流体力学第三章

合集下载

第三章流体力学

第三章流体力学

第三章:流体的流动一、学习要求1、理解理想流体、稳定流动、流线、流管、速度梯度、粘滞系数等基本概念。

2、掌握流体连续性方程和伯努利方程的意义和应用。

3、掌握泊肃叶公式的内涵和适用条件。

4、理解雷诺数及斯托克司定律在医学中的应用。

5、了解层流和湍流的概念及判断标准。

6、了解心脏做功、体内的血流速度及血压分布。

二、推荐学习方法1.体会物理模型的创建方法,重点体会在不同场合选择不同物理模型的依据和理由。

例如,理想流体(绝对不可压缩,完全没有粘滞性的流体),这一概念建立的依据是液体和气体的流动时,很多时候体积变化和摩擦耗能都很少,可以忽略不计,用理想模型使分析简洁,带来的误差又很小。

在应用此模型的时候,一定要注意实际现象中存在的体积变化和摩擦是否可以忽略。

如液体在粗管内流动,比如开口很大的容器底部开一小孔,求小孔处流速,由于水的可压缩性小,体积变化可忽略,容器大,流动时速度梯度小,内摩擦力可忽略,可应用伯努利方程;但如果在开孔处联结一较长细管,水在细管中流动时,粘滞性不可忽略,则要考虑伯肃叶定律;即使管道较粗,如管道较长,比如远距离输油、输水管道,求流量时也要考虑粘滞性。

2.严格遵循各物理规律的应用条件。

连续性原理是同一流管的不同截面处流速的关系,不可比较不同的流管;柏努利方程要在同一流线上使用,比较流体中两点的流速并应用柏努利方程时,一定要用一条流线将二者联系起来;在应用伯肃叶定理时一定要强调水平圆管中的层流。

三、解题指导2-1 有人认为从连续性方程来看管子愈粗流速愈小,而从泊肃叶定律来看管子愈粗流速愈大,两者似有矛盾,你认为如何?为什么?提示:两者所针对的对象是否一样?答:不矛盾,连续性原理指的是同一流管不同截面处的流速关系,截面大处流速小,而泊肃叶定律指出管子愈粗流速愈大是针对不同的流管。

两者没有可比性。

思考:连续性原理和泊肃叶定律的适用条件分别是什么?2-2为什么一个装有烟囱的火炉,烟囱越高通风的效果越好?(即烟从烟囱中排出的速度越大)提示:高空和低空空气的流动状态有无区别?答:由于高处空气的流动速度快,根据柏努利定律,烟囱顶端的气压低,底端气压高,从而推动空气挟带烟尘向烟囱顶部运动,促进通风。

流体力学-第三章

流体力学-第三章
空间各点只要有一个运动要素随时间变化,流体运动称为非恒 定流。
二 均匀流和非均匀流 渐变流和急变 流
按各点运动要素(主要是速度)是否随位置变化,可将流体 运动分为均匀流和非均匀流。在给定的某一时刻,各点速度 都不随位置而变化的流体运动称均匀流。均匀流各点都没有 迁移加速度,表示为平行流动,流体作匀速直线运动。反之, 则称为非均匀流。
按限制总流的边界情况,可将流体运动分为有压流、无压流和射 流。
边界全为固体的流体运动称为有压流或有压管流。 边界部分为固体、部分为气体,具有自由表面的液体运动称为 无压流或明渠流。 流体经由孔口或管嘴喷射到某一空间,由于运动的流体脱离了 原来限制他的固体边界,在充满流体的空间继续流动的这种流 体运动称为射流。
四 三维流(三元流)、二维流(二元流)、一维流(一元流)
按决定流体的运动要素所需空间坐标的维数或空间坐标变量的 个数,可将流体运动分为三维流、二维流、一维流。
若流体的运动要素是空间三个坐标和时间t的函数,这种流体运 动称为三维流或三元流。
若流体的运动要素是空间两个坐标和时间t的函数,这种流体运 动称为二维流或二元流。
拉格朗日法来研究流体运动,就归结为求出函数x(a, b, c, t), y (a, b, c, t), z (a, b, c, t)。(1)由于流体运动的复杂,要想求 出这些函数是非常繁复的,常导致数学上的困难。(2)在大多 数实际工程问题中,不需要知道流体质点运动的轨迹及其沿轨迹 速度等的变化。(3)测量流体运动要素,要跟着流体质点移动 测试,测出不同瞬时的数值,这种测量方法较难,不易做到。
3 脉线
脉线又称染色线,在某一段时间内先后流过同一空间点的所 有流体质点,在既定瞬时均位于这条线上。
在恒定流时,流线和流线上流体质点的迹线以及脉线都相互 重合。

第三章 流体力学

第三章 流体力学
1、理想流体:
完全不可压缩的无粘滞流体称为理想流体。
液体不易被压缩,而气体的可压缩性大。但当气体可自由流 动时,微小的压强差即可使气体快速流动,从而使气体各部 分的密度差可以忽略不计。
流体内各部分间实际存在着内摩擦力,它阻碍着流体各部分 间的相对运动,称为粘滞性。但对于很“稀”的流体,可近 似看作是无粘滞的。
4l
dQ=vdS
流量
R
Q R4 ( P1 P2 )
8l
泊肃叶定律推导(略)
流速分布: r
r
v P1 P2 ( R2 r 2 )
4l
各流层流速沿径向呈抛 物线分布
v 管轴中心处,流速最大
vmax

P1 P2
4l
R2
管壁处,流速最小 vmin 0
v
平均速度 v P1 P2 R2
由伯努利方程:
p0

gh

p0

1 2
v2
由上式求得:
v 2 gh
p0
A h
B p0 v
习例题题5-1:1 直径为0.10m,高为0.20m的圆筒形容器底部有1cm2的小 孔。水流入容器内的流量为1.4×10-4m3/s 。求:容器内水面能
上升多高?
D
由伯努利方程: v 2 gh
h 当水面升至最高时: QV v S S 2 ghm
若1 < 2 , 小球(气泡)上浮

1 2
V

v
2 1

gh2V


gh1V
即:
p1

1 2

v
2 1

gh1

流体力学课件 第3章流体运动的基本原理

流体力学课件  第3章流体运动的基本原理

u u (x, y,z, t )
17
二、流场描述
1、迹线:某一质点在某一时段内的运动轨迹曲线。
例: 烟火、火箭、流星、子弹等轨迹线。。。。。
(1)拉格朗日法迹线方程
x x(a,b,c,t) y y(a,b,c,t)
z z(a,b,c,t)
消去参数t并给定(a,b,c)即得相应质点的迹线方 程。
说明:
*(a,b,c)=const, t为变数,可得某个指定质点在任意时刻
所处的位臵,上式即迹线方程; *(a,b,c)为变数,对应时刻 t可以得出某一瞬间不同质点 在空间的分布情况。
3、拉格朗日法的速度与加速度方程
( 1) 流速方 程
x ux ; t y uy ; t z uz t 均为(a,b,c,t)的函数。
第三章 流体运动的基本原理
静止只是流体的一种特殊的存在形态,运动 或流动是流体更为普遍的存在形态,也更能反映 流体的本质特征。 本章主要讨论流体的运动特征(速度、加速 度等)和流体运动的描述方法,流体连续性方程、 动量守恒及能量守恒方程是研究流体运动的基础。
1
第一节、流体运动的描述方法
一、拉格朗日法(lj)
18
(2)欧拉法迹线方程 若质点P在时间dt内从A点运
Z
A
B
动到B点,则质点移动速度为:
u dr dt
O
Y
得迹线方程:
dx dy dz dt ux uy uz
2、流线
表示某一瞬时流体各点流动 趋势的曲线,其上任一点的切线 方向与该点流速方向重合。即同 一时刻不同质点的速度方向线。
根据行列式的性质,有:
22
流线微分方程
dx dy dz u x u y uz

流体力学_第三章_伯努利方程及动量方程

流体力学_第三章_伯努利方程及动量方程
4根线具有能量 意义: 总水头线 测压管水头线 水流轴线 基准面线
23
第三节 恒定总流的伯努利方程
例 用直径d=100mm的水管从水箱引水,水管水面与
管道出口断面中心高差H=4m,水位保持恒定,水头 损失hw=3m水柱,试求水管流量,并作出水头线 解:以0-0为基准面,列1-1、2-2断面的伯努利方程
第三节 恒定总流的伯努利方程
渐变流及其性质
渐变流
(u )u 0
渐变流的过流断面近于平 面,面上各点的速度方向 近于平行。 渐变流过流断面上的动压 强与静压强的分布规律相 同,即:
p z c g
1
第三节 恒定总流的伯努利方程
大小的变化 流速的变化 方向的变化
出现直线惯性力 压强沿流向变化
微小圆柱体的力平衡
p1dA ldA cos p2 dA l cos Z1 Z 2 p1 (Z1 Z 2 ) p2
Z1 p1 Z2 p2


4
第三节 恒定总流的伯努利方程
Z1 p1

Z2
p2

均匀流过流断面上压强 分布服从水静力学规 律
40
2
,
2
第三节 恒定总流的伯努利方程
( a )( z2 z1 ) ( a )( z2 z1 ) ( a )
单位体积气体所受有效浮力
v1 2 gh d1 1 d 2
4
4
2 1
2 1
30
第三节 恒定总流的伯努利方程
Q v1

4
d
2 1

4
d
2 1
2 gh d1 d 1 2

流体力学第三章(相似原理与量纲分析)

流体力学第三章(相似原理与量纲分析)
2 1 2 2
它们所反映的是没有量纲(单位)的数,称为无量纲数
l Sr 斯特劳哈尔数 tu
欧拉数
雷诺数
Vl

Re
p Eu 2 V
V2 Fr 弗劳德数 gl
25
2w 2w 2w w w w w p u v w 2 2 2 g t y z z z x x y
2伯努利方程5简单情况下的ns方程的准确解3第一节流体力学的模型实验和相似概念第二节相似判据第三节无量纲方程第四节特征无量纲数第五节量纲分析和定理主要内容第三章相似原理与量纲分析4实验数据的简化处理设计实验的基本要求理论流体力学第一二章实验流体力学普通实验数值实验5第一节流体力学的模型实验和相似概念流体力学实验
13
通常可以采用两种方法来确定动力相似判据: (一)方程分析法:描述流体的运动方程应该是一致的。 从而得到必须满足的关系式,即相似判据;
(二)量纲分析方法:以量纲分析为基础的一种方法。
14
方程分析法
动力相似判据
前提条件:假定原型流场和模型流场是满足几何相似、 时间相似和运动相似的,考虑不可压缩粘性流体的简单 情况。 首先,给出有关相似常数的定义:
此时,两个流场称之为是流场 相似或运动相似的。流场相似 也就是在两流场对应点的速度 的大小、方向成常数比例。
Q P
9
动力相似
动力相似:要求在两流场相应点上各动力学变量 成同一常数比例。 例如原型流场和模型流场在运动过程中受到的 质量力、粘性力等动力学变量成正比。
10
几何相似 时间相似 有比较清晰的关系表达式 运动相似 (可直接观测) 判断什么条件下两流场才满足动力相似??
u = U u’

流体力学

流体力学

表明流速不变或流速的改变可以忽略时,理
想流体稳定流动过程中流体压强能与重力势
能之间的转换关系,即高处的压强较小,低处 的压强较大. 两点的压强差为
p1 p2 g (h2 h1 )
空吸原理
SB SA SC
S AvA SB vB
S A SB
vB vA
1 1 2 2 P vA P vB A B 2 2
vB 2 gh

管涌

铜壶滴漏 “寸金难买寸光阴”是再熟 悉不过的诗句了,其中揭示 了计量时间的方法.我国古 代用铜壶滴漏计时,使水从 高度不等的几个容器里依次 滴下来,最后滴到最低的有 浮标的容器里,根据浮标上 铜壶滴漏 的刻度也就是根据最低容器 说明其计时原理. 里的水位来读取时间.
(三) 压强与流速的关系 在许多问题中,所研究的流体是在水平或接近 水平条件下流动.此时,有 h1=h2或 h1≈h2,伯 努利方程可直接写成 1 2 1 2 p1 v1 p 2 v 2 2 2 1 2 p v 常量 2 平行流动的流体,流速小的地方压强大,流速 大的地方压强小(例).
(2)求虹吸管内B、C 两处的压强. 解:水面为参考面,则 有A、B点的高度为零,
C 点的高度为2.50 m, D点的高度为-4.50m.
(1)取虹吸管为细流管,对于A、D 两点,根据伯 努利方程有 1 2 1 2 ghA v A p A ghD vD pD 2 2 由连续性方程有
1 2 1 2 p A v A pB v B 2 2
1 2 PB P0 vB 2
根据连续性方程可知,均匀虹吸管内,水的速率
处处相等,vB=vD.
1 2 PB P0 vB 5.7 10 4 Pa 2 结果表明,在稳定流动的情况下,流速大处压强

流体力学第3章(第二版)知识点总结经典例题讲解

流体力学第3章(第二版)知识点总结经典例题讲解

dx u u( t ) dt
流体质点加速度:
dy v v(t ) dt
dz w w( t ) dt
d2x d2y d 2z ax 2 , y 2 , z 2 a a dt dt dt
x(t ) a t y( t ) b t z(t ) 0
y
迹线方程:
流线的性质
(1)流线彼此不能相交(除了源和汇)
交点
v1 v2
s1
(2)流线是一条光滑的曲线, 不可能出现折点(除了激波问题)
(3)定常流动时流线形状不变, 非定常流动时流线形状发生变化
s2
v1 v 折点 2
s
[例1] 由速度分布求质点轨迹
已知: 求: 解: 已知用欧拉法表示的流场速度分布规律为
(2)
由于在欧拉法中速度只和当地坐标以及时间有关,所以必须消 去初始座标,观察(1)式和(2)式可得:
u( x , y , z , t ) y v ( x , y , z , t ) x w( x, y, z, t ) 0
讨论:本例说明虽然给出的是流体质点在不同时刻经历的空间位置,即 运动轨迹,即可由此求出空间各点速度分布式(欧拉法),即各 空间点上速度分量随时间的变化规律。 此例中空间流场分布与时间无关,属于定常流场.
[例3] 由速度分布求加速度
已知: 已知用欧拉法表示的流场速度分布规律为 求各空间位置上流体质点的加速度 解: 对某时刻 t 位于坐标点上(x, y)的质点
dx xt dt dy v yt dt u
u xt v yt
(a )
求解一阶常微分方程(a)可得
x( t ) ae y( t ) be
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
1 2
(x2
y2) x
1 2
x(x2
y2)
ay
v t
u
v x
v
v y
0
xy(x)
1 2
(x2
y 2 ) ( y)
1 2
y( y2
x2)
欧拉法与拉格朗日法比较
★ 拉格朗日法可以描述流场中各个质点的运动轨迹和轨 迹上运动参量的变化,但是流体具有易流动性,对每一个 质点的跟踪十分困难。
★ 欧拉法给出不同时刻流场中各个空间点的流动参量的 分布,通过连续函数的理论对流场进行分析和计算;不 注重各个质点的运动轨迹。
欧拉法
欧拉法:在固定的座标系中,研究空间某个点的流动参数 (速度、压力、密度),并给出这些参数与空间点和时间 的分布:
速度:u=u (x, y, z, t), v=v (x, y, z, t), w=w (x, y, z, t)
压力:p=p (x, y, z, t) 密度:ρ=ρ(x, y, z, t)
由于流体是连续介质,所以描述流体运动的各物理量(如速度、 加速度等)均应是空间点的坐标和时间的连续函数。根据着眼点的 不同,流体力学中研究流体的运动有两种不同的方法,一种是拉 格朗日(Lagrange)方法,另一种是欧拉(Euler)方法。
拉格朗日法:
拉格朗日方法又称随体法,是从分析流场中个别流体质点 着手来研究整个流体运动的。
第三章 理想流体动力学基本方程
理想流体: 不计粘性切应力的运动流体
一元流动: 流动参数主要跟一个座标方向 有关的流动
本章讨论理想流体的基本方程及 在一元流动中的基本应用
流体运动学
流体动力学是研究流体在运动中其流动参量之间 的相互关系,以及引起运动的原因和流体对周围固体 物体的影响。
流动参量:压力 密度 表面张力 速度 应力 作用力 粘度 力矩 动量 能量
ay
v t
u
v x
v
v y
w
v z
az
w t
u
w x
v
w y
w w z
• 定常流与非定常流
概念:
定常流动: 0 t
非定常流动
一元流动
二元流动(平面流动) 三元流动(空间流动)
• 例题
V
xyi
1
(x2
y
2
)
j
2
即u xy, v 1 (x2 y2 )
2
ax
u t
u
u x
v
u y
xy
流体运动学
研究方法:从理想流体出发,推导其基本理论, 再根据实际流体的条件对其应用加以修正。
流场:流体占据的全部空间范围。经过管道或明 渠的流场叫“管道流场”或“径流流场”;绕过物体 的流场叫“绕流流场”
§3-1 描述流体运动的两种方法
连续介质模型的引入,使我们可以把流体看作为由无数个流 体质点所组成的连续介质,并且无间隙地充满它所占据的空间。 我们把流体质点运动的全部空间称为流场。
• 速度分布
设某个质点,t 时刻位于(x, y, z),
速度为:
V0 (x, y, z,t)
t+Δt 时刻位于(x+Δx, y+Δy, z+Δz, t+Δt),
速度为: V1(x x, y y, z z,t t)
V0和V1的关系为
V
V
V
V
V1 V0 t t x x y y z z
加速度(质点导数)
a lim V1 V0
( to ) t

V1
V0
V t t
V x x
V y y
V z z
注意到 因此
lim x u, lim y v, lim z w
t0 t
t0 t
t0 t
a
dV
V
u
V
v
V
w
V
V
(V
)V
dt t x y z t
右边第一项为当地加速度,又称当地导数、时变加速度或局部 加速度,后三项为迁移加速度,又称迁移导数、对流加速度。
欧拉法与拉格朗日法比较
由上述可知,采用欧拉法描述流体的流动,常常比采用拉格 朗日法优越,其原因有三。 利用欧拉法得到的是场,便于采用场论这一数学工具来研究。 采用欧拉法,加速度是一阶导数,而拉格朗日法,加速度是 二阶导数,所得的运动微分方程分别是一阶偏微分方程和二 阶偏微分方程,在数学上一阶偏微分方程比二阶偏微分方程 求解容易。 在工程实际中,并不关心每一质点的来龙去脉。 基于上述三点原因,欧拉法在流体力学研究中广泛被采用。 当然拉格朗日法在研究爆炸现象以及计算流体力学的某些问 题中还是方便的。
当地加速度是由于某一空间点上的流体质点的速度随 时间的变化而产生的
迁移加速度是某一瞬时流体质点的速度随空间点的变 化而产生的。
当地加速度和迁移加速度之和称为总加速度。
两个加速度的物理意义:
如图3-1所示,不可压缩流体流过一个中间有收缩形的变截 面管道,截面2比截面1小,则截面2的速度就要比截面1的 速度大。所以当流体质点从1点流到2点时,由于截面的收 缩引起速度的增加,从而产生了迁移加速度,如果在某一段 时间内流进管道的流体输入量有变化(增加或减少),则管 道中每一点上流体质点的速度将相应发生变化(增大或减 少),从而产生了当地加速度。
t
v y(a, b, c,t) , t
w z(a, b, c,t) t
加速度:
ax
2x(a,b, c,t) t 2
,
ay
2 y(a,b, c,t) t 2
,
az
2z(a,b, c,t) t 2
欧拉法
欧拉法,又称局部法,是从分析流场中每一个固定空 间点上的流体质点的运动着手,来研究整个流体的运 动,即研究流体质点在通过某一空间点时流动参数随 时间的变化规律。所以流体质点的流动是空间点坐标 (x,y,z)和时间t的函数,
流场有无数个质点,设其中某一质点t=0时的位置为(a,b,c),称为拉
格朗日变数,它不是空间坐标的函数,而是流体质点标号。将座标原点 建在该质点,则对于任意的流体质点在t时刻:
轨迹:x=x (a, b, c, t), y=y (a, b, c, t), z=z (a, b, c, t)
速度:u x(a,b, c,t) ,
图 3-1 中间有收缩形的变截面管道内的流动
注意:流体质点和空间点是两个截然不同的概念,
空间点指固定在流场中的一些点 流体质点不断流过空间点 空间点上的速度指流体质点正好流过此空间点时的速度。
加速度的投影值:aFra bibliotekxi ay
j
az
k
u u u u ax t u x v y w z
这种研究方法,最基本以研究个别流体质点的运动为基础; 研究每个流体质点的运动情况,并给出其运动轨迹。
在理论力学中应用:
设某质点的轨迹为:x=x(t), y=y(t), z=z(t)
速度: u x , v y , w z
t
t
t
加速度:
ax
2 t
x
2
,
ay
2 y t 2
,
az
2z t 2
拉格朗日法
相关文档
最新文档