翅片管式空调热交换器
举例说明翅片管换热器换热面积的计算方式

举例说明翅片管换热器换热面积的计算方式
翅片管的传热原理用普通的圆管(光管)组成的热交换器,在很多情况下,管外流体和管内流体对管壁的换热系数是不一样的。
所谓换热系数,是指单位换热面积,单位温差(流体与壁面之间的温差)时的换热量,它代表流体和壁面之间的换热能力的大小。
翅片管换热器的设计工艺中,一台翅片管的换热面积就是每根翅片管换热面积的总和。
知道了翅片管的换热面积,就能有效的清楚每台翅片管换热器的换热面积为多少。
举例说明翅片管换热器换热面积的计算方式:
翅片管型号为:CPG (Φ25×2mm/57/2.8/0.35) 求每米翅片管的换热面积?
解答:
翅片管换热器的总面积等于翅片管的裸露部分面积+翅片面积
翅片管裸露部分面积=3.14X0.026X(1000—(1000/2.8)X0.35)=0.071435㎡
翅片部分的面积=3.14X(0.0285?-0.013?)X357X2+3.14X0.057X0.125=1.4645125㎡
翅片管总的换热面积=0.071435+1.4645125=1.536㎡/m.
即该型号翅片管的换热面积为1.536㎡/米。
水在壁面上凝结时的换热系数为: 10000—20000 w/(m2.℃)
水在壁面上沸腾时的换热系数为: 5000----10000 ------
水流经壁面时的换热系数大约为: 2000---10000 ------
空气或烟气流经壁面时的换热系数为: 20---80 --- ---
空气自然对流时的换热系数只有: 5---10 -------
由此可见,流体与壁面之间的换热能力的大小相差是很悬殊的。
翅片式风冷换热器设计

翅片式风冷换热器设计一、设计原理翅片式风冷换热器由翅片管和冷却风机组成。
工作时,热媒流经管道,通过管道壁与外界冷却空气进行热量交换,从而将热量传递给空气。
同时,冷却风机通过流过翅片管的冷却空气,将其吹入翅片间隙,增加换热面积,提高换热效率。
二、换热器设计参数1.翅片管长度和直径翅片管长度和直径的选择应根据换热器的工作条件来确定。
一般来说,较长的翅片管长度可以增加换热面积,提高换热效率,但也会增加阻力和成本。
而较大的翅片管直径可以增加流体的流量和传热量,但同样也会增加阻力和成本。
2.翅片间距和数量翅片间距和数量的选择需要根据换热介质的温度和流速来确定。
较小的翅片间距可以增加换热面积,提高换热效率,但也会增加阻力。
翅片数量应根据实际需求来确定,一般来说,较大的翅片数可以增加换热面积,提高换热效率,但也会增加成本和复杂性。
3.翅片高度和厚度翅片高度和厚度的选择应根据换热介质的温度和流速以及换热需求来确定。
较大的翅片高度和厚度可以增加换热面积,提高换热效率,但也会增加阻力和成本。
三、翅片式风冷换热器的工作原理具体工作流程如下:1.热媒从换热器的进口进入管道,流经管道内部。
2.在管道内部,热媒通过管道壁与外界冷却空气进行热量交换。
热媒的热量传递给冷却空气,使其升温。
3.升温的冷却空气经过冷却风机的吹扫,被吹入翅片间隙。
4.在翅片间隙中,冷却空气与翅片接触,进行热量交换。
冷却空气吸收翅片的热量,并将其带走。
5.冷却的热媒经过管道进一步流动,从换热器的出口排出。
四、翅片式风冷换热器的优缺点1.结构紧凑,占用空间小。
由于翅片式风冷换热器利用翅片增加了换热面积,故相同换热量下其体积相对较小。
2.热量传递效率高。
翅片式风冷换热器具有较大的换热面积,能够实现高效的热量传递。
3.适用范围广。
翅片式风冷换热器适用于多种介质的换热,例如空气、水等。
1.清洗困难。
由于翅片之间的间隙较小,难以将污物清洗干净。
2.阻力较大。
翅片式风冷换热器会增加流体的阻力,降低了流体的流动速度。
铜管翅片式换热器工作原理

铜管翅片式换热器工作原理
铜管翅片式换热器是一种常用的换热设备,主要由铜管和铝翅片组成。
其工作原理如下:
1. 热媒介流经铜管:热媒介(如蒸汽、热水或热油)从换热器的一侧流入铜管,进入铜管内部。
2. 热媒介在铜管中传热:热媒介在铜管内部流动,通过与铜管壁的接触,将热量传递给铜管壁。
由于铜具有良好的导热性能,能够有效地从热媒介中吸收热量。
3. 翅片增加换热面积:铜管的外表面附有铝翅片,通过铝翅片的形状设计和分布方式,有效地增加了换热器的换热面积。
这些翅片能够增加与周围空气的接触面积,提高换热器的换热效率。
4. 热媒介将热量传递给空气:热媒介通过铜管壁传递的热量被铝翅片吸收,再通过翅片与周围空气接触,将热量传递给空气。
热媒介在与空气相互接触过程中,冷却下来,达到热量交换的目的。
5. 冷却的热媒介回流:在经过翅片散热后,热媒介冷却成为低温的状况,通过换热器的另一侧流出,完成一次热量传递的过程。
通过以上步骤,铜管翅片式换热器能够实现有效地热量传递,将热媒介的热量散热并传递给周围空气,达到换热的目的。
这
种换热器结构紧凑,换热效率高,广泛应用于各种工业领域的散热、冷却和加热过程中。
不同翅片形式管翅式换热器流动换热性能比较

不同翅片形式管翅式换热器流动换热性能比较摘要:随着制冷空调行业的发展,人们已经把注意力集中在高效、节能节材的紧凑式换热器的开发上,而翅片管式换热器正是制冷、空调领域中所广泛采用的一种换热器形式。
对于它的研究不仅有利于提高换热器的换热效率及其整体性能,而且对改进翅片换热器的设计型式,推出更加节能、节材的紧凑式换热器有着重要的指导意义。
由于翅片管式换热器在翅片结构形式和几何尺寸的不同,造成其换热性能和阻力性能上的极大差异。
本文概述目前国内外空调制冷行业中的普遍采用的几种不同翅片类型(平直翅片、波纹翅片、开缝翅片、百叶窗形翅片)的换热及压降实验关联式及其影响因素,对不同翅片形式的管翅式换热器的换热及压降特性的实验关联式进行总结,并对不同翅片的流动换热性能进行了比较。
正确地选用实验关联式及性能指标,将对翅片管式换热器的优化设计及其制造提供可靠的依据。
关键词:翅片形式;管翅式;换热器;关联式;流动换热性能Study on heat transfer and flow characteristics of fin-and-tube heat exchangers with various fintypesAbstract:With the development of refrigeration and air conditioning, high efficiency, energy saving and material saving compact type of heat exchanger is development, as one kind of compact heat exchanger, fin-and-tube heat exchanger has a wide application in future. It is necessary to develop compact heat exchanger which is more energy saving and material saving to improve the heat exchanger thermal efficiency and the overall performance of heat transfer.This paper summaries the heat transfer and pressure drop correlations of different fin surfaces, and the corresponding influencing factors. The heat transfer and friction characteristic of these kinds of fin types are compared, and the results show the difference of these fin types. The appropriate correlation and evaluation criterion will provide reliable foundation to the design and optimization of compact heat exchangers.Key words:Fin-and-tube heat exchanger; Heat transfer and flow characteristics; Experimental correlations; Comparison目录1 绪论 (2)1.1课题背景及研究意义 (3)1.2管翅式换热器简介 (3)1.3管翅式换热器的特点 (4)1.4 管翅式换热器的换热过程 (4)1.5研究现状 (5)1.5.1国外实验及模拟研究进展 (5)1.5.2国内研究现状和数值模拟 (6)1.5.3管翅式换热器及发展趋势 (8)1.6 管翅式换热器的不同形式的翅片研究现状 (9)2影响翅片换热和压降性能的主要结构因素 (11)2.1翅片间距对换热特性和压降特性的影响 (12)2.2管排数对换热特性和压降特性的影响 (12)2.3管径对换热特性和压降特性的影响 (13)2.4管间距对换热特性和压降特性的影响 (13)3.不同翅片经验关系式总结及比较 (14)3.1 平直翅片经验关系式的总结 (14)3.2 波纹翅片经验关系式的总结 (18)3.3 百叶窗翅片经验关系式的总结 (23)3.4 开缝翅片经验关系式的总结 (26)4.四种翅片经验关系式比较 (31)结论 (38)参考文献 (40)致谢 (44)1 绪论1.1课题背景及研究意义换热器是国民生产中的重要设备,其应用遍及动力、冶金、化工、炼油、建筑、机械制造、食品、医药及航空等各工业部门。
翅片管热交换器设计计算

图!"#
翅片管的传
热性能比较
表 ! " $ 列出了用于空冷器中常用的 % 种翅片管的性能评定, 其中以 “$ ” 为最 佳, 顺序而下, “%” 最差。使用中以 & 型绕片管为最基本型式, 只有在对各项性能 要求都较高情况下才选用套片管, 因为它的价格较高。
表!"$ 翅片管型式 传热性能 耐温性能 耐热冲击能力 耐大气腐蚀能力 清理尘垢的难易程度 制造费用 常用的 % 种翅片管的性能评定 && 型绕片式 ! ! ! ’ ! ( 镶片式 ’ ( ( % ’ ’ 双金属轧片式 ( ’ ’ $ ( ! 套片式 $ $ $ ( $ %
第一节
构造和工作原理
翅片管热交换器可以仅由一根或若干根翅片管组成, 如室内取暖用翅片管散 热器; 也可再配以外壳、 风机等组成空冷器型式的热交换器。 翅片管是翅片管热交换器中主要换热元件, 翅片管由基管和翅片组合而成, 基管通常为圆管 (图 $ % ( ) , 也有扁平管 (图 $ % & ( () ) 和椭圆管。管内、 外流体 & ’) 通过管壁及翅片进行热交换, 由于翅片扩大了传热面积, 使换热得以改善。翅片 类型多种多样, 翅片可以各自加在每根单管上 (图 $ % ( ) , 也可以同时与数根管 & ’) 子相连接 (图 $ % ( 及 ( )) ) 。 & () 空冷器是一种常见的翅片管热交换器, 它以空气作为冷却介质。其组成部分 包括管束、 风机和构架等 (图 $ % *) 。 管束是空冷器中主要部分, 它由翅片管、 管箱和框架组成, 是一个独立的结构
图!"#
翅片管排列型式及其管距
翅片材料根据使用环境和制造工艺来确定。有碳钢、 不锈钢、 铝及铝合金、 铜 及铜合金等。所用基管材料有碳钢、 铬钼钢、 不锈钢、 铝等。
翅片管式换热器的作用

翅片管式换热器的作用
翅片管式换热器是一种高效的换热设备,其主要作用是通过对流
和热传导来传递热量,使热量从高温流体传递到低温流体,从而实现两种流体的热交换。
具体来说,翅片管式换热器由一组翅片管组成,每根翅片管都是
由一根无缝钢管和一组翅片组成。
翅片管中的翅片可以是单层的或者多层的,也可以是波纹状或螺旋状的。
这些翅片增加了换热器的表面积,从而增加了热交换的面积,提高了换热效率。
翅片管式换热器广泛应用于各种工业和民用领域,如制冷、加热、干燥、蒸馏、蒸发等过程。
例如,在空调系统中,翅片管式换热器可以用来将室外空气中的热量传递给制冷剂,从而实现室内空气的降温。
在化工和制药领域,翅片管式换热器可以用来实现液体的冷却或加热,以及气体的冷凝或蒸发。
总之,翅片管式换热器是一种广泛应用于各种工业和民用领域中
的高效换热设备,能够实现高温流体和低温流体的热交换,提高能源利用效率。
翅片管式换热器的制造工艺

2.3 管箱隔板与侧板的焊接
管箱为承压部位 ,其质量取决于隔板与侧板是否焊接牢固 ,因结构无法从管箱内侧焊接 , 为此在两(a)A 侧 (b)B侧侧板上用数控等离子气割机割出宽为 8mm 的承插槽 ,见图 6。 每条承插槽断开120mm,在隔板相应的位置割出凹槽 ,以便隔板扣入侧板上 ,最后满 焊槽孔 。
翅片管热交换器制造工艺及其检漏方法
以方形翅片管式换热器为例
• 结晶箱简介
• 制造工艺及过程控制
结晶箱简介
方形翅片管热交换器的结构示图见图。 壳体由6块方形平板焊接而成 ,2块管板镶嵌于壳体中, 除顶面外,热交换器余几面均布有加热外盘管 。
制造工艺及过程控制
2Hale Waihona Puke 1翅片管制造及检漏2.1.1 制造 采用高频焊将1mm 正方形薄片均匀焊在无缝钢管上 (图 )。翅片管的质量体现在 翅片与管子焊合度 、翅片间距及平整度的三点要求上 。 隔板用剪板机剪成定宽长板 ,在平台上绘出隔板排布图 ,后依照尺寸将其焊为 迷宫状 ,待组装 。
基于方形翅片管热交换器结构的特殊性,对其工艺过程分别设计了合理的试压工装 , 为类似热交换器的制造可提供一定的借鉴 。
End
thanks for watching
2.4 组装及其他
(1)翅片管组装组装时先将一块管板垂直于底板 ,另一块管板稍微倾斜一定的角度 , 两管板间用葫芦拉住 ,由下向上逐层穿入翅片管 ,并逐渐拉紧葫芦直至翅片管全部穿 入。 (2)管箱隔板组装隔板为迷宫型 ,是由很多块长条板组焊而成 ,拼装时应严格校对各 个隔板位置的准确性 ,并做好防变形工作 。 (3)管箱试压步骤新的检漏方法可避免对壳体打压 ,在换热管与管板的焊接接头检验合 格后 ,只需在管箱试压即可保证设备质量达到要求。
翅片式换热器的设计及计算

制冷剂系统翅片式换热器设计及计算制冷剂系统的换热器的传热系数可以通过一系列实验关联式计算而得,这是因为在这类换热器中存在气液两相共存的换热过程,所以比较复杂,现在多用实验关联式进行计算。
之前的传热研究多对于之前常用的制冷剂,如R12,R22,R717,R134a等,而对于R404A和R410A的,现在还比较少。
按照传热过程,换热器传热量的计算公式为:Q=KoFΔtm (W)Q—单位传热量,WKo—传热系数,W/(m2.C)F—传热面积,m2Δtm—对数平均温差,CΔtmax—冷热流体间温差最大值,对于蒸发器,是入口空气温度—蒸发温度,对于冷凝器,是冷凝温度—入口空气温度。
Δtmin—冷热流体间温差最小值,对于蒸发器,是出口空气温度—蒸发温度,对于冷凝器,是冷凝温度—出口空气温度。
传热系数K值的计算公式为:K=1/(1/α1+δ/λ+1/α2)但换热器中用的都是圆管,而且现在都会带有肋片(无论是翅片式还是壳管式),换热器表面会有污垢,引入污垢系数,对于蒸发器还有析湿系数,在设计计算时,一般以换热器外表面为基准计算传热,所以对于翅片式蒸发器表述为:Kof--以外表面为计算基准的传热系数,W/(m2.C)αi—管内侧换热系数,W/(m2.C)γi—管内侧污垢系数,m2.C/kWδ,δu—管壁厚度,霜层或水膜厚度,mλ,λu—铜管,霜或水导热率,W/m.Cξ,ξτ—析湿系数,考虑霜或水膜使空气阻力增加系数,0.8-0.9(空调用亲水铝泊时可取1)αof—管外侧换热系数,W/(m2.C)Fof—外表面积,m2Fi—内表面积,m2Fr—铜管外表面积,m2Ff—肋片表面积,m2ηf—肋片效率,公式分析:从收集的数据(见后表)及计算的结果来看,空调工况的光滑铜管内侧换热系数在2000-4000 W/(m2.C)(R22取前段,R134a取后段,实验结果表明,R134a的换热性能比R22高)之间。
因为现在蒸发器多使用内螺纹管,因此还需乘以一个增强因子1.6-1.9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标准修订记录表
QJ
工艺技术标准
翅片管式空调热交换器
格力电器股份有限公司发布
目次
1 主题内容和适用范围................................................. 错误!未定义书签。
2 热交换器用材料引用标准 (1)
3 材料规格汇总 (1)
4 材料选用规范 (3)
5 通用设计工艺规范 (3)
前言
格力电器股份有限公司技术标准是公司标准化委员会发布的标准,作为公司内部使用的技术法规性文件。
本标准规定了翅片管式空调热交换器的设计工艺条件。
适用于翅片管式空调热交换器的设计、制造。
本次标准修订更改如下:
修改了5.3.1.1的内容。
本标准只对公司内部相关单位发放,禁止外传。
本标准于2006年4月4日开始正式实施,使用过程中发现的问题请及时反馈给标委会办公室和起草单位。
标委会办公室 2006年4月4日
工艺技术标准
翅片管式空调热交换器
1 主题内容和适用范围
本标准规定了翅片管式空调热交换器的设计工艺条件。
适用于翅片管式空调热交换器的设计、制造。
2 热交换器用材料引用标准
QJ/GD30.03.003 热交换器用铜管
QJ/GD30.03.005 热交换器用铝箔
3 材料规格汇总
3.1 铜管
3.1.1 热交换器用内螺纹管(见表1)
3.3.1 铜管:材料+规格
光面铜管:外径X壁厚
如:铜管TP2M φ9.52×0.35
φ7螺纹铜管:外径X底壁厚X齿高
φ9.52螺纹铜管:外径X底壁厚-螺纹螺旋角度如:铜管TP2M φ7X0.25X0.18
铜管TP2M φ9.52×0.36-18°
3.3.2 铝箔
例:厚度为0.105mm、宽度为925的亲水铝箔,标记为:铝箔0.105X925P
注:在宽度值后(1)对有机亲水铝箔,应标注“P”;对无机亲水铝箔,应标注“aP”;(2)非亲水铝箔,不标注。
4 材料选用规范
4.1 铜管的选用原则
4.1.1 用于长U管的铜管,有φ9.52×0.35、φ9.52×0.36-18°、φ7 ×0.25X0.18、φ16×0.5共计四种规格可供设计人员根据设计需要选用;
4.1.2 长U管的清洁度要求杂质残留量≤25mg/m2。
4.2 铝箔、翅片的选用原则
4.2.1 铝箔使用光箔、亲水箔两种规格,目前翅片片型有平片、W型波纹片、开窗片可供设计人员根据设计需要选用;
4.2.2 客户有特殊要求的,选用铝箔要按照所发的相关生产文件要求执行。
4.2.3 对于室内机蒸发器,都要采用亲水膜铝箔,对于单冷机冷凝器尽量采用非亲水膜铝箔,热泵机冷凝器尽可能采用亲水膜铝箔。
4.2.4 目前铝箔厚度规格有0.105mm、0.125mm,家用空调选用的厚度为0.105mm,对商用空调两器,以下情况选用0.125mm厚度:
4.2.4.1 采用平片但片距为2mm,且需要90°折弯时的,可选用;
4.2.4.2 采用开窗片但片距不小于1.8mm,且需要90°折弯的,可选用;
5 通用设计工艺规范
5.1 命名规则
原有命名有采用“蒸发器”、“蒸发器组件”和“冷凝器”、“冷凝器组件”的,现统一命名为“蒸发器组件”、“冷凝器组件”;为便于区分和分厂领料,在两器分厂装配焊接的边板、弯头挂在蒸发器组件、冷凝器组件下,在管路分厂装配焊接的边板、弯头挂在蒸发器部件、冷凝器部件下,对于确实不便于在部件图上表示的弯头,可以在蒸发器组件、冷凝器组件图纸上表示,但须在备注栏内注明为管路装配。
5.2
下规定(见表4)
注:对于L3尺寸,受铜管收缩率的不确定性影响,L3的公差为:-4~+2mm。
5.2.1 两器弯头插入深度
弯头的插入深度过浅、过深都对焊接质量产生重大影响,现对弯头的插入深度作如下规定:Φ7规格弯头的插入深度:3mm≤H≤5mm;
Φ9.52规格弯头的插入深度4mm≤H≤6mm;
Φ16规格弯头的插入深度6mm≤H≤8mm;
5.3 两器边板
5.3.1 两器边板的命名及通用设计:
左边板—装在U形管端的边板;
右边板—装在焊小弯头端的边板。
如下图:
5.3.2 Φ7管径两器的边板
5.3.2.1 Φ7两器右边板设计原则:
5.3.2.1.1 翻边孔的内孔径一般为Φ7.45,通孔的孔径一般为Φ8,过孔和翻边孔设计按1:1比例间
隔性均匀分配,也可全翻边,边板两端的孔必须翻边;
胀紧孔
5.6 弯头规格
5.6.1 多折蒸发器跨段弯头的表示方法:
分体蒸发器的弯头,跨段的弯头需要在管路分厂折弯后焊接的,为便于分厂区分、领料,必须在图5.6.2 自制弯头图例:
5.6.3
5.7 两器胀管设备的最大加工能力(见表8)
表8 单位:mm
附加说明:
本标准由家用空调技术部负责解释。
本标准由标委会办公室归口管理。
本标准主要起草人:龚汉勇
本标准主要审核人:符众
本标准主要审定人:陆郁
本标准批准人:张辉。