电压互感器介绍及工作原理 图文 民熔

合集下载

民熔电压互感器常规试验检测方法

民熔电压互感器常规试验检测方法

1、电压互感器概述2、典型的变压器利用电磁感应原理将高压变低压,或大电流变小电流,为测量装置、保护装置和控制装置提供合适的电压或电流信号。

电力系统中常用的电压互感器一次侧电压与系统电压有关,一般为几百至几百千伏,标准二次电压一般为100V和100V/2;而电力系统中常用的电流互感器一次侧电流一般为几安培至几万安培,标准二次电流一般为5a、1a、0.5a等。

一。

电压互感器原理电压互感器原理类似于变压器原理,如图1.1所示。

一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一铁心上,铁心内磁通量为Ф。

根据电磁感应定律,绕组电压U与电压频率f、绕组匝数W、磁通量φ的关系如下:民熔电压互感器的常规试验方法是什么,电工们都在看这篇文章图1.1 电压互感器原理,如图1.2所示。

与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。

即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。

3. 变压器绕组和极压变压器绕组的端子分为前端和后端。

对于全绝缘电压互感器,一次绕组的头端和尾端对地能承受相同的电压,而对于半绝缘电压互感器,尾端只能承受几千伏的电压。

A、X通常表示电压互感器一次绕组的头端和尾端,A、X或P1、P2通常表示电压互感器二次绕组的头端或尾端;L1通常表示电流互感器L2,L2分别表示一次绕组的头端和尾端。

K1、K2、S1、S2为二次绕组的头端和尾端。

不同的制造商可能有不同的标签。

通常,下标1表示前端,下标2表示后端。

当端部感应电势方向相同时,称为同音端;反之,如果在同音端引入相同方向的直流电流,则它们在磁芯中产生的磁通量也在同一方向。

如图1.3A 所示,A-A端子的电压是两个绕组感应电位差的结果。

变压器中正确的标签定义为极性降低。

四。

电压互感器与电流互感器结构的主要区别(2)电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关。

电压互感器常见接线图 (图文) 民熔

电压互感器常见接线图   (图文) 民熔

电压互感器接线图电压互感器(Potential Transformer 简称PT,Voltage Transformer简称VT)和变压器类似,是用来变换电压的仪器。

但变压器变换电压的目的是方便输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。

词条介绍了其基本结构、工作原理、主要类型、接线方式、注意事项、异常与处理、以及铁磁谐振等。

民熔电压互感器简介:JDZ-10高压电压互感器10kv半封闭式0.5级羊角型特点:体积小精度高纯铜线圈一体成型安全可靠环氧材质优质钢片电压互感器的电力系统通常有四种接线方式。

电压互感器的接地和相位必须严格连接,严禁电压互感器二次侧短路。

1、单相电压互感器接线方式一个单相电压互感器接线方式一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器。

二、两个单相电压互感器互V/V型的接线方式两台单相电压互感器的V/V接线方式可以测量线电压,但不能测量相电压。

广泛应用于20kV以下中性点不接地或经消弧图接地的电网。

3、三台单相电压互感器Y0/Y0接线方式三个单相电压互感器Y0/Y0型的接线方式可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。

四、三个单相三绕组电压互感器或一个三相五柱式三绕组电压互感器接成Y0/Y0/Δ型三台单相三绕组电压互感器或一台三相五柱三绕组电压互感器接Y0/Y0/Δ型,接Y0型二次线圈,向仪表、继电器和绝缘监测电压表供电。

辅助次级线圈连接成一个开放的三角形,为绝缘监测电压继电器供电。

三相系统正常工作时,三相电压平衡,开三角形两端电压为零。

当一相接地时,开三角形两端出现零序电压,使绝缘监测电压继电器动作并发出信号。

第三节电压互感器ppt课件

第三节电压互感器ppt课件
在实验过程中,记录下不同输入电压下的输出电压值,并整理成表格形式。
数据记录、结果分析及实验总结
结果分析 根据实验数据,分析电压互感器的工作原理和性能特点。
比较实验数据与理论计算结果的差异,分析误差产生的原因。
数据记录、结果分析及实验总结
实验总结
在实验过程中,学会了电压互感器的接线方法和使用注 意事项。
正确接线方式及检查步骤
01
02
03
04
按照接线图正确连接电压互感 器的一次侧和二次侧线路,确
保接线牢固、接触良好。
检查接线是否正确,无短路或 接地现象。
使用万用表等工具检查电压互 感器二次侧输出电压是否与额
定值相符。
确认无误后,方可通电试运行 。
日常维护保养和故障排除
定期检查电压互感器外观是否完好, 有无异常声响或异味。
特点
具有绝缘性能好、抗干扰 能力强、测量精度高等优 点;但成本较高,且对使 用环境有一定要求。
不同类型比较与选型依据
电磁式与光电式比较
电磁式结构简单、成本低,但存在铁磁饱和现象;光电式绝缘性能好、测量精 度高,但成本较高。
选型依据
根据实际需求和预算进行选择。对于一般应用场合,电磁式电压互感器即可满 足要求;对于高精度测量和特殊应用场合,可选择光电式电压互感器。同时, 还需考虑使用环境、安装条件等因素。
为确保电压互感器在高压环境 下的安全运行,采用油浸式或 干式绝缘结构,以防止绝缘击 穿和漏电现象。
主要技术参数及性能指标
额定电压比
表示一次绕组与二次绕组之间的电压变换关系, 通常以高压侧额定电压与低压侧额定电压的比值 表示。
额定容量
指电压互感器在额定负载下所能承受的最大视在 功率。额定容量的选择需根据电力系统的实际需 求和电压互感器的技术参数进行综合考虑。

电流电压互感器基础知识ppt课件

电流电压互感器基础知识ppt课件

况下它的负荷是恒定的。电压互感器的N1/N2)U2
式中,N1、N2——为电压互感器一次和二次绕组匝数; KU—— 为电压互 感器的变压比,一般表示为其额定一、二次电压比, 即KU=U1/U2
电压互感器原理图示
电压互感器接法
电压互感器在三相电路中的接线方案有:一相式接 线,两相V/V形接线,三个单相电压互感器Y0/Y0接 线,三个单相三绕组电压互感器或一个三相五柱电 压互感器形成Y0/Y0/(开口三角形)接线等。
电子式互感器优点
优良的绝缘性能,造价低。 不含铁心,不存在磁饱和、铁磁谐振等问题。 暂态响应范围大,测量精度高。 保证高压回路与二次回路在电气上完全隔离,低压
侧没有因开路而产生高压的危险,同时因没有磁耦 合,消除了电磁干扰对互感器性能的影响 体积小、重量轻。
高压电流互感器
型号说明
电流互感器的选择
不同变比电流互感器
具有同一个铁心和一次绕组,而二次绕组则分为两 个匝数不同、各自独立的绕组,以满足同一负荷电 流情况下不同变比、不同准确度等级的需要。
例如在同一负荷情况下,为了保证电能计量准确, 要求变比较小一些,准确度等级高一些;而用电设 备的继电保护,考虑到故障电流的保护系数较大, 则要求变比较大一些,准确度等级可以稍低一点。
电压互感器分类
10~220kV电压互感器:随着电压的升高,电压互 感器绝缘尺寸需增大。为了减少绕组绝缘厚度,缩 短磁路长度,110kV及以上电压互感器采用串级式, 铁芯不接地,带电位,由绝缘板支撑。
电压互感器故障案例分析
2003年7月10日,某供电公司110 kV变电站发生10 kV母线电 压互感器一次侧三相熔丝因雷击谐振熔断的故障,10kV系统 为中性点不接地系统。事后检查,发现中性点所接消谐电阻 正常,中性点绝缘正常,励磁特性在正常范围,二次回路绝 缘正常,更换高压熔丝后,电压互感器又恢复正常运行。雷 击时工频和高频铁磁谐振过电压的幅值一般较高,可达额定 值的3倍以上,起始暂态过程中的电压幅值可能更高,危及 电气设备的绝缘结构。工频谐振过电压可导致三相对地电压 同时升高,或引起"虚幻接地"现象。分频铁磁谐振可导致相 电压低频摆动,励磁感抗成倍下降,过电压并不高,一般在 2倍额定值以下,但感抗下降会使励磁回路严重饱和,励磁 电流急剧加大,电流大大超过额定值,导致铁心剧烈振动, 使电压互感器一次侧熔丝过热烧毁。

电压互感器介绍 PPT

电压互感器介绍 PPT
-6-
4.电压互感器的准确等级与额定容量
①电压互感器的准确级
电压互感器的准确级以电压误差 fu来定义的。
在规定的一次电压和二次负荷变化范围内,二次负荷功率因数为额定值时,最大 电压误差百分数。
用途 测量 保护
准确级
0.2 0.5 1 3 3P 6P
误差限值
电压误差 相位差
(%)
(′)
适用运行条件
如图所示,当在一次绕组上施加一个 交流电压U1时,在铁心中就会感生出 一个磁通Φ,根据电磁感应定律,则在 二次绕组中就产生一个交变的二次电压 U2。
改变一次或二次绕组的匝数,可以产生 不同的一次电压与二次电压比,这就可 组成不同比的电压互感器。
Ku U1N / U2N N1 / N2 U1 / U2
JSJW-10型油浸式三相五柱式TV
三相五柱式
三个芯柱+两个边柱 一次三相绕组分别绕于三个芯柱上,为YN
接线
二次有两组三相绕组 主二次绕组:同样为yn接线 辅助二次绕组:开口三角形接线,用于测
量小电流接地系统零序电压
两个边柱为零序磁通提供磁路,避免了普 通电压互感器因零序磁阻太大导致电流过 大而发热损坏。
和短路保护。
-5-
3.电压互感器应注意的问题:
电压互感器二次侧不允许短路,由于电压互感器内阻抗很小,若二 次回路短路时,会出现很大的电流,将损坏二次设备甚至危及人身安 全。
为了确保人在接触测量仪表和继电器时的安全,电压互感器二次绕 组必须有一点接地。
电压互感器的接线应保证其正确性,一次绕组和被测电路并联,二 次绕组应和所接的测量仪表、继电保护装置或自动装置的电压线圈并 联,同时要注意极性的正确性。
(2) 根据安装地点的不同,分为户内式和户外式。

电压互感器教学课件

电压互感器教学课件

01电压互感器基本概念与原理Chapter电压互感器定义及作用工作原理与结构特点额定负荷指在规定条件下,电压互感器能够长期承受的最大负荷。

额定电压比指一次绕组额定电压与二次绕组额定电压之比。

准确度等级表示电压互感器测量误差的允许范围,通常以百分比表示。

温升指在规定条件下,电压互感器各部分温度与周围环境温度之差的最大允许值。

绝缘水平表示电压互感器承受各种过电压的能力,通常以雷电冲击耐压和工频耐压等参数表示。

主要技术参数及性能指标02电压互感器类型与特点Chapter工作原理优点缺点应用范围01020304工作原理缺点优点应用范围各类电压互感器比较电磁式与光电式比较电磁式结构简单、成本低,但体积大、重量重;光电式体积小、重量轻,但结构复杂、成本高。

适用场合比较电磁式适用于中低压系统,而光电式适用于高压和超高压系统。

性能比较电磁式存在铁磁谐振和饱和现象,而光电式无此现象,且绝缘性能好。

03电压互感器应用与选型Chapter电压测量电能计量系统保护030201在电力系统中的应用01020304根据电力系统的额定电压选择相应的电压互感器。

额定电压根据测量或保护要求的准确级选择相应的电压互感器。

准确级根据二次设备的负荷要求选择具有相应负荷能力的电压互感器。

负荷能力根据电力系统的绝缘水平选择具有相应绝缘性能的电压互感器。

绝缘性能选型原则及方法典型案例分析案例一01案例二02案例三0304电压互感器试验与检测Chapter常规试验方法负载试验空载试验在额定电压和额定负载下,测量电压互感器的负载电流、负载损耗和温升,以检验其带载能力和热稳定性。

准确度试验在线监测技术局部放电监测介质损耗监测温度监测故障诊断与处理故障类型识别故障定位处理措施05电压互感器维护与保养Chapter01保持互感器外观整洁,防止灰尘和潮气侵入;020304定期检查互感器接线端子是否松动或接触不良;监听互感器运行声音,判断是否存在异常;定期记录互感器运行数据,如电压、电流等。

电压互感器介绍

电压互感器介绍
电压互感器二次侧不允许短路,由于电压互感器内阻抗很小,若二次回路 短路时,会出现很大的电流,将损坏二次设备甚至危及人身安全。
为了确保人在接触测量仪表和继电器时的安全,电压互感器二次绕组必 须有一点接地。
电压互感器的接线应保证其正确性,一次绕组和被测电路并联,二 次绕组应和所接的测量仪表、继电保护装置或自动装置的电压线圈并 联,同时要注意极性的正确性。
-5-
4.电压互感器的准确等级与额定容量
①电压互感器的准确级
❖电压互感器的准确级以电压误差 fu来定义的。
❖在规定的一次电压和二次负荷变化范围内,二次负荷功率因数为额定值时,最大电压误差 百分数。
用途 测量 保护
准确级
0.2 0.5 1 3 3P 6P
误差限值
电压误差 相位差
(%)
(′)
适用运行条件
(零序电压)
(4) 按绝缘分为干式、浇注式、油浸式和气体绝缘式。
5.电压互感器的分类和结构
干式:只适用于6kV以下空气干燥的户内
浇注式:一、二次绕组连同引出线用环氧树脂浇注成整体,用于3-35kV户内。
5.电压互感器的分类和结构
油浸式:分为普通结构和串级结构两种。 ✓普通结构:二次绕组和一次绕组完全相互耦合。 ✓ 用于3-35kV
✓ 改变一次或二次绕组的匝数,可以产生
不同的一次电压与二次电压比,这就可组 成不同比的电压互感器。
Ku U1N / U2N N1 / N2 U1 / U2
2. 电压互感器的工作特性
① TV与电路并联连接。一次绕组并接于被测回路;
二次绕组与其负载亦为并联关系。
② 一次侧电压不受二次负载的影响,为被测电 力网的电压。
电压互感器介绍
电压互感器(PT,potential transformer)将电力系统 中的高电压变换为低电压。主要是给测量仪表和继电保护装 置供电,用来测量线路的电压、功率和电能。因此电压互感 器的容量很小,一般都只有几伏安、几十伏安。

电容式电压互感器完整版

电容式电压互感器完整版

电容式电压互感器 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第四章电容式电压互感器Capacitor Voltage Transformer第一节电容式电压互感器的应用在110kV及以上的电力系统中要采用电容式电压互感器,特别是在超高压系统中都采用电容式电压互感器,其理由如下:1 可以抑制铁磁谐振60kV及以下的电磁式电压互感器和架空线对地的分布电容可能发生并联铁磁谐振;110kV及以上的电磁式电压互感器和少油断路器断口电容(均压用)可能发生串联铁磁谐振。

电容式电压互感器本身即是一个谐振回路,XL ≈XC。

如果CVT采取阻尼措施后确认不会发生铁磁谐振,那么与系统并联运行后只是增加了振荡回路的电容,破坏了铁磁谐振发生的条件XL =XC,回路不会发生铁磁谐振。

关于铁磁谐振的理论分析,另有资料介绍。

2 载波需要高压电力系统经常通过高压输电线进行通讯。

是用耦合电容器和阻波器将高电压变成低电压,调谐成需要的各种波段,称作载波通讯。

变电站如选用电磁式电压互感器,为了载波需要,还要选用一个耦合电容器。

如选用电容式电压互感器,既可当电压互感器,又可当耦合电容器用。

显然造价低了,占地面积小了。

3 电容式电压互感器冲击电压分布均匀,绝缘强度高。

尤其是超高压电力系统用的电压互感器,电磁式绝缘结构冲击分布很不均匀,制造十分困难。

第二节电容式电压互感器的工作原理1 利用串联电容进行分压,即大的容抗上承受高电压,小的容抗上获得较低的电压。

将较低的电压施加在一个电磁装置上,通过电磁装置感应出标准规定的电压互感器的二次电压,如100/√3V,100/3V,100V。

电容式电压互感器由电容分压器和电磁单元两部分组成。

如有载波要求,电容分压器低压端还应接有载波附件。

电容式电压互感器的原理接线电路见图124。

2 电容分压器它既作电容式电压互感器的分压器用,又作载波时的耦合电容器用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电压互感器(Potential Transformer 简称PT,Voltage Transformer简称VT)和变压器类似,是用来变换电压的仪器。

但变压器变换电压的目的是方便输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。

民熔电压互感器产品介绍
JDZ-10高压电压互感器 10kv半封闭式电压互感器0.5级羊角型
JDZX10-10电压互感器
10KV户内高压柜保护用REL10-10互感器
JDZ9-10电压互感器
电压互感器的基本结构和变压器很相似,它也有两个绕组,一个叫一次绕组,一个叫二次绕组。

两个绕组都装在或绕在铁心上。

两个绕组之间以及绕组与铁心之间都有绝缘,使两个绕组之间以及绕组与铁心之间都有电气隔离。

电压互感器在运行时,一次绕组N1并联接在线路上,二次绕组N2并联接仪表或继电器。

因此在测量高压线路上的电压时,尽管一次电压很高,但二次却是低压的,可以确保操作人员和仪表的安全。

其工作原理与变压器相同,基本结构也是铁心和原、副绕组。

特点是容量很小且比较恒定,正常运行时接近于空载状态。

电压互感器本身的阻抗很小,一旦副边发生短路,电流将急剧增长而烧毁线圈。

为此,电压互感器的原边接有熔断器,副边可靠接地,以免原、副边绝缘损毁时,副边出现对地高电位而造成人身和设备事故
测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成V-V形作三相使用。

实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。

供保护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。

三相的第三线圈接成开口三角形,开口三角形的两引出端与接地保护继电器的电压线圈联接。

正常运行时,电力系统的三相电压对称,第三线圈上的三相感应电动势之和为零。

一旦发生单相接地时,中性点出现位移,开口三角的端子间就会出现零序电压使继电器动作,从而对电力系统起保护作用。

线圈出现零序电压则相应的铁心中就会出现零序磁通。

为此,这种三相电压互感器采用旁轭式铁心(10KV及以下时)或采用三台单相电压互感器。

对于这种互感器,第三线圈的准确度要求不高,但要求有一定的过滤磁特性(即当原边电压增加时,铁心中的磁通密度也增加相应倍数而不会损坏)。

电压互感器是发电厂、变电所等输电和供电系统不可缺少的一种电器。

精密电压互感器是电测试验室中用来扩大量限,测量电压、功率和电能的一种仪器。

电压互感器和变压器很相像,都是用来变换线路上的电压。

线路上为什么需要变换电压呢?这是因为根据发电、输电和用电的不同情况,线路上的电压大小不一,而且相差悬殊,有的是低压220V和380V,有的是高压几万伏甚至几十万伏。

要直接测量这些低压和高压电压,就需要根据线路电压的大小,制作相应的低压和高压的电压表和其他仪表和继电器。

这样不仅会给仪表制作带来很大困难,而且更主要的是,要直接制作高压仪表,直接在高压线路上测量电压,那是不可能的,而且也是绝对不允许的。

相关文档
最新文档