及其偏导数 f ( x, y) 都在
x
矩形域 R [a,b][c,d]上连续, 则 I( x)
d
f (x, y)d y
证: 把 F ( x )看作复合函数:
d
F ( x) H( x, c, d ) c f ( x, y)d y
c c( x), d d( x)
由复合函数求导法则及变上限定积分的求导法则,有
d F ( x) H dx H dc H dd
dx
x dx c dx d dx
也在[c, d ]上连续.
定理19.1 表明,若 f ( x, y) 在矩形区域
R [a,b][c,d] 上连续, 则 d I( x) c f ( x, y)d y, x [a, b]
在[a, b]上连续. 于是对任意 x0 [a,b], 有
d
lim
x x0
c
f (x, y)d y
c( x), d( x)为定义在[a, b]上其值含于[ p, q]内的可微函数, 则函数
d(x)
F ( x) f ( x, y)d y c( x)
在 [ a, b ]上可微,且
d(x)
F ( x) c( x) f x ( x, y)d y
f ( x,d( x))d( x) f ( x,c( x))c( x)
d
c fx(x, y)d y |
| c [ f x ( x x, y) f x ( x, y)]d y |
d
c | f x ( x x, y) f x ( x, y) | d y
由 fx ( x, y) 在 [a,b][c,d]上连续, 从而一致连续,即
0, 0, 只要 | x | ,有
ln 2 I
4
t
1 ln(1 t 2 )
08
因此得 I
8
1

0
ln 2
1 0
ln(1 t) 1 t2
d
t
例3. 设 f (x) 在 x 0 的某邻域内连续,
验证当 | x | 充分小时, 函数
( x) 1
x ( x t)n1 f (t)d t
(n 1)! 0
c

x 称为参变量, 上式称为含参变量的积分.
一般地,设 f (x, y ) 为区域
G {( x, y) | c( x) y d( x), a x b}
上的二元函数, c ( x ), d ( x ) 在 [ a, b ] 连续,定义 含参量的积分
d(x)
y
F( x) f ( x, y)d y, x [a, b] c( x)
统称为累次积分或二次积分.
问:累次积分与积分顺序有关吗?即是否有
b
d
d
b
a d xc f ( x, y)d y c d ya f ( x, y)d x
定理19.6 (积分交换顺序)
若 f ( x, y)在矩形区域 R [a,b][c,d] 上连续, 则
b
d
d
b
a d xc f ( x, y)d y c d ya f ( x, y)d x
从而 F( x)
d(x)
f (x, y)d y
1
c( x)
0 f ( x,c( x) t(d( x) c( x))) (d( x) c( x))d t
因为
f ( x,c( x) t(d( x) c( x))) (d( x) c( x))
在矩形 [ a, b ]×[ 0, 1 ] 上连续,由定理 19.1得
相关文档
最新文档