材料力学习题课(第1第3章)
材料力学(金忠谋)第六版课后习题及答案

解
(1) ∆l1
=
1 3
Ρxl1
Ε 1Α1
∆l1 = ∆l2 x = 0.6m
∆l 2
=
1 3
Ρ (3 − x)l2
Ε 2Α2
(2) Ρ ≤ 3Ε1Α1 = 3× 200 × 2 ×10−1 = 200ΚΝ
xl1
0.6× 2
2-11 铰接的正方形结构如图所示,各杆材料皆为铸铁,许用拉应力[σ +]=400kg/cm2, 许用压应力[σ − ]=600kg/cm2,各杆的截面积均等于25cm2。试求结构的许用载荷P。
习题
2-1 一木柱受力如图示,柱的横截面为边长20cm的正方形,材料服从虎克定律,其
弹性模量 E = 0.10 ×105 MPa.如不计柱自重,试求:
(1) (2) (3) (4)
作轴力图; 各段柱横截面上的应力; 各段柱的纵向线应变; 柱的总变形.
解:
(1) 轴力图
(2) AC 段应力
σ
=
−100 ×103 0.2 2
= −2.5×106 Ρa = −2.5ΜΡa
CB 段应力
σ
=
− 260 ×103 0.2 2
= −6.5×106 Ρa = −6.5ΜΡa
(3) AC 段线应变
ε = σ = −2.5 = −2.5×10−4 Ε 0.1×105 CB 段线应变
ε
=σ Ε
=
−6.5 0.1×10 5
解:
AC、CB、BD、DA 杆受拉力,大小为 Τ1 =
Ρ 2
DC 杆受压力,大小为 Τ2 = Ρ
[σ
+
]≥
Τ1 Α
得 Ρ1 ≤ 2 × 400 × 25 = 14142kg
第四版单辉祖材料力学课后答案

第四版单辉祖材料力学课后答案引言《材料力学》是材料科学与工程专业的一门基础课程,主要介绍了材料的力学性质和力学行为。
本文以《材料力学》第四版的单辉祖所编写的课后习题为题,给出了相应的答案。
通过对这些习题的解答,帮助学生巩固课堂所学的知识,并提供了一些解题思路和方法。
目录•第一章引言•第二章物质的内部力和应力•第三章弹性和塑性力学基础第一章引言1. 什么是材料力学?答案:材料力学是研究物质响应外力作用下的变形和破坏行为的科学。
2. 材料力学的主要内容有哪些?答案:材料力学的主要内容包括静力学、动力学、弹性力学、塑性力学、断裂力学等。
第二章物质的内部力和应力1. 什么是内力?答案:内力是物质内部分子间相互作用所产生的力。
2. 什么是应力?答案:应力是单位面积上的力,表示为单位面积上的力的矢量。
3. 应力的分类有哪些?答案:应力可分为法向应力和切应力两种,法向应力垂直于截面,切应力与截面垂直。
4. 弹性应力-应变关系有哪些?答案:弹性应力-应变关系有胡克定律,即应力与应变成正比。
第三章弹性和塑性力学基础1. 弹性和塑性的区别是什么?答案:弹性是指物体在受到外力作用下发生变形后,外力去除后恢复原状的能力;塑性是指物体在受到外力作用下发生变形后,即使外力去除,物体也不能恢复原状。
2. 什么是弹性模量?答案:弹性模量是描述物质抵抗压缩和拉伸变形能力的指标,表示为物质单位应力与应变的比值。
3. 什么是屈服强度?答案:屈服强度是材料在拉伸过程中,在产生明显塑性变形或显著应力减小时的应力值。
4. 什么是塑性应变?答案:塑性应变是指材料在超过屈服点后产生的应变。
结论本文为《材料力学》第四版单辉祖所编写的课后习题的答案,涵盖了材料力学的部分基础知识。
通过对这些习题的解答,希望能够帮助学生深入理解材料力学的概念和原理,并提供一些解题思路和方法。
通过不断练习,学生能够对材料力学有更深入和全面的认识,为日后的学习和研究打下坚实的基础。
材料力学第四版课后习题答案

材料力学第四版课后习题答案1. 引言。
材料力学是材料科学与工程中的重要基础课程,通过学习材料力学,可以帮助我们更好地理解材料的性能和行为。
本文档将针对材料力学第四版的课后习题进行答案解析,帮助学习者更好地掌握课程内容。
2. 第一章。
2.1 课后习题1。
答,根据受力分析,可以得到杆件的受力情况。
然后利用杆件的受力平衡条件,可以得到杆件的应力状态。
最后,根据应力状态计算应变和变形。
2.2 课后习题2。
答,利用受力分析,可以得到杆件的受力情况。
然后利用杆件的受力平衡条件,可以得到杆件的应力状态。
最后,根据应力状态计算应变和变形。
3. 第二章。
3.1 课后习题1。
答,利用受力分析,可以得到梁的受力情况。
然后利用梁的受力平衡条件,可以得到梁的应力状态。
最后,根据应力状态计算应变和变形。
3.2 课后习题2。
答,利用受力分析,可以得到梁的受力情况。
然后利用梁的受力平衡条件,可以得到梁的应力状态。
最后,根据应力状态计算应变和变形。
4. 第三章。
4.1 课后习题1。
答,利用受力分析,可以得到薄壁压力容器的受力情况。
然后利用薄壁压力容器的受力平衡条件,可以得到薄壁压力容器的应力状态。
最后,根据应力状态计算应变和变形。
4.2 课后习题2。
答,利用受力分析,可以得到薄壁压力容器的受力情况。
然后利用薄壁压力容器的受力平衡条件,可以得到薄壁压力容器的应力状态。
最后,根据应力状态计算应变和变形。
5. 结论。
通过对材料力学第四版课后习题的答案解析,我们可以更好地掌握材料力学的基本原理和方法。
希望本文档能够对学习者有所帮助,促进大家对材料力学的深入理解和应用。
《材料力学》第1章知识点+课后思考题

第一章绪论第一节材料力学的任务与研究对象一、材料力学的任务1.研究构件的强度、刚度和稳定度载荷:物体所受的主动外力约束力:物体所受的被动外力强度:指构件抵抗破坏的能力刚度:指构件抵抗变形的能力稳定性:指构件保持其原有平衡状态的能力2.研究材料的力学性能二、材料力学的研究对象根据几何形状以及各个方向上尺寸的差异,弹性体大致可以分为杆、板、壳、体四大类。
1.杆:一个方向的尺寸远大于其他两个方向的尺寸的弹性体。
轴线:杆的各截面形心的连线称为杆的轴线;轴线为直线的杆称为直杆;轴线为曲线的杆称为曲杆。
按各截面面积相等与否,杆又分为等截面杆和变截面杆。
2.板:一个方向的尺寸远小于其他两个方向的尺寸,且各处曲率均为零,这种弹性体称为板3.壳:一个方向的尺寸远小于其他两个方向的尺寸,且至少有一个方向的曲率不为零,这种弹性体称为板4.体:三个方向上具有相同量级的尺寸,这种弹性体称为体。
第二节变形固体的基本假设一、变形固体的变形1.变形固体:材料力学研究的构件在外力作用下会产生变形,制造构件的材料称为变形固体。
(所谓变形,是指在外力作用下构建几何形状和尺寸的改变。
)2.变形弹性变形:作用在变形固体上的外力去掉后可以消失的变形。
塑性变形:作用在变形固体上的外力去掉后不可以消失的变形。
又称残余变形。
二、基本假设材料力学在研究变形固体时,为了建立简化模型,忽略了对研究主体影响不大的次要原因,保留了主体的基本性质,对变形固体做出几个假设:连续均匀性假设认为物体在其整个体积内毫无间隙地充满物质,各点处的力学性质是完全相同的。
各向同性假设任何物体沿各个方向的力学性质是相同的小变形假设认为研究的构件几何形状和尺寸的该变量与原始尺寸相比是非常小的。
第三节 构件的外力与杆件变形的基本形式一、构件的外力及其分类1.按照外力在构件表面的分布情况:度,可将其简化为一点分布范围远小于杆的长集中力:一范围的力连续分布在构件表面某分布力: 二、杆件变形的基本形式杆件在各种不同的外力作用方式下将发生各种各样的变形,但基本变形有四种:轴向拉伸或压缩、剪切、扭转和弯曲。
材料力学习题册参考答案

材料力学习题册参考答案材料力学习题册参考答案(无计算题)第1章:轴向拉伸与压缩一:1(ABE )2(ABD )3(DE )4(AEB )5(C )6(CE)7(ABD )8(C )9(BD )10(ADE )11(ACE )12(D )13(CE )14(D )15(AB)16(BE )17(D )二:1对2错3错4错5对6对7错8错9错10错11错12错13对14错15错三:1:钢铸铁 2:比例极限p σ 弹性极限e σ 屈服极限s σ 强度极限b σ3.横截面 45度斜截面4. εσE =, EAFl l =5.强度,刚度,稳定性;6.轴向拉伸(或压缩);7. llb b ?μ?=8. 1MPa=106 N/m 2 =1012 N/mm 2 9. 抵抗伸缩弹性变形,加载方式 10. 正正、剪 11.极限应力 12. >5% <5% 13. 破坏s σ b σ 14.强度校核截面设计荷载设计15. 线弹性变形弹性变形 16.拉应力 45度 17.无明显屈服阶段的塑性材料力学性能参考答案:1. A 2. C 3. C 4. C 5. C 6. 5d ; 10d 7. 弹塑8. s2s 9. 0.1 10. 压缩11. b 0.4σ 12. <;< 剪切挤压答案:一:1.(C ),2.(B ),3.(A ),二:1. 2bh db 2. b(d+a) bc 3. 4a δ a 2 4. F第2章:扭转一:1.(B ) 2.(C D ) 3.(C D ) 4. (C ) 5. (A E ) 6. (A )7. (D )8. (B D ) 9.(C ) 10. (B ) 11.(D ) 12.(C )13.(B )14.(A ) 15.(A E )二:1错 2对 3对 4错 5错 6 对三:1. 垂直 2. 扭矩剪应力 3.最外缘为零4. p ττ< 抗扭刚度材料抵抗扭转变形的能力5. 不变不变增大一倍6. 1.5879τ7.实心空心圆8. 3241)(α- 9. m ax m in αττ= 10. 长边的中点中心角点 11.形成回路(剪力流)第3章:平面图形的几何性质一:1.(C ),2.(A ),3.(C ),4.(C ),5.(A ),6.(C ),7.(C ),8.(A ),9.(D )二:1). 1;无穷多;2)4)4/5(a ; 3),84p R I π=p 4z y I 16R I I ===π4)12/312bh I I z z ==;5))/(/H 6bh 6BH W 32z -= 6)12/)(2211h b bh I I I I z y z y +=+=+;7)各分部图形对同一轴静矩8)两轴交点的极惯性矩;9)距形心最近的;10)惯性主轴;11)图形对其惯性积为零三:1:64/πd 114; 2.(0 , 14.09cm )(a 22,a 62)3: 4447.9cm 4, 4:0.00686d 4 ,5: 77500 mm 4 ;6: 64640039.110 23.410C C C C y y z z I I mm I I mm ==?==?第4章:弯曲内力一:1.(A B )2.(D )3.(B )4.(A B E )5.(A B D )6.(ACE ) 7.(ABDE ) 8.(ABE )9. (D ) 10. (D ) 11.(ACBE ) 12.(D ) 13.(ABCDE )二:1错 2错 3错 4对 5错 6对 7对三:1. 以弯曲变形 2.集中力 3. KNm 2512M .max =4. m KN 2q = 向下 KN 9P = 向上5.中性轴6.荷载支撑力7. 小8. 悬臂简支外伸9. 零第5章:弯曲应力一:1(ABD)2.(C )3.(BE )4.(A )5.(C )6.(C )7.(B )8.(C )9.(BC )二:1对 2错 3错 4 对 5 错 6错 7 对三:1.满足强度要求更经济、更省料2. 变成曲面,既不伸长也不缩短3.中性轴4.形心主轴5.最大正应力6.剪力方向7.相等8.平面弯曲发生在最大弯矩处9.平面弯曲第6章:弯曲变形一:1(B ),2(B ),3(A ),4(D ),5(C ),6(A ),7(C ),8(B ),9(A )10(B ),11(A )二:1对2错3错4错5错6对7错8错9错10对11错12对三:1.(转角小量:θθtan ≈)(未考虑高阶小量对曲率的影响)2. 挠曲线采用近似微分方程导致的。
材料力学性能-第2版课后习题答案

第一章 单向静拉伸力学性能1、 解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面.6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶.8。
河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂.沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂.11。
韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。
弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等2、 说明下列力学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
材料力学性能课后习题(1)

材料⼒学性能课后习题(1)材料⼒学性能课后习题第⼀章1.解释下列名词①滞弹性:⾦属材料在弹性范围内快速加载或卸载后,随时间延长产⽣附加弹性应变的现象称为滞弹性,也就是应变落后于应⼒的现象。
②弹性⽐功:⾦属材料吸收弹性变形功的能⼒,⼀般⽤⾦属开始塑性变形前单位体积吸收的最⼤弹性变形功表⽰。
③循环韧性:⾦属材料在交变载荷下吸收不可逆变形功的能⼒称为循环韧性。
④包申格效应:⾦属材料经过预先加载产⽣少量塑性变形,卸载后再同向加载,规定残余伸长应⼒增加;反向加载,规定残余伸长应⼒降低的现象。
⑤塑性:⾦属材料断裂前发⽣不可逆永久(塑性)变形的能⼒。
⑥韧性:指⾦属材料断裂前吸收塑性变形功和断裂功的能⼒。
⑦加⼯硬化:⾦属材料在再结晶温度以下塑性变形时,由于晶粒发⽣滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,使⾦属的强度和硬度升⾼,塑性和韧性降低的现象。
⑧解理断裂:解理断裂是在正应⼒达到⼀定的数值后沿⼀定的晶体学平⾯产⽣的晶体学断裂。
2.解释下列⼒学性能指标的意义(1)E( 弹性模量);(2)ζp(规定⾮⽐例伸长应⼒)、ζe(弹性极限)、ζs(屈服强度)、ζ0.2(规定残余伸长率为0.2%的应⼒);(3)ζb(抗拉强度);(4)n(加⼯硬化指数);(5)δ(断后伸长率)、ψ(断⾯收缩率)3.⾦属的弹性模量取决于什么?为什么说他是⼀个对结构不敏感的⼒学性能?取决于⾦属原⼦本性和晶格类型。
因为合⾦化、热处理、冷塑性变形对弹性模量的影响较⼩。
4.常⽤的标准试样有5倍和10倍,其延伸率分别⽤δ5和δ10表⽰,说明为什么δ5>δ10。
答:对于韧性⾦属材料,它的塑性变形量⼤于均匀塑性变形量,所以对于它的式样的⽐例,尺⼨越短,它的断后伸长率越⼤。
5.某汽车弹簧,在未装满时已变形到最⼤位置,卸载后可完全恢复到原来状态;另⼀汽车弹簧,使⽤⼀段时间后,发现弹簧⼸形越来越⼩,即产⽣了塑性变形,⽽且塑性变形量越来越⼤。
试分析这两种故障的本质及改变措施。
材料力学习题册答案第3章扭转

第三章扭转一、是非判断题1.圆杆受扭时,杆内各点处于纯剪切状态。
(×)2.杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。
(×)3.薄壁圆管和空心圆管的扭转切应力公式完全一样。
(×)4.圆杆扭转变形实质上是剪切变形。
(×)5.非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。
(√)6.材料相同的圆杆,他们的剪切强度条件和扭转强度条件中,许用应力的意义相同,数值相等。
(×)7.切应力互等定理仅适用于纯剪切情况。
(×)8.受扭杆件的扭矩,仅与杆件受到的转矩(外力偶矩)有关,而与杆件的材料及其横截面的大小、形状无关。
(√)9.受扭圆轴在横截面上和包含轴的纵向截面上均无正应力。
(√)10.受扭圆轴的最大切应力只出现在横截面上。
(×)11.受扭圆轴内最大拉应力的值和最大切应力的值相等。
(√)12.因木材沿纤维方向的抗剪能力差,故若受扭木质圆杆的轴线与木材纤维方向平行,当扭距达到某一极限值时,圆杆将沿轴线方向出现裂纹。
(×)二、选择题1.内、外径之比为α的空心圆轴,扭转时轴内的最大切应力为τ,这时横截面上内边缘的切应力为 ( B )A τ;B ατ;C 零;D (1- 4α)τ 2.实心圆轴扭转时,不发生屈服的极限扭矩为T ,若将其横截面面积增加一倍,则极限扭矩为( C )02T B 20T 02T D 40T 3.两根受扭圆轴的直径和长度均相同,但材料C 不同,在扭矩相同的情况下,它们的最大切应力τ、τ和扭转角ψ、ψ之间的关系为( B )A 1τ=τ2, φ1=φ2B 1τ=τ2, φ1≠φ2C 1τ≠τ2, φ1=φ2D 1τ≠τ2, φ1≠φ2 4.阶梯圆轴的最大切应力发生在( D ) A 扭矩最大的截面; B 直径最小的截面; C 单位长度扭转角最大的截面; D 不能确定。
5.空心圆轴的外径为D ,内径为d, α=d /D,其抗扭截面系数为 ( D ) A ()31 16p D W πα=- B ()321 16p D W πα=-C ()331 16p D W πα=- D ()341 16pD Wπα=-6.对于受扭的圆轴,关于如下结论: ①最大剪应力只出现在横截面上;②在横截面上和包含杆件的纵向截面上均无正应力;③圆轴内最大拉应力的值和最大剪应力的值相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题课
(第1~3章)
习题1.4-2
如图所示高5m混凝土立柱,横截面面 积A=1.0 m2。受F=6000kN力作用后, 共缩短了1mm。(1)试求立柱的平均正 应变;(2)设立柱横截面上无切应力, 正应力均匀分布,试计算立柱横截面 上正应力的大小;(3)根据胡克定律 得到的混凝土的弹性模量是多少?
秦飞 编著《材料力学》
习题 2.4-8
解:设AB杆和BC杆的轴力分 别为FN,AB、FN,BC, 由平衡方程:
FNA, BsinPFNB,Csin FNA, BcosFNB,Ccos2P
得: F N A,B P/co sP/2sin
F N B,C P/co sP/2sin
由 xco 1 syco 2 sL
得 cos10.8 则 sin10.6
1
2
因此,载荷
P 2 F N s1 i/n n 2 2N 0 0 .6 / 0 3 8 N 0
则许用载荷[P]题3.1-10
图示长为L,宽为b,厚度为t的平板,在两端承受均匀拉应 力。已知材料的弹性模量为E,泊松比为v。试问:(1) 加载前,板对角线OA的斜率是b/L,加力后是多少?(2) 板的面积增加多少?(3)板的横截面面积减少多少?
方位角 分别为0°、22.5°和45°单元体示意图,并标出单
元体各面上的正应力和切应力。
秦飞 编著《材料力学》
习题2.2-3
解:计算塑料杆对压杆的作用力 由力矩平衡:
F 塑 10P 0400
得 F 塑4P4110 4N40N 计算塑料杆的轴力 FNF塑44N 0
计算塑料杆横截面上的压应力
60
切应变大小为:
为什么要转化为90°时 的对应量?
π/18 1 0.5π/18 0.02618
秦飞 编著《材料力学》
习题1.5-2
方板的变形如图中虚线所示,试求直角DAB的切应变。
秦飞 编著《材料力学》
习题1.5-2
解:计算AB段转动的角度
1ta1n 0.1/10 00 .001
计算AD段转动的角度
2ta 2n 0 .2/10 0 .002
计算直角DAB的切应变
21 0 .0 0 0 .0 2 0 0 .0 101
(为什么相减?)
秦飞 编著 《材料力学》
习题2.2-3
如图所示为放置于测试设备上测试的直径d=25mm的塑料杆, 各部分尺寸标于图中。现在施加力P=110N,试绘出塑料杆上
秦飞 编著《材料力学》
B
选哪根杆作为研究 对象,为什么?
习题 2.4-8
设AB杆横截面积为A,AB杆的许用应力为 [ ],则可得:
A F N , A / B ( P / c o P / 2 s s) i / n
AB杆杆长 lH/2cos
AB杆体积 V A P ( l 1 / c H o 1 / 2 s s ) i / 2 n co
cFN/A4FN/πd2
4(44N)0/π(2m 5 )m 20.89M 6Pa
秦飞 编著《材料力学》
习题2.2-3
计算塑料杆上方位角为单元体各面上的应力并作出示意图 当 0时
0c0.89M 6Pa
0 0MPa
秦飞 编著《材料力学》
习题2.2-3
当 22 .5时
秦飞 编著 《材料力学》
习题2.4-9
解:对C处进行受力分析, 列出平衡方程:
F Nco θ1 sF Nco θ2s F Nsiθ n 1F Nsiθ n 2P
得
1 2
FNP/2sin1
秦飞 编著 《材料力学》
习题2.4-9
设AC段弦线长为x,BC段弦线长为y,则 x+y=L0
习题2.2-3
当 45 时 45cco24s5
0.89M 6 P coa24s50.44M 8 Pa
452csin 2450.44M 8 Pa
秦飞 编著 《材料力学》
习题 2.4-8
图示杆AB和BC长度相同,两杆在B 点铰接并承受水平载荷P和竖直载 荷2P。支座A、C之间距离固定,为 H。但是角度可通过调整杆的长度 改变。杆BC由普通结构钢制成,但 杆AB由稀有的、贵重的、强度极高 的金属材料制成。为了尽可能减少 AB杆贵重金属材料的用量,同时满 足杆的拉伸强度条件,试确定最佳 角度。(不考虑杆的自重。)
2.25cco22s.2 5
0.89M 6 c Po2 a2s.2 50.76M 5 Pa
2.2 52csi2 n2.5 20.31M 7Pa
11.52cco21s1.52
0.89M 6cPo2a1s1.520.13M 1Pa
秦飞 编著《材料力学》
要求AB杆用料最少,即AB杆体积最小,即 dV 0 d
则可得: 29 .1
秦飞 编著《材料力学》
习题2.4-9
如图所示总长L0=1.25m的柔性弦线栓在A、B两个支座上,A、 B高度不同,A比B高。弦线上放置无摩擦滚轮,滚轮上承受 力P。图中C点为平衡后滚轮停留的位置。设A、B间水平距离 L=1.0m,弦线拉断力为200N,设计安全因数为3.0,试确定许 用载荷P。
习题1.4-2
解:(1)立柱的平均正应变
ε l/l ( 1 m ) / ( m 5 1 3 m 0 ) 2 m 1 40
(2)计算横截面上的正应力
cF N/A 6 160 N /m 2 6MPa
(3)计算混凝土的弹性模量
E c/ 6 M/ P 2 1 a 4 0 3G 0 Pa
秦飞 编著《材料力学》
习题1.5-1
如图所示构件上一点 A处的两个线段AB和 AC,变形前夹角为 60°,变形后夹角为 59°。试计算A点处 的切应变。
秦飞 编著《材料力学》
习题1.5-1
解:图示线段AB和线段BC角度改变量
060591
相对于直角时的角度改变量
900 1.5