变频器在风机、水泵中的节能应用
为什么风机水泵类使用变频效果好

为什么风机水泵类负载使用变频器节能效果好?
根据流体力学的基本定律可知:风机水泵类负载是典型的平方转距负载,其主要特点是:转速n与转矩T以及负载功率P具有如下关系:T∝n2,P∝n3。
即转矩与转速平方成正比,功率与转速立方成正比。
通常风机水泵类负载多是根据满负荷工作需用量来选型,实际应用中大部分时间并非工作于满负荷状态,所以,只要平均转速稍微下降一点,负载功率就下降得很快,从而达到节能效果。
但采用电机直接起动方式时,由于转速无法调节,常用挡风板、阀门来调节风量或流量,这样不仅造成能源的浪费而且由于过大的起动电流造成电网冲击和设备的震动及水锤现象。
采用变频器调速时,可以根据实际工艺需要方便地控制速度。
例如:当电机转速为额定转速的80%时,负载功率为额定功率的(80%)的三次方,即50%左右。
这样可见,转速下降二成,节能达四成多。
同时,可以方便地实现闭环恒压控制,节能效率将进一步提高。
使用变频器避免了起动时对电网的冲击,降低设备故障率,消除震动和水锤现象,延长设备使用寿命,同时也降低了对电网的容量要求和无功损耗。
变频器的功能和作用

变频器的功能和作用变频器节能主要表现在风机、水泵的应用上。
为了保证生产的可靠性,各种生产机械在设计配用动力驱动时,都留有一定的富余量。
当电机不能在满负荷下运行时,除达到动力驱动要求外,多余的力矩增加了有功功率的消耗,造成电能的浪费。
风机、泵类等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输入功率大,且大量的能源消耗在挡板、阀门的截流过程中。
当使用变频调速时,如果流量要求减小,通过降低泵或风机的转速即可满足要求。
电动机使用变频器的作用就是为了调速,并降低启动电流。
为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC),这个过程叫整流。
把直流电(DC)变换为交流电(AC)的装置,其科学术语为“inverter”(逆变器)。
一般逆变器是把直流电源逆变为一定的固定频率和一定电压的逆变电源。
对于逆变为频率可调、电压可调的逆变器我们称为变频器。
变频器输出的波形是模拟正弦波,主要是用在三相异步电动机调速用,又叫变频调速器。
对于主要用在仪器仪表的检测设备中的波形要求较高的可变频率逆变器,要对波形进行整理,可以输出标准的正弦波,叫变频电源。
一般变频电源是变频器价格的15--20倍。
由于变频器设备中产生变化的电压或频率的主要装置叫“inverter”,故该产品本身就被命名为“inverter”,即:变频器。
变频不是到处可以省电,有不少场合用变频并不一定能省电。
作为电子电路,变频器本身也要耗电(约额定功率的3-5%)。
一台1.5匹的空调自身耗电算下来也有20-30W,相当于一盏长明灯.变频器在工频下运行,具有节电功能,是事实。
但是他的前提条件是:、大功率并且为风机/泵类负载;第二、装置本身具有节电功能(软件支持);这是体现节电效果的三个条件。
除此之外,无所谓节不节电,没有什么意义。
如果不加前提条件的说变频器工频运行节能,就是夸大或是商业炒作。
知道了原委,你会巧妙的利用他为你服务。
变频技术在风机、泵类负载节能中的应用

变频技术在风机、泵类负载节能中的应用摘要:本文通过变频调速在风机、水泵类设备上的应用,阐述了风机、水泵变频调速的节能原理。
介绍了风机、水泵负载对变频器的性能要求。
关键词:变频器;风机、水泵;节能;0.前言我国的电动机用电量占全国发电量的60%~70%,风机、水泵设备年耗电量占全国电力消耗的1/3。
造成这种状况的主要原因是:风机、水泵等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输出功率大量的能源消耗在挡板、阀门地截流过程中。
由于风机、水泵类大多为平方转矩负载,轴功率与转速成立方关系,所以当风机、水泵转速下降时,消耗的功率也大大下降,因此节能潜力非常大,最有效的节能措施就是采用变频调速器来调节流量、风量,应用变频器节电率为20%~50%,而且通常在设计中,用户水泵电机设计的容量比实际需要高出很多,存在“大马拉小车”的现象,效率低下,造成电能的大量浪费。
因此推广交流变频调速装置效益显著。
1.变频调速节能原理1.1变频节能由流体力学可知,P(功率)=Q(流量)×H(压力),流量Q与转速N的一次方成正比,压力H与转速N的平方成正比,功率P与转速N的立方成正比,如果风机、水泵的效率一定,当要求调节流量下降时,转速N可成比例的下降,而此时轴输出功率P成立方关系下降。
即水泵电机的耗电功率与转速近似成立方比的关系。
例如:一台水泵电机功率为55KW,当转速下降到原转速的4/5时,其耗电量为28.16KW,省电48.8%,当转速下降到原转速的1/2时,其耗电量为6.875KW,省电87.5%。
2.2 功率因数补偿节能无功功率不但增加线损和设备的发热,更主要的是功率因数的降低导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,浪费严重,由公式P=S×COSФ,Q=S×SINФ,其中S-视在功率,P-有功功率,Q-无功功率,COSФ-功率因数,可知COSФ越大,有功功率P越大,普通水泵电机的功率因数在0.6-0.7之间,使用变频调速装置后,由于变频器内部滤波电容的作用,COSФ≈1,从而减少了无功损耗,增加了电网的有功功率。
浅谈变频调速技术在风机、泵类中的节能应用

频器 )易操 作 、免 维护 、控制精 度 高 ,并 可 以实 现高 功能化 等特点 ,采用 变频 器驱动 的方案 开始 逐 步取代风 门、挡板 、阀 门的控制方 案。 变频调 速技 术的 基本原 理是根 据 电机转速 与 工作 电源输人频 率成正 比的关 系 : = O ( - )p n6 f 1s /,
(- ) OU ( -) Q ’ H
:
. 二 /
I
(4O 0
H
负荷 ,1 h 运行 在5 %负荷 ;运 行时 间在3 0 。 3 0 0 d
l —
图 l 阀 门调 节 功 耗
图 2 变速 调 节 功 耗
图1 为水 泵用 阀 门控 制 时 ,当流 量 要求 从 Q1 减 小 到Q2 ,必须 关小 阀门 。这时 阀 门的磨擦 阻力 变 大 ,管路 曲线 从R移 到R ,扬 程 则从 Ha , 上升 到
删 蟪 I ' t
新疆 化 工
4 3
配 备 电机功 率 :7 K ,额 定 电流 :1 8 5W 3 A, 额定 电压 :3 0 8 V,转速 :17 r n 4 7/ ,为上 海 江宁 mi
电机厂制 造 。
=
● 酗
I h
水 泵连 续2 h 行 ,其 中每天 1h 行在 9 % 4运 运 l 0
下 降 到H 。 。 根 据离 心泵 的特 性 f 线公式 : H 1
N=R QH/12 0q
例3
根据 图3 计算 ,则 每年 的节 电量 为 :
W17 x ×(10 -7 % )x 3 0 720 W h
W2 7 x 3 ( 5 - 2 % )x 0 = 1 3 5 W ’ = 5 1x 9 % 0 30 29 7k h
变频调速技术在水泵和风机应用中的节能分析

阀、截止阀等节流设备进行流量 、压力 、水位等信 号的控制 。这样 ,不仅造成大量的能源浪费 ,管
路、阀门等密封性能的破坏 ;还加速 了泵腔、阀体 的磨损和汽蚀 ,严重时损坏设备、影响生产、危及
21年第3 00 期
速 一压力关 系 曲线如 图 1 示 。 所
河 北 煤 炭
电机 节省 的功耗 为 A、 p。 O、 、
电机 磁极 对 数) ;通 过改 变 电动 机工 作 电源 频 率达
到改 变 电机转 速的 目的。变频 器就是 基 于上述 原理
1 综 述
通常 风机设 备主要 用于 锅炉燃 烧系统 、烘 干系 统 、冷却 系统 、通风 系统等 场合 ,根据生 产需要 对 炉 膛压力 、风速 、风 量 、温 度等 指标进行 控制 和调 节 ,以适 应工艺 要求 和运行 工况 。而最 常用 的控制 手段 则是 调节风 门、挡板开 度 的大小来 调整受 控对
河 北 煤 炭
21年第3 00 期
变 调 技 在 泵风 应 中节分 频 速 术 水 和机 用的 能 析
祁 雪来 ,乔矿 生
( 中能源 井矿集团公司 ,河北 石家庄 冀 000 5 10)
摘 要 :主要介 绍 了风机 、泵 类设备利用 变频调速 技术节 能 降耗 的分 析及 应用情况 。
|e’ 。 b | l | U
得 出 。其 中 , 尸 p、 H 、 、
统压力 升高到 鼠 ,这将对管路和阀门的密封性 能形 成 威 胁 和破 坏 ;而转 速 调节 时 ,系 统压 力 只 将 随泵 转 速 刀的降低 到 鼠 ,因 此 ,不 会 对 系 统 产 生不 良影响 。与此相 类似 的 ,如 果 采用变 频调 速技 术改变 泵类 、风机类设 备转 速来 控 制现 场压力 、温 度 、水位等其它过程控制参量 ,同样可以依据系统 控制特 性绘制 出关 系 曲线得 出上 述 的 比较 结果 。亦
变频器在风机中的应用

变频器在风机中的应用变频器是一种电子控制设备,可以将电源电压与频率转换成可控电源电压输出。
在风机的应用中,变频器可以改变电动机的转速,并控制风机的流量,使得风机在不同的工作状态下能够实现最佳效率。
一、变频器在节能方面的应用1.1 恒定流量控制传统风机在运行时通常采用阀门、叶片调节或变速装置的方式进行调整。
这种调节方式既能耗费大量电能,又易损坏风机,操作也不便捷。
而使用变频器能够实现恒定流量控制,可根据要求调整风机转速,以实现稳定的风量输出。
1.2 节省能源传统的风机调节方式需要消耗很多能源,而使用变频器可以降低电机启动时的电流冲击,减少电机的能量损失,从而达到节约能源的目的。
同时,变频器还能够根据实际负载调整风机的转速,以满足系统的需求。
二、变频器在风机中的应用2.1 变频器调速通过变频器控制风机转速可以满足不同风量需求的场景以及不同的运行状态要求。
在低负荷运行环境下,通过变频器调速可以减少风机的能量损失,实现节能。
2.2 风机起停控制在工业生产环境中,风机起停控制具有很高的要求。
变频器可以通过外部控制触发,实现风机的起停控制,并且由于变频器的反应速度较快,能够及时响应外部控制信号,保障风机的安全运行。
2.3 数字化化管理在现代化的风机管理中,变频器的应用可以使得风机运转更加稳定,同时还能够实现数字化智能管理。
根据实际运行状态调整变频器控制参数,可以提高风机的运行效率,延长风机的使用寿命,为企业带来更多的经济收益。
总结:变频器可以为风机提供更加稳定和高效的控制方式,带来更多的经济效益。
同时,变频器应用的数字化化管理也有助于让企业更加清晰地把握风机的使用状况,提供科学依据,为企业的运营管理带来更好的智能化服务。
变频器在水泵控制系统中的应用

变频器在水泵控制系统中的应用变频器在水泵控制系统中广泛应用,它可以实现对水泵的调速、运行控制和能量节省等功能。
以下是变频器在水泵控制系统中的主要应用:
1.调速功能:变频器可以根据实际需求,通过改变电机的频率和电压来调整水泵的运行速度。
这使得水泵能够根据不同的流量和压力要求灵活运行,满足系统的实际需求。
通过调速功能,可以避免水泵运行过程中的能耗浪费,提高能源利用效率。
2.软启动和平滑停机:变频器可以实现水泵的软启动和平滑停机,减少启停过程中的冲击和压力波动,延长设备的使用寿命。
软启动功能可以避免电网电压剧烈变化对设备的损害,平滑停机功能可以减少水击和管道震动。
3.压力控制和流量控制:通过变频器的控制,可以根据系统的需要对水泵的输出压力或流量进行精确控制。
变频器可以根据传感器反馈的压力或流量信号,自动调整电机的转速,使得水泵能够稳定运行在所需的工作点上,确保系统的稳定性和可靠性。
4.节能功能:由于变频器可以根据实际需求调整电机的转速,可以避免水泵在低负荷或过大负荷条件下运行,从而节省能源。
变频器的调速功能可以根据系统需求精确调整电机的转速,避免不必要的能耗。
5.故障保护和诊断:变频器具有故障保护和诊断功能,可以监测和检测水泵系统的运行状态。
一旦发生异常,如过流、过压、欠压等情况,变频器可以及时响应并采取相应的保护措施,防止设备受损。
综上所述,变频器在水泵控制系统中的应用可以实现水泵的调速、
软启动、平滑停机、压力控制、流量控制、节能功能以及故障保护和诊断等功能,提高系统的稳定性、可靠性和能源利用效率。
高压变频技术在风机节能中的应用

高压变频技术在风机节能中的应用摘要:高压变频技术在风机节能改造中的有效应用,能够大幅度提升风机设备的节电率,这对于缓解我国资源供应与资源需求之间的矛盾有着非常重要的作用。
基于此,下文将对高压变频技术在风机节能中的应用展开一系列的分析,希望能够有效促进我国社会经济的可持续发展。
关键词:高压变频技术;风机节能;应用1 高压变频节能的特点分析利用高压变频技术对风机转速进行控制的原理为实现电机输入频率的改变,而在改变的过程中并不会额外地消耗电机功率,能够促进电机综合效率的提高。
电机变频节能的主要特点包括以下几个方面:第一,电机综合效率比较高,且发热量与能耗都比较低;第二,具有无极调速的特点,具有较为广泛与精准的调速功能;第三,启动时所需的电流比较小,节能效果突出,同时也不会对所在的电网造成冲击;第四,不存在转差率损耗;第五,能够促进电机功能因数的提高,不需要在另外加装无功补偿装置;第六,具有较高的自动化水平,具有自动限流、限压、减速等功能,同时能够对故障、运行及报警情况进行记录,对系统的安全运行奠定了基础;第七,依据电量成本对电机转速进行智能化的调节。
随着电力建设的不断发展,电力供需矛盾不断激化,只有对风机的流量进行调节才能够更好地满足生产的需要,通过这种方式提高企业效益,降低企业能耗。
2 风机运行中应用节能技术的实际意义改革开放以来,我国在电力行业上越来越多的使用高压电机,它的使用总量达到电厂电机驱动设备的百分之八十左右,它们都是耗电巨大的设备,而发电企业的机组负荷又长期不是运行在最高峰,常在中高负荷下运行,这样就使得电能被大量浪费,如果不对它们进行相应的改造,那么这个极大的浪费就会一直存在。
调整电动机速度的方式是很多的,目前使用得最多的就是变频器调节电动机的速度,在技术上已经非常成熟了,大部分是用于低压电动机上。
近年来,电力电子技术的飞速发展让高压变频器技术也越来越成熟,被越来越多的应用到火电厂的节能改造上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器在风机、水泵中的节能应用
摘要:由风机、水泵类负载节能,来阐述变频器是控制风机、水泵实现节能最佳方式,对提高自动化程度,减少人为因素的影响进行较详细分析,通过实例计算来证明在理论上是正确的,虽然初期一次性投资比较大,但从长远上来看在经济上是值的。
关键词:风机;水泵;节能;功率因数;变频器
前言
风机、水泵作为工业和生活中的通用机械有应用量大、应用面广的特点,其配套电机量也是巨大的,有资料统计,风机、水泵的耗电量占全国总发电量的20%以上,由于容量和工艺原因,大多数的风机、水泵类负载存在着不同程度上的电能浪费,在提倡节约能源的今天,减少浪费,节能问题的研究也迫在眉睫,变频控制是目前最好方法。
1.风机、水泵负载节能原理
传统风机、水泵流量的设计均以最大需求来设计,其调整方式采用挡板、风门、回流、起停电机等方式控制,无法形成闭环回路控制,也较不考虑省电的观念,但实际使用中流量随着各种因素而变化,往往比最大流量小的多,要减少流量时,通常情况下只能调节档板和阀门的开度,阀门控制法的实质是通过改变管网阻力大小来改变流量,而这种控制方式当所需流量减小时,压力反而会增加,故轴功率的降低有限,此时,过剩的风机、水泵功率将导致压力增加造成很大的能量损耗。
由流体力学原理可知:流量与转速的一次方成正比,压力与转速的平方成正比,功率与转速的三次方成正比,如果水泵效率一定,当流量下降时转速成比例下降,而此时对轴输出功率p成立方关系下降;风机、水泵变频节能控制可在保持阀门、挡板开度不变的前提下,通过改变风机的转速来调节流量,其实质是通过减少流体动力来节电。
这种控制方式可从根本上消除风机、水泵设备,由于选型或负荷变化普遍存在的“大马拉小车”的动力浪费现象,消除了挡板截流阻力,使风机、水泵始终运行在最佳工作状态。
2.风机、水泵变频控制特点
2.1异步电动机原理n=60f/p(1-s),可知变频调速是风机、水泵调速最佳方法,风机、水泵电机直接启动或Y/D启动,启动电流为其额定电流的4~7倍;这样会对电机设备和供电电网造成严重的冲击,而且还会对电网容量要求过高,启动时产生的电流和震动时对挡板和阀门损害极大,对设备、管路的使用寿命极为不利。
2.2使用变频节能装置后,利用变频器的软启动功能将使启动电流从零开始,最大值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,延长了设备和阀门的使用寿命,改善设备运行状况、降低机械磨损及维修、维护人员费用支用。
2.3水泵变频使电机在起动、停止、运转过程中均无冲击电网电流,还可以最大限度地提高电动机功率因数和电机效率,减少无功损耗及补偿容量,减少电机的噪声、温升、震动和从电网吸收电能。
2.4无功功率不但增加线损和设备的发热,设备使用效率低下,浪费严重,由公式P=S×COSφ,可知COSφ越大有功功率P越大,普通水泵电机的功率因数在0.6~0.7之间,使用变频装置后,由于变频器内部滤波电容的作用,COSφ≈1,从而减少了无功损耗,增加了电网的有功功率。
2.5图1为水泵用阀门控制时,当流量要求从Q1减小到Q2,必须关小阀门,这时阀门的磨擦阻力变大,管路曲线从R移到R′,扬程则从Ha上升到Hb,运行工况点从a点移到b点。
2.6图2为调速控制时,当流量要求从Q1减小到Q2,由于阻力曲线R不变,泵的特性取决于转速,如果把速度从n降到n′,性能曲线由(Q-H)变为(Q-H)′,运行工况点则从a点移到c点,扬程从Ha下降到Hc。
2.7根据离心泵的特性曲线公式两者之差为:ΔN=Nb-Nc=R×Q2×(Hb-Hc)/102η,也就是说,用阀门控制流量时,有ΔN功率被损耗浪费掉了,且随着阀门不断关小,这个损耗还要增加,用转速控制时,原来消耗在阀门的功率就可以全避免,取得良好的节能效果。
3.水泵的工作点(流量、扬程、功率损耗)与转速的关系图表如下
(效率不变、转速变化曲线)
4.电机效率随转速变化举例
5.变频效率随转速变化举例
6.以5台空调二次泵(4用1备,每台水泵参数为1200T/H,48M)为例
7.采用变频控制装置运行费用
Total power consumption KWH6784.63
Totao power consumption per year KWH1221233
以上数据是按照一年运行6个月,每月30天,每天24小时
运行一年耗能:每年节省电:1941201-1221233=719968KWH节省百分比:719968/1941201=37%按每度电一元算,共节省719968元/年。
8.风机节能效果计算
8.1风机的调速节能效果计算比较简单,由于风机系统一般不存在反压,所以风机调速运行时消耗的电功率,可以直接用比例定律求得,注意使用工频运行电功率应为采用风门调节时风机实际消耗的电功率,而不是电动的额定电功率,而转速也应为中心调节频率(转速),而不是最低(频率)转速。
8.2根椐风门开度数据测算出准确的风量数据,才能准确算出节电率来,最准确的是根椐各种工况下的风量、风压和电动机电流数据进行计算;其次是根椐风机的特性曲线以及风门开度和电流数据进行计算,风门开度决定节电率,而电动机电流的大小则决定节电量,风门开度的准确性是致关重要的,其次就是风量的计算龙为关键,它对计算结果的影响可谓:“失之毫厘,差以千里”!所以,风量的计算一定要慎之又慎!
8.3例某电站锅炉为75t/h循环流化床锅炉,其送风机(一次风机)为离心式风机,设计余量较大,在满负荷时入口风门开度仅为70%(出口风门全开),每天运行时间为8h;80%负荷时风门开度为55%,每天运行进间为10h;60%负荷时风门开度为45%(低于44%开度时风压报警),每天运行时间为6h,试计算变频调速节能改造后的节能的效果。
注:风机采用变频器调速时,风门全开,全速运行时输出额定风压22000pa,根椐比例定律,为保证最低风压10000pa时的转速为额定转速的67.49%,为了留有风压余量,最低转速取额定转速的70%(1036r/min),变频器的最低输出频率为35HZ。
9.结论
理论计算结果和实际运行有一定差距,这是正常的,虽然变频调速在节能效果明显,但是宣传应实事求是,不能随意夸大节能效果,以免误导和欺骗用户。
参考文献:
[1] 符锡理.变频调速泵供水原理及实践,《变频器世界》,1999,N010.
[2] 陈运珍.变频器在水行业节能降耗中的巨大作用.变频技术应用,2006(1)
[3] 杜金城主编.电气变频调速设计技术.北京:中国电力出版社,2001.
[4] 张燕宾.电动机变频调速图解.中国电力出版社,2003.。