Linux内核详细介绍

合集下载

linux操作系统的组成

linux操作系统的组成

linux操作系统的组成1.内核(Kernel)Linux内核是整个Linux操作系统的核心,它负责管理系统资源,包括硬件、内存、进程、文件系统等。

内核提供了一系列系统调用,用户空间程序可以通过这些系统调用来访问内核提供的功能。

2.用户空间(User Space)用户空间是操作系统中除内核之外的部分。

用户空间包括Shell、图形界面、应用程序等。

用户空间通过系统调用来访问内核提供的功能。

用户空间和内核之间有一个保护机制,保证用户空间程序不能直接访问内核资源,只能通过系统调用。

3.ShellShell是Linux系统中的命令解释器,它充当了用户和内核之间的接口。

用户可以在Shell中输入命令,Shell解析命令并通过系统调用调用内核提供的功能。

Linux操作系统中常用的Shell有Bash、Zsh、Fish等。

4.文件系统(File System)Linux操作系统支持多种文件系统,包括Ext2、Ext3、Ext4、Btrfs、XFS等。

文件系统是管理文件和目录的机制,它负责在硬盘上分配空间,存储文件内容和元数据。

文件系统还提供了一些额外的功能,如权限管理、链接、快速查找等。

5.设备驱动程序(Device Driver)设备驱动程序是连接硬件设备和内核的桥梁,它转换设备的IO请求为内核能够理解的形式,并向内核提供设备的状态信息。

Linux操作系统支持多种设备驱动程序,包括字符设备驱动程序、块设备驱动程序、网络设备驱动程序等。

6.命令行工具(Command-Line Tool)Linux操作系统提供了丰富的命令行工具,可以轻松地完成各种任务。

常见的命令行工具有ls、cp、mv、mkdir、rm等,还有一些高级工具,如awk、sed、grep等。

7.图形界面(Graphical User Interface)Linux操作系统提供了多种图形界面,如GNOME、KDE、Xfce、LXDE等。

图形界面提供了一种更加友好的交互方式,用户可以通过鼠标点击、拖拽等方式完成操作,极大地提高了用户的工作效率。

Linux操作系统的内核设计分析

Linux操作系统的内核设计分析

Linux操作系统的内核设计分析Linux操作系统作为开源操作系统的代表,已经在各个领域得到了广泛应用。

而Linux操作系统的内核则是这个系统之所以能够运转的关键所在。

本文将就Linux操作系统的内核设计进行分析,并探讨其优劣之处。

一、Linux内核设计的基础Linux内核的设计基础主要包括以下几个方面:1. 开放源码Linux内核采用的是GPL协议,这意味着它是一个开放源码的项目。

这为世界各地的开发人员提供了极大的便利,方便他们进行开发和修改。

同时,这也确保了Linux内核的透明度,并且鼓励开发者贡献代码的同时,深度参与到Linux开源社区的构建和升级中。

2. 模块化Linux内核的构造采用的是模块化设计。

这种设计方式将内核代码分成独立的模块,每个模块都可以独立编译、加载和卸载。

采用模块化的设计,能够使得开发人员能够更加细致地打包、编译、并部署只包含他们需要的模块的系统。

3. 多任务Linux内核是一个基于多任务设计的系统。

这意味着它能够使得多个程序同时运行,并能够平滑高效地进行任务的切换。

这给开发人员提供了各种各样的自由,使得他们能够更加高效地进行开发。

4. 支持众多处理器架构Linux内核的支持范围非常广泛,它可以适配众多处理器架构。

这意味着一个制造商可以使用不同的处理器架构去生产设备,并且这些设备都能够安装和运行Linux操作系统。

5. 外层调用接口Linux内核支持开放式的外层调用接口。

这使得用户层可以很容易地调用Linux 内核执行某个任务。

这些用户层应用包括网上购物网站、应用程序和各种驱动程序。

6. 子系统Linux内核的子系统主要包括进程管理、内存管理、I/O管理和网络管理等。

二、Linux内核的优点Linux内核具有以下主要优点:1. 开源性Linux内核本身是一个开源的、由社区驱动的项目。

这意味着在它的附加组件和周边产品中,广大的开发者社区都可以为用户提供帮助和支持。

2. 安全性相比其他闭源操作系统,Linux内核在安全性方面更具优势。

linux操作系统的结构及详细说明

linux操作系统的结构及详细说明

linux操作系统的结构及详细说明linux的操作系统的结构你了解多少呢?下面由店铺为大家整理了linux操作系统的结构及详细说明的相关知识,希望对大家有帮助!linux操作系统的结构及详细说明:一、 linux内核内核是操作系统的核心,具有很多最基本功能,它负责管理系统的进程、内存、设备驱动程序、文件和网络系统,决定着系统的性能和稳定性。

Linux 内核由如下几部分组成:内存管理、进程管理、设备驱动程序、文件系统和网络管理等。

系统调用接口:SCI 层提供了某些机制执行从用户空间到内核的函数调用。

这个接口依赖于体系结构,甚至在相同的处理器家族内也是如此。

SCI 实际上是一个非常有用的函数调用多路复用和多路分解服务。

在 ./linux/kernel 中您可以找到 SCI 的实现,并在 ./linux/arch 中找到依赖于体系结构的部分。

1. 内存管理对任何一台计算机而言,其内存以及其它资源都是有限的。

为了让有限的物理内存满足应用程序对内存的大需求量,Linux 采用了称为“虚拟内存”的内存管理方式。

Linux 将内存划分为容易处理的“内存页”(对于大部分体系结构来说都是 4KB)。

Linux 包括了管理可用内存的方式,以及物理和虚拟映射所使用的硬件机制。

不过内存管理要管理的可不止 4KB 缓冲区。

Linux 提供了对 4KB 缓冲区的抽象,例如 slab 分配器。

这种内存管理模式使用 4KB 缓冲区为基数,然后从中分配结构,并跟踪内存页使用情况,比如哪些内存页是满的,哪些页面没有完全使用,哪些页面为空。

这样就允许该模式根据系统需要来动态调整内存使用。

为了支持多个用户使用内存,有时会出现可用内存被消耗光的情况。

由于这个原因,页面可以移出内存并放入磁盘中。

这个过程称为交换,因为页面会被从内存交换到硬盘上。

内存管理的源代码可以在 ./linux/mm 中找到。

2 .进程管理进程实际是某特定应用程序的一个运行实体。

linux内核及版本介绍

linux内核及版本介绍

linux的版本分为两类:内核版本和发行版本。

内核版本是指linux的传世人linus领导的开发小组所开发的操作系统内核的版本号,如2.4.20.通常在内核版本号之后还会附加一个数字,如2.4.20-8,最后的数字用来表示该版本内核是第几次被修订的。

linux的内核版本号是由3部分组成:主版本号,次版本号,次次版本号。

如内核版本2.4.20,2是主版本号,4是次版本号,20是次次版本号。

当内核有重大改动时,主版本号会加1;当内核只是小改动,如加入一些新的特性,支持更多的硬件,次版本号会加1;次次版本号的增加只表示内核有轻微的改动,对内核的影响很小。

次版本号为奇数表示该版本是测试版,可能不是很稳定,若为偶数则表示是个稳定版本,普通用户可以放心使用。

如2.4、2.6是稳定版本,而2.5、2.7是开发中的测试版本。

内核只是实现了操作系统最关键的部分,只有在此基础上提供用户界面,增加一些应用软件,一般用户才能方便使用它。

一些公司或组织将linux内核和常用的应用软件包装起来,并提供安装界面和管理工具,这样就形成了linux的发行版本。

发行本版本经过了严格的测试,而且还加入了一些常用的应用软件(如字处理软件、播放器)和开发工具(如gcc、gdb)。

linux系统结构框架

linux系统结构框架

linux系统结构框架
Linux系统一般有4个主要部分:内核、shell、文件系统和应用程序。

内核、shell和文件系统一起形成了基本的操作系统结构,它们使得用户可以运行程序、管理文件并使用系统。

1.内核:内核是操作系统的核心,具有很多最基本功能,它负责管理系统的进程、内存、设备驱动程序、文件和网络系统,决定着系统的性能和稳定性。

Linux 内核由如下几部分组成:内存管理、进程管理、设备驱动程序、文件系统和网络管理等。

2.Shell:shell是命令行解释器,可以为用户提供对系统的访问,也可以被用作程序或者脚本的命令行环境。

有多种shell可以选择,比如bash,zsh,ksh等。

3.文件系统:Linux系统使用一个基于文件的层级结构来组织和存储系统资源。

每个文件和目录都从根目录“/”开始,然后层层嵌套。

4.应用程序:Linux系统上可以运行各种应用程序,包括文本编辑器、浏览器、开发工具等。

应用程序为用户提供了使用系统的接口。

在更细致的层次结构上,Linux系统的内存管理分为几个主要组件,包括物理内存管理、虚拟内存管理以及内核内存管理等。

物理内存管理负责物理内存的分配和回收,虚拟内存管理则将物理内存映射到虚拟地址空间,并实现内存的共享和保护。

内核内存管理则负责内核空间的分配和释放,以及内核页面的交换等。

linux内核命名规则

linux内核命名规则

linux内核命名规则Linux内核是开源操作系统Linux的核心组件,负责管理计算机的硬件资源,并提供了许多系统调用和服务,以及各种设备驱动程序。

内核的命名规则是指在每个内核版本发布时,都会有一个特定的名称与之对应。

本文将介绍Linux内核命名规则及其背后的故事。

Linux内核的命名规则遵循一定的模式,通常由两个或三个部分组成:主版本号、次版本号和修订版本号。

例如,Linux内核的一个版本号可以是5.4.3,其中5是主版本号,4是次版本号,3是修订版本号。

这个命名规则的目的是为了方便用户识别和区分不同的内核版本。

内核的主版本号通常只在有重大变化或突破性的更新时才会增加,而次版本号则表示一些较小的功能性改进和更新。

修订版本号则用于修复一些bug和安全漏洞,并提供性能优化。

通过这种命名规则,用户可以根据版本号来判断内核的新旧程度和功能改进情况。

除了版本号之外,Linux内核的命名还有一个独特的特点,即每个版本都有一个与之对应的代号。

这些代号通常是由内核的主要开发者之一——林纳斯·托瓦兹(Linus Torvalds)来命名的。

这些代号通常是以字母顺序排列的,例如2.6.17版本的代号是“骑士”(Knight),2.6.24版本的代号是“爱莎”(Elvira)。

这些代号的选择并没有特定的规则,通常是林纳斯根据自己的喜好和兴趣来决定的。

有时,这些代号可能与一些有趣的事物或人物相关联,例如2.6.20版本的代号是“怀旧”(Valhalla),是因为林纳斯喜欢玩一款名为“怀旧”(Valhalla)的电子游戏。

而有些代号则是纯粹的幽默和调侃,例如2.6.29版本的代号是“凯特琳”(Kitten),是为了取悦他的女儿。

除了版本号和代号之外,Linux内核的命名还有一些特殊的规则和限制。

首先,每个代号只能在一个版本中使用一次,以确保每个版本的代号都是独一无二的。

其次,代号必须是以字母开头的英文单词,以避免与数字或其他特殊字符产生冲突。

linux操作系统的基本原理

linux操作系统的基本原理

linux操作系统的基本原理
Linux操作系统是一种开源的自由操作系统,其基本原理包括以下几个方面:
1. 内核:Linux操作系统的核心是内核,它是操作系统的核心模块,控制着系统的所有硬件和软件资源。

内核具有多任务处理、进程管理、文件系统管理、设备管理、内存管理等功能。

2. 虚拟文件系统:Linux操作系统使用虚拟文件系统(VFS)作为文件系统的框架。

VFS为所有文件系统提供了一个通用的接口,使得文件系统可以互相转换。

3. Shell:Linux操作系统使用的命令行接口被称为Shell。

Shell是用户与内核交互的一种方式,用户可以通过Shell来执行命令、管理文件、创建进程等。

4. 程序库:Linux操作系统提供了一系列的程序库,如C库、X库等,这些程序库提供了一些基本的函数和工具,方便程序员开发应用程序。

5. 系统调用:Linux操作系统提供了大量的系统调用,它们是用户程序和内核之间的接口。

用户程序可以通过系统调用来访问内核提供的各种服务,如读写文件、创建进程、网络通信等。

Linux操作系统的基本原理为开发者和用户提供了一个稳定、高效、灵活的操作系统。

它的开源特性使得用户可以自由地修改和定制操作系统,满足不同需求。

- 1 -。

linux内核简介.ppt

linux内核简介.ppt
API和系统调用完全不同:
–API只是一个函数定义 –系统调用通过“软中断”向内核发出一个明确
的请求
2020年2月10日
东华大学计算机科学与技术学院 by XinLuo
10
系统调用图解 用户态
内核态
系统调用 1
系统调用 返回
2
trap 0
2020年2月10日
东华大学计算机科学与技术学院 by XinLuo
中断的概念,终端 控制台设备驱动
Shell程序分析输入参 数,确定这是ls命令
什么是shell?
终端解释程序
什么是系统调用?
内核态用户态相关问 题,内存保护
调用系统调用fork生成 一个shell本身的拷贝
调用exec系统调用将ls 的可执行文件装入内存
从系统调用返回
Shell和ls都得以执行
系统调用是怎 么实现的?
3
Linux 基本概念
• 系统调用 • 内存管理 • 进程管理 • 虚拟文件系统(VFS) • 信号机制 • 内核初始化过程
2020年2月10日
东华大学计算机科学与技术学院 by XinLuo
4
➢ 提纲
• 用户态和内核态 • 系统调用意义 • 系统调用方法
2020年2月10日
东华大学计算机科学与技术学院 by XinLuo
Memory manager Signal 。。。
File systems Process management Device drivers Net work
Kernel interface to the hardware
Terminal controllers Terminals
Device controllers Memory controllers
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Linux内核详细介绍现如今,电脑的使用越来越普遍,几乎每家每户都有电脑,而电脑的操作离不开操作系统,在这里,小编就向大家介绍Linux 内核。

很多Linux 爱好者对内核很感兴趣却无从下手,本文旨在介绍一种解读Linux内核源码的入门方法,而不是讲解Linux复杂的内核机制。

1.核心源程序的文件组织(1)Linux核心源程序通常都安装在/usr/src/Linux下,而且它有一个非常简单的编号约定:任何偶数的核心(中间数字)如:2.0.30都是一个稳定的发行的核心,而任何奇数的核心如:2.1.42都是一个开发中的核心。

本文基于稳定的2.2.5源代码,第二部分的实现平台为Redhat Linux 6.0。

(2)核心源程序的文件按树形结构进行组织,在源程序树的最上层你会看到这样一些目录:arch:arch子目录包括了所有和体系结构相关的核心代码。

它的每一个子目录都代表一种支持的体系结构,例如i386就是关于Intel CPU及与之相兼容体系结构的子目录。

PC机一般都基于此目录;include:include子目录包括编译核心所需要的大部分头文件。

与平台无关的头文件在include/linux子目录下,与Intel CPU 相关的头文件在include/asm-i386子目录下,而include/scsi目录则是有关SCSI设备的头文件目录;init:这个目录包含核心的初始化代码(注:不是系统的引导代码),包含两个文件main.c和Version.c,这是研究核心如何工作的一个非常好的起点;Mm:这个目录包括所有独立于CPU 体系结构的内存管理代码,如页式存储管理内存的分配和释放等,而和体系结构相关的内存管理代码则位于arch/*/mm/,例如arch/i386/mm/Fault.c;Kernel:主要的核心代码,此目录下的文件实现了大多数Linux系统的内核函数,其中最重要的文件当属sched.c,同样,和体系结构相关的代码在arch/*/kernel中;Drivers:放置系统所有的设备驱动程序;每种驱动程序又各占用一个子目录,如/block下为块设备驱动程序,比如ide(ide.c)。

如果你希望查看所有可能包含文件系统的设备是如何初始化的,你可以看drivers/block/genhd.c中的device_setup()函数。

它不仅初始化硬盘,也初始化网络,因为安装nfs文件系统的时候需要使用网络。

其他目录如Lib:放置核心的库代码;Net:核心与网络相关的代码;Ipc:包含核心的进程间通信的代码;Fs:所有的文件系统代码和各种类型的文件操作代码,它的每一个子目录支持一个文件系统,例如fat和ext2、Scripts,此目录包含用于配置核心的脚本文件等。

一般在每个目录下都有一个.depend 文件和一个Makefile 文件,这两个文件都是编译时使用的辅助文件,仔细阅读这两个文件对弄清各个文件之间的联系和依托关系很有帮助,而且在有的目录下还有Readme 文件,它是对该目录下的文件的一些说明,同样有利于我们对内核源码的理解。

2.解读实战:为你的内核增加一个系统调用虽然Linux 的内核源码用树形结构组织得非常合理、科学,把与功能相关联的文件都放在同一个子目录下,这样使得程序更具可读性。

然而,Linux 的内核源码实在是太大而且非常复杂,即便采用了很合理的文件组织方法,在不同目录下的文件之间还是有很多的关联,分析核心的一部分代码通常要查看其他的几个相关的文件,而且可能这些文件还不在同一个子目录下。

下面举一个具体的内核分析实例,希望能通过这个实例,使读者对Linux 的内核组织有些具体的认识,读者从中也可以学到一些对内核的分析方法。

以下即为分析实例:(1)操作平台硬件:CPU Intel Pentium II;软件:Redhat Linux 6.0,内核版本2.2.5(2)相关内核源代码分析①系统的引导和初始化:Linux 系统的引导有好几种方式,常见的有Lilo、Loadin引导和Linux的自举引导(bootsect-loader),而后者所对应源程序为arch/i386/boot/bootsect.S,它为实模式的汇编程序,限于篇幅在此不做分析。

无论是哪种引导方式,最后都要跳转到arch/i386/Kernel/setup.S。

setup.S主要是进行实模式下的初始化,为系统进入保护模式做准备。

此后,系统执行arch/i386/kernel/head.S (对经压缩后存放的内核要先执行arch/i386/boot/compressed/head.S);head.S 中定义的一段汇编程序setup_idt,它负责建立一张256项的idt表(Interrupt Descriptor T able),此表保存着所有自陷和中断的入口地址,其中包括系统调用总控程序system_call 的入口地址。

当然,除此之外,head.S还要做一些其他的初始化工作。

②系统初始化后运行的第一个内核程序asmlinkage void __init start_kernel(void) 定义在/usr/src/linux/init/main.c中,它通过调用usr/src/linux/arch/i386/kernel/traps.c 中的一个函数void __init trap_init(void) 把各个自陷和中断服务程序的入口地址设置到idt表中,其中系统调用总控程序system_cal就是中断服务程序之一;void __init trap_init(void)函数则通过调用一个宏set_system_gate(SYSCALL_VECTOR,&system_call),把系统调用总控程序的入口挂在中断0x80上。

其中SYSCALL_VECTR是定义在/usr/src/linux/arch/i386/kernel/irq.h中的一个常量0x80,而system_call 即为中断总控程序的入口地址,中断总控程序用汇编语言定义在/usr/src/linux/arch/i386/kernel/entry.S中。

③中断总控程序主要负责保存处理机执行系统调用前的状态,检验当前调用是否合法,并根据系统调用向量,使处理机跳转到保存在sys_call_table 表中的相应系统服务例程的入口,从系统服务例程返回后恢复处理机状态退回用户程序。

而系统调用向量则定义在/usr/src/linux/include/asm-386/unistd.h 中,sys_call_table 表定义在/usr/src/linux/arch/i386/kernel/entry.S 中,同时在/usr/src/linux/include/asm-386/unistd.h 中也定义了系统调用的用户编程接口。

④由此可见,Linux的系统调用也像DOS系统的int 21h 中断服务,大把0x80中断作为总的入口,然后转到保存在sys_call_table表中的各种中断服务例程的入口地址,提供各种不同的中断服务。

提供上源代码分析可知,要增加一个系统调用就必须在sys_call_table表中增加一项,并在其中保存好自己的系统服务例程的入口地址,然后重新编译内核,当然,系统服务例程是必不可少的。

由此可知,在此版Linux内核源程序<2.2.5>中,与系统调用相关的源程序文件就包括以下这些:* arch/i386/boot/bootsect.S* rch/i386/Kernel/setup.S* rch/i386/boot/compressed/head.S* rch/i386/kernel/head.S* nit/main.c* rch/i386/kernel/traps.c* rch/i386/kernel/entry.S* rch/i386/kernel/irq.h* nclude/asm-386/unistd.h当然,这只是涉及到的几个主要文件。

而事实上,增加系统调用真正要修改的文件只有include/asm-386/unistd.h 和arch/i386/kernel/entry.S两个。

(3)源码的修改①kernel/sys.c中增加系统服务例程如下:asmlinkage int sys_addtotal(int numdata){ int i=0,enddata=0;while(i<=numdata)enddata+=i++;return enddata; }该函数有一个int 型入口参数numdata ,并返回从0 到numdata 的累加值,然而也可以把系统服务例程放在一个自己定义的文件或其他文件中,只是要在相应文件中作必要的说明。

②把smlinkage int sys_addtotal( int) 的入口地址加到sys_call_table表中。

arch/i386/kernel/entry.S 中的最后几行源代码修改前为:.long SYMBOL_NAME(sys_sendfile).long SYMBOL_NAME(sys_ni_syscall) /* streams1 */.long SYMBOL_NAME(sys_ni_syscall) /* streams2 */.long SYMBOL_NAME(sys_vfork) /* 190 */.rept NR_syscalls-190.long SYMBOL_NAME(sys_ni_syscall).endr修改后为:.long SYMBOL_NAME(sys_sendfile).long SYMBOL_NAME(sys_ni_syscall) /* streams1 */ .long SYMBOL_NAME(sys_ni_syscall) /* streams2 */ .long SYMBOL_NAME(sys_vfork) /* 190 *//* add by I */.long SYMBOL_NAME(sys_addtotal).rept NR_syscalls-191.long SYMBOL_NAME(sys_ni_syscall).endr③把增加的sys_call_table 表项所对应的向量,在include/asm-386/unistd.h 中进行必要申明,以供用户进程和其他系统进程查询或调用。

增加后的部分/usr/src/linux/include/asm-386/unistd.h 文件如下:#define __NR_sendfile 187#define __NR_getpmsg 188#define __NR_putpmsg 189#define __NR_vfork 190/* add by I */#define __NR_addtotal 191④测试程序(test.c)如下:#include#include_syscall1(int,addtotal,int,num)main(){ int i,j;doprintf(\"Please input a numbern\"); while(scanf(\"%d\",&i)==EOF); if((j=addtotal(i))==-1)printf(\"Error occurred in syscall-addtotal(),n\");printf(\"Total from 0 to %d is %d n\",i,j); }对修改后的新的内核进行编译,并引导它作为新的操作系统,运行几个程序后可以发现一切正常;在新的系统下对测试程序进行编译(注:由于原内核并未提供此系统调用,所以只有在编译后的新内核下,此测试程序才可能被编译通过),运行情况如下:$gcc .test test.c$./testPlease input a number36Total from 0 to 36 is 666修改成功后对相关源码进一步分析可知,在此版本的内核中,从/usr/src/linux/arch/i386/kernel/entry.S 文件中对sys_call_table 表的设置可以看出,有好几个系统调用的服务例程都是定义在/usr/src/linux/kernel/sys.c 中的同一个函数:asmlinkage int sys_ni_syscall(void){ return -ENOSYS; }例如第188项和第189项就是如此:.long SYMBOL_NAME(sys_sendfile).long SYMBOL_NAME(sys_ni_syscall) /* streams1 */.long SYMBOL_NAME(sys_ni_syscall) /* streams2 */.long SYMBOL_NAME(sys_vfork) /* 190 */而这两项在文件/usr/src/linux/include/asm-386/unistd.h 中却申明如下:#define __NR_sendfile 187#define __NR_getpmsg 188 /* some people actually want streams */#define __NR_putpmsg 189 /* some people actually want streams */#define __NR_vfork 190由此可见,在此版本的内核源代码中,由于asmlinkage int sys_ni_syscall(void) 函数并不进行任何操作,所以包括getpmsg,putpmsg 在内的好几个系统调用都是不进行任何操作的,即有待扩充的空调用;但它们却仍然占用着sys_call_table表项,估计这是设计者们为了方便扩充系统调用而安排的,所以只需增加相应服务例程(如增加服务例程getmsg或putpmsg),就可以达到增加系统调用的作用。

相关文档
最新文档