生物药剂学与药物动力学

生物药剂学与药物动力学
生物药剂学与药物动力学

第一章生物药剂学概述

1、生物药剂学(biopharmaceutics):是研究药物及其剂型在体内的吸收、分布、代

谢与排泄过程,阐明药物的剂型因素,机体生物因素和药物疗效之间相互关系的科学。

2、剂型因素(出小题,判断之类的)

药物的某些化学性质

药物的某些物理因素

药物的剂型及用药方法

制剂处方中所用的辅料的性质及用量

处方中药物的配伍及相互作用

3、生物因素(小题、填空):种族差异、性别差异、年龄差异、生理和病理条件的差

异、遗传因素

4、药物的体内过程:吸收、分布、代谢、排泄

吸收(Absorption):药物从用药部位进入体循环的过程。

分布(Distribution):药物进入体循环后向各组织、器官或者体液转运的过程。

代谢(Metabolism):药物在吸收过程或进入体循环后,受肠道菌丛或体内酶系统的作用,结构发生转变的过程。

排泄(Excretion):药物或其代谢产物排出体外的过程。

转运(transport):药物的吸收、分布和排泄过程统称为转运。

处置(disposition):分布、代谢和排泄过程称为处置。

消除(elimination):代谢与排泄过程药物被清除,合称为消除。

5、如何应用药物的理化性质和体内转运关系指导处方设计?

不好

筛选合适的盐

筛选不同的晶型

改善化合物结构

微粉化包含物固体分散物

无影响

增加脂溶性

不稳定改善化合物结构

胃中稳定性

稳定

代谢稳定性不稳定

研究代谢药物

6、片剂口服后的体内过程有哪些?

答:片剂口服后的体内过程有:片剂崩解、药物的溶出、吸收、分布、代谢、排泄。

第二章口服药物的吸收

1、生物膜的结构:三个模型

细胞膜经典模型(lipid bilayer),生物膜液态镶嵌模型(fluid mosaic model) ,晶

格镶嵌模型

细胞膜的组成:①膜脂:磷脂、胆固醇、糖脂

②少量糖类

③蛋白质

生物膜性质

?膜的流动性

?膜结构的不对称性

?膜结构的半透性

2、膜转运途径:

细胞通道转运(transcellular pathway):药物借助其脂溶性或膜内蛋白的载体作用,

透过细胞而被吸收的过程。脂溶性药物及一些主动机制吸收药物

细胞旁路通道转运(paracellular pathway):是指一些小分子物质通过细胞间连接

处的微孔进入体循环的过程。小分子水溶性药物

3、药物通过生物膜的几种转运机制及特点

(一)、被动转运(passive transport)

被动转运:是指药物的膜转运服从浓度梯度扩散原理,即从高浓度一侧向低浓度一侧扩散的过程。

单纯扩散(passive diffusion)

被动转运

膜孔扩散(membrane pore transport)

①单纯扩散:又称脂溶扩散,脂溶性药物可溶于脂质而通过生物膜。

(1)药物的油/水分配系数愈大,在脂质层的 溶解愈大,就愈容易扩散。 特点 (2)大多数药物的转运方式属于单纯扩散。 (3)符合一级速率过程

单纯扩散速度公式 : R=PA(c-c0)/h

R 为扩散速度;P 为扩散常数;A 为生物膜面积;(c-c0)为浓度梯度;h 为生物膜厚度。 若(c-c0) ≈c ,假设(PA/h)=K ,上式简化为 R=PAc/h=Kc 单纯扩散速度属于一级速度方程。 ②膜孔扩散

(1)定义:膜孔扩散又称滤过,凡分子量小于100,直径小于0.4nm 的水溶性或极性药物,可通过细胞膜的亲水膜孔扩散。 细胞膜微孔0.4~0.8nm

(2)特点: 1)膜孔扩散的药物:水、乙醇、尿素等。

2)借助膜两侧的渗透压差、浓度差和电位差而扩散。 ③被动转运的特点:

(1)从高浓度侧向低浓度侧的顺浓度梯度转运 (2)不需要载体,膜对药物无特殊选择性

(3)不消耗能量,扩散过程与细胞代谢无关,不受细胞代谢抑制剂的影响 (4)不存在转运饱和现象和同类物竞争抑制现象

(二)载体媒介转运(carrier-mediated transport)

①.定义:借助生物膜上的载体蛋白作用,使药物透过生物膜而被吸收的过程。 载体媒介转运:促进扩散、主动转运 ②.促进扩散(facilitated diffusion

(1) 定义:促进扩散又称易化扩散,是指某些非脂溶性药物也可以从高浓度处向低浓

度处扩散,且不消耗能量。 (2) 特点:

1) 促进扩散的药物:氨基酸、D-葡萄糖、D-木糖、季铵盐类药物。

2) 吸收位置:小肠上皮细胞、脂肪细胞、脑-血脊液屏障血液侧的细胞膜中。 ③主动转运(active transport)

(1)定义:主动转运是指借助载体或酶促进系统的作用,药物从膜低浓度侧向高浓度侧的转运,又称逆流转运。

(2)主动转运的药物:K+、Na+、I-、单糖、氨基酸、水溶性维生素以及一些有机弱酸、弱碱等弱电解质的离子型 主动转运的药物是在特定部位受载体或酶系统作用吸收,不受消化道PH 变化的影响

(3)部位:药物的主动转运主要在神经元、肾小管及肝细胞中进行。

(4)主动转运的特点:①逆浓度梯度转运 ②需要消耗机体能量 ③需要载体参与 ④速率及转运量与载体量及其活性有关 ⑤存在竞争性抑制作用 ⑥受代谢抑制剂影响 ⑦有结构特异性和部位特异性

(三)、膜动转运(membrane mobile transport)

膜动转运:是指通过细胞膜的主动变形将药物摄入细胞内或从细胞内释放到细胞外的转运过程。

胞饮(pinocytosis) :溶解物、液体 膜动转运

吞噬(phagocytosis):大分子、颗粒状物 膜动转运的药物:

(1)入胞:蛋白质、多肽、脂溶性维生素、甘油三酯和重金属等,对一般药物吸收的意义不大。

(2)出胞:胰腺细胞分泌胰岛素

膜转运特点:①不需要载体;②需要能量;③有部位特异性

总结:药物跨膜转运机制及特点

可转运底物进入细胞,增加细胞内底物浓度,称药物内流转运器;

依赖ATP分解释放的能量,将底物逆向泵出细胞降低底物在细胞内的浓度,称药物外排转运器。——P-糖蛋白、多药耐药相关蛋白、乳腺癌耐药蛋白

5、多药耐药:multidrug resistance,MDR

6、pH-分配假说

pH-分配假说:药物的吸收取决于药物在胃肠道中的解离状态和油/水分配系数。Henderson-Hasselbalch方程:

弱酸性药物:p K a-pH=lg(Cu/Ci)

弱碱性药物:p K a-pH=lg(Ci/Cu)

式中Cu,

Ci分别为未解离型和解离型药物的浓度。

胃肠液中未解离型与解离型药物浓度之比是药物解离常数pKa与消化道pH的函数

?当酸性药物的pka值大于消化道体液pH值时(通常是酸性药物在胃中),则

未解离型药物浓度Cu占有较大比例。

?当碱性药物pka值大于体液pH值时(通常是弱碱性药物在小肠中),则解离

型药物浓度Ci所占比例较高

7、胃肠道的结构与功能(胃容量250ml)

①小肠是吸收药物的主要部位,也是药物主动转运吸收的特殊部位。小肠中各种吸收机制均存在。②一些弱酸性药物能在胃内吸收,尤其当给予溶液剂型时。胃中吸收机制主要是被动扩散。

③大部分运行至结肠的药物往往是缓释剂型、肠溶制剂或者高部位肠道中溶解不完全的残留部分。直肠近肛门端是直肠给药剂型如栓剂和其它直肠给药剂型的良好吸收部位。大肠中药物的吸收也以被动扩散为主,兼有胞饮作用。

十二指肠

胃肠道的构造小肠空肠

回肠

盲肠

大肠结肠

直肠

总结

8、胆酸盐:表面活性剂

9、粘性多糖:蛋白质复合物

10、不流动水层(非搅拌水层):高脂溶性药物透膜吸收的屏障

11、解离型药物虽不能通过生物膜吸收,但可通过生物膜含水小孔通道吸收,尽管该吸收通道作用不强(吸收有限,但也是离子型药物吸收的重要途径,强碱性阳离子药物在所有胃肠道PH都带正电荷,故在任何PH都不被吸收)

12、在胃肠道中,溶出的药物不断地透膜吸收入血,形成漏槽状态。

13、少数在特定部位吸收的药物,胃空速率大,吸收反而较差:

如维生素B2在十二指肠主动吸收,胃排空速度快,大量的维生素B2同时到达吸收部位,吸收达饱和,只有小部分药物被吸收;饭后服用,维生素B2连续不断缓慢地通过十二指肠,不饱和,吸收↑

14、口服阿司匹林时饮水量由75ml增加至150ml,吸收速度增加一倍:

因为增加饮水量,胃内容物体积增大和渗透压降低,加快了胃排空速度,进入小肠后药物的稀溶液可与肠壁充分接触,也有利于药物的吸收。

15、简述生物药剂学中讨论的生理因素对口服药物吸收的影响

答:①消化系统因素:酸性对药物吸收的影响、胃肠液成分的影响、食物的影响、胃肠道代谢作用的影响。

②循环系统因素:胃肠血流速度、肝首过效应、淋巴循环

③疾病因素:胃酸缺乏、腹泻、甲状腺功能不足、胃切除

④药物转运糖蛋白

16、影响药物吸收的物理化学因素

答:①解离度和脂溶性;

②溶出速度:溶解度、粒子大小、多晶型、溶剂化物

③稳定性

17、剂型因素对药物吸收的影响

答:①剂型;②处方(辅料、药物间及药物与辅料间相互作用);③制备工艺

18、BCS是根据药物体外溶解性和肠道渗透性的高低,对药物进行分类的一种科学方法,分四类。BCS可用三个无单位的参数来描述药物吸收特征:吸收数An 剂量数Do 溶出数Dn 当An﹥1.15,药物口服最大吸收分数F﹥90%

19、用变异因子(?1)与相似因子(?2)定量评价溶出曲线之间的差别。由于?2对评价两条溶出曲线中较大差异值的时间点具有更高的灵敏性,有助于确保产品特性的相似性。因此,?2方法已被美国FDA和我国SFDA采纳,用于评价制剂条件变更前后溶出或释放特性的相似性。

20、生物药剂学分类系统,如何提高各类型药物的生物利用度?

答:Ⅰ型药物的溶解度和渗透率均较大,药物的吸收通常很好,改善溶解度对药物吸收影响不大。

Ⅱ型药物溶解度较低,溶出是吸收的限速过程,如果药物的体内与体外溶出基本相似,且给药剂量较小时,可通过增加溶解度来改善药物的吸收;若给药剂量很大,存在体液量不足而溶出较慢的问题,仅可通过减少药物的粒径的手段来达到促进吸收的目的。

Ⅲ型药物有较低的渗透性,则生物膜是吸收的屏障,药物的跨膜转运是药物吸收的限速过程,可通过改善药物的脂溶性来增加药物的吸收,可能存在主动转运和特殊转运过程。

Ⅳ型药物的溶解度和渗透性均较低,药物的水溶性或脂溶性都是影响药物的透膜吸收的主要因素,药物溶解度或油/水分配系数的变化可改变药物的吸收特性,主动转运和P-gp药泵机制可能也是影响因素之一。

21、简述促进药物吸收的方法

答:a.增加药物的溶解度:(1)制成盐类,弱酸性药物制成碱金属盐;弱碱性药物制成强酸盐(2)制成无定型药物(3)加入表面活性剂

b.增加药物的表面积

22、OCDDS(口服定时择时给药系统)的主要类型:pH敏感型、时控型、酶解型、压力控制型

23、设计缓控释系统应考虑的因素?

答:(1)药物的油水分配系数

(2)药物的稳定性

(3)药物体内吸收特性

(4)昼夜节律

(5)药物的运行状态

24、口服结肠迟释剂的几种类型及设计依据?

答:类型——pH敏感型;时控型;酶解型;压力控制型

设计依据——①结肠液pH值最高(6.5-7.5或更高)

②胃排空1-4h,小肠转运3-5h,口服后到达结肠约在5h左右

③结肠中含有丰富的菌群

④结肠为水分吸收主要区域,内容物粘度增加而使肠腔压力较大

第三章非口服药物的吸收

1、各种注射给药途径的特点?

答:①静脉注射:注射容量一般小于50mL;药物直接进入血循环,注射结束时血药浓度最高;不存在吸收过程,生物利用度100%;存在“肺首过效应”。

②肌内注射:注射容量2—5mL;有吸收过程,药物以扩散及滤过两种方式转运,存在“肺首过效应”。

③皮下与皮内注射:

吸收速度:大腿皮下﹥上臂﹥腹部。皮内注射一般作皮肤诊断与过敏试验。

④其他部位注射:动脉内注射、腹腔内注射、鞘内注射

2、影响注射给药吸收的因素?

答:(一)生理因素:吸收速度:上臂三角肌﹥大腿外侧肌﹥臀大肌

(二)药物理化性质

(三)剂型因素

3、影响口腔黏膜吸收的因素?

答:(一)生理因素(二)剂型因素

4、药物经皮肤转运的途径?

答:药物渗透通过皮肤吸收进入血液循环的途径:

(1)表皮途径(主要途径)

透过角质层和表皮进入真皮,被毛细血管吸收进入血液循环。

(2)皮肤附属器途径(非主要)

通过毛囊、皮脂腺和汗腺,渗透速度比表皮途径快。(离子型及水溶性大分子药物)

药物扩散通过角质层的途径

(1)通过细胞间隙扩散(主要)

角质层细胞间隙是类脂分子形成的多层脂质双分子层,类脂分子的亲水部分结合水分子形成水性区,而类脂分子的烃链部分形成疏水区。极性分子经角质层细胞间隙的水性区渗透,而非极性分子经由疏水区渗透。

(2)通过细胞膜扩散

致密交联的蛋白网状结构和微丝角蛋白和丝蛋白的规整排列结构均不利于药物扩散

5、影响药物经皮渗透的因素?

答:(一)生理因素(二)剂型因素(三)透皮吸收促进剂(四)离子导入技术的应用

6、药物鼻黏膜吸收的途径

答:吸收途径

(1)经细胞的脂质通道(脂溶性药物)——主要途径

(2)细胞间的水性孔道(亲水性或离子型药物)

7、影响鼻腔吸收的因素

答:一)生理因素

(二)剂型因素:药物的脂溶性和解离度、药物的相对分子质量和粒子大小、吸收促进剂与多肽类药物的吸收

8、影响直肠药物吸收的因素

答:(一)生理因素

(二)剂型因素

①药物的脂溶性与解离度②药物的溶解度与粒度③基质的影响

(三)吸收促进剂

9、药物经眼吸收的途径

答:经角膜渗透、药物经结膜吸收。

10、影响药物眼部吸收的因素

答:(一)角膜的通透性

(二)角膜前影响因素:眼用制剂角膜前流失是影响其生物利用度的重要因素。(三)渗透促进剂的影响:EDTA,牛磺胆酸,癸酸,皂甙

(四)给药方法的影响

11、例举可以避免肝首过效应的主要途径

答:①静脉、肌肉注射:静脉注射直接进入体循环,因此不存在首过效应;肌肉注射经毛细血管吸收进入体循环,不经门肝系统,因此亦不存在首过效应。

②口腔黏膜吸收:口腔粘膜下有大量的毛细血管汇总至颈内动脉,不经肝脏而直接进入心脏,可绕过肝脏的首过效应。一般可制成口腔粘膜贴片。

③经皮吸收:药物应用到皮肤上后,首先从制剂中释放到皮肤表面,溶解的药物分配进入角质层,扩散通过角质层到达活性表皮的界面,再分配进入水性的活性表皮,继续扩散到达真皮,被毛细血管吸收进入血液循环,可避开门肝系统。

④经鼻给药:鼻粘膜内血管丰富,鼻粘膜渗透性高,有利于全身吸收。药物吸收后直接进入体循环,无首过效应。

⑤经肺吸收:肺泡表面积大、含有丰富的毛细血管和极小的转运距离,因此肺部给药吸收迅速,而且吸收后的药物直接进入血液循环,不受肝首过效应的影响。

⑥直肠给药:栓剂距肛门2cm处,可使大部分药物避开肝首过作用,给药生物利用度远高于4cm给药。当栓剂距肛门6cm处给药时,大部分药物经直肠上静脉进入门静脉-肝脏系统。

第四章药物的分布

1、决定药物被组织摄取和积蓄的主要因素是什么?(蓄积accumulation:当长期连续用药时,在机体的某些组织中的药物浓度有逐渐升高的趋势的现象)

答:影响药物被组织摄取和积蓄的主要因素是组织器官的血液灌流速度和药物与组织器官的亲和力。而药物与组织器官的亲和力主要和药物的结构、解离度、脂溶性以及蛋白质结合率有关。通常血流丰富的组织蛇舞药物的速度快。

2、表观分布容积的意义

答:①Vd值它代表药物透膜转运和分布到体内各部位的特性。是由药物的理化性质决定的常数。

②Vd=D/C反映药物剂量与血药浓度的关系,利用此公式,若测得血药浓度,乘以其表观分布容积,即可求得药物在体内的总量。对指导临床用药具有重要意义。

3、药物血浆蛋白结合和组织蛋白结合对表观分布容积和药物消除有何影响?

答:当药物主要与血浆蛋白结合时,其表观分布容积小于它们的真实分布容积;而当药物主要与血管外的组织结合时,其表观分布容积大于它们的真实分布容积。蛋白结合率高的药物,通常体内消除较慢。

4、讨论药物蛋白结合率的临床意义

答:药物与血浆蛋白结合,能降低药物的分布与消除速度,延长作用时间,并有减毒和保护机体的作用。若药物与血浆蛋白结合率很高,药物作用将受到显著影响。由于药理作用主要和血中游离药物浓度有关,因此血中游离药物浓度的变化是影响药效的重要因素。

5、为什么弱碱药物比弱酸性药物易透过血脑屏障?

答:在血浆pH7.4时,弱酸性药物主要以解离性存在,而弱碱性药物主要以非解离型存在。一般来说,弱碱性药物容易向脑脊液转运。如水杨酸和奎宁在血浆pH7.4时,非离子型分别为0.004%-0.01%和9.09%,向脑脊液透过系数分别为0.0026-0.006 min-1和0.078min-1

6、提高药物脑内分布的方法

答:①颈动脉灌注高渗甘露醇溶液,使血脑屏障暂时打开,增加药物入脑

②对药物结构进行改造,引入亲脂性基团,制成前药,增加化合物脂溶性

③使用聚氰基丙烯酸酯、聚乳酸、乳酸—羟基乙酸共聚物等高分子材料,将药物

装载制成纳米粒,可提高药物的脑内分布

④利用脑毛细血管内皮细胞上存在的特异性载体

⑤通过鼻腔途径给药,可以使药物绕过血脑屏障,直接进入脑组织

7、影响微粒给药系统体内分布的因素有哪些

答:(1)细胞与微粒之间的相互作用,包括内吞作用;吸附作用;融合作用;膜间作用等

(2)微粒本身的理化性质,包括粒径、电荷、表面性质的影响

(3)微粒的生物降解

(4)机体的病理生理状况

第五章药物代谢

1、首过效应:药物在消化道和肝脏中发生的生物转化作用,使部分药物被代谢,最终进入体循环的原型药物量减少的现象。硝酸甘油片、异丙肾上腺素、阿司匹林、吗啡、氯丙嗪

2、药物代谢对药理作用的影响?

3、肝提取率:式中CA和CV分别代表进出肝脏的血中药物浓度。ER是

指药物通过肝脏从门脉血清除的分数。

4、药物代谢酶系主要有哪些?简述它们的作用。

答:代谢酶常分为微粒体系酶和非微粒体系酶二大类

(1)微粒体药物代谢酶系:微粒体酶系主要存在于肝细胞或其他细胞(如小肠粘膜、肾、肾肾上腺皮质细胞等)的内质网的亲脂性膜上。其中最重要的一族氧化酶,被称为肝微粒体混合功能氧化酶系统或称为单加氧酶。该酶系催化的氧化反应类型极为广泛,是药物体内代谢的主要途径。

(2)非微粒体酶系:非微粒体酶在肝内和血浆、胎盘、肾、肠粘膜及其他组织中均有存在,在体内除与葡萄糖醛酸结合外的其他缩合,以及某些氧化、还原及水解(除酰胺键外)反应均为该酶系所催化。通常凡是结构类似于体内正常物质、脂溶性较小、水溶性较大的药物都有这组酶系代谢。

5、影响药物代谢的因素。

答:①给药途径对药物代谢的影响

②给药剂量和剂型对药物代谢的影响

③药物的光学异构特性对药物代谢的影响

④酶抑制和诱导作用对药物代谢的影响

⑤生理因素对药物代谢的影响

6、试从干预药物代谢过程的角度出发,举例说明高效药物制剂设计的原理。

答:根据药酶抑制剂的性质,可设计利用一个药物对药酶产生抑制,从而来减少或延缓另一个药物的代谢,达到提高疗效或延长作用时间的目的。以左旋多巴为例,为了减少脱羧酶的脱羧作用,设计将脱羧酶抑制剂和左旋多巴同时应用,组成复方片剂。如采用的脱羧酶抑制剂甲基多巴肼和盐酸羟苄丝肼。它们可抑制小肠、肝、肾中的脱羧酶的活性,故能抑制左旋多巴的脱羧作用。且不能透过血脑屏障。这两种脱羧酶抑制剂既能抑制外周左旋多巴的代谢,增加进入中枢的左旋多巴的量,又能使摄入脑内的左旋多巴顺利的转换成多巴胺,进而发挥药理作用,大大降低了左旋多巴的给药剂量。

第六章药物排泄

水溶性药物、分子量小的药物(﹤300)以及肝生物转化慢的药物均由肾排泄消除。

1、药物肾排泄的三种机制

答:肾小球滤过、肾小管分泌和肾小管重吸收

2、影响肾小球滤过的因素

答:通透性①肾小球毛细血管内皮极薄,其上分布着很多直径约为6~10nm的小孔,通透性较高。

②除血细胞和大分子蛋白质之外,血浆中的水和小分子物质均被滤入肾小囊

③只有未结合的药物才可以从肾小球滤过

滤过压①滤过压与肾血流和肾小球毛细血管内的静压力密切相关。

②肾小球滤过是一种加压滤过。

③肾小球过滤的主要动力是肾小球毛细血管中的静水压。

滤过率(Glomerular filtration rate)①直接测定GFR(困难)

②由清除率计算肾小球滤过率

(肾小球滤过率可通过测定菊粉清除率和内生肌酐清除率等方法来测定)

3、影响肾小球滤过的因素

答:以菊粉清除率为指标,可以推测其他各种物质通过肾单位的变化。

?若某一物质只有肾小球滤过,且所有滤过的物质均随尿排泄,则肾清除率等于菊粉清除率。

?若某一物质的肾清除率低于菊粉清除率,表示该物质从肾小球过滤后有一部分被肾小管重吸收。

?若肾清除率高于菊粉清除率,则表示出肾小球滤过外,还有一部分通过肾小管分泌排泄。

4、影响肾小管重吸收的因素

答:①药物的脂溶性:脂溶性大的非解离型药物重吸收程度大,自尿中排泄量小。

②尿pH值和药物的pKa:对于弱酸来说,pH升高将增加解离程度,重吸收减少,

肾清除率增加。对于强碱性药物,在任何尿pH范围内均呈解离状态,几乎不被重吸收,其肾清除率也不受尿pH值得影响且常较高。

③尿量:当尿量增加时,药物在尿液中的浓度下降,重吸收减少;尿量减少时,

药物浓度增大,重吸收量也增多。

5、肾小管主动分泌的特征

①需载体参与

②需要能量,可受ATP酶抑制剂二硝基酚抑制

③由低浓度向高浓度逆浓度梯度转运

④存在竞争抑制作用

⑤有饱和现象

⑥血浆蛋白结合率一般不影响肾小管分泌速度

6、肾清除率的意义

答:推测药物排泄机制

肾清除率等于fu*GFR,只有肾小球滤过,所有滤过物质均由尿排泄。

肾清除率低于fu*GFR,表示该物质从肾小球滤过后一定有肾小管重吸收,可能同时伴有分泌,但一定小于重吸收。

肾清除率高于fu*GFR,表示除由肾小球滤过外,肯定存在肾小管分泌排泄,可能同时存在重吸收,但必定小于分泌。

7、肝肠循环及对药物作用的影响

答:肠肝循环是指由胆汁排泄到小肠中的药物或其代谢物,在小肠中又被重吸收返回肝门静脉血的现象。有肠肝循环的药物在体内贮留时间长,某些药物血药浓度形成双吸收峰。

第七章药物动力学概述

1、药物动力学(pharmacokinetics):是应用动力学原理与数学处理方法,定量地描

述药物通过各种途径进入体内吸收、分布、代谢、排泄(ADME)过程的“量时”

变化或“血药浓度经时”变化动态规律的一门科学。

2、药物动力学的研究内容:

(1)创建理论模型

(2)模型的实验验证与参数计算

(3)指导新药筛选

(4)指导制剂研究与质量评价

(5)指导临床用药

3、隔室模型:单室模型、双室模型、多室模型

4、一级速率过程的特点:

(1)半衰期与剂量无关

(2)一次给药的血药浓度—时间曲线下面积与剂量成正比

(3)一次给药情况下,尿排泄量与剂量成正比

5、多数药物在常用剂量时,其体内的吸收、分布、代谢、排泄等动态变化过程都呈

现一级速率过程的特点。

6、药物动力学参数:

(1)速率常数:是描述速度过程重要的动力学参数。速率常数越大,该过程进行也越快。单位为min-1或h-1。

(2)生物半衰期t1/2:是指药物在体内的药物量或血药浓度通过各种途径消除一半所需要的时间。

(3)表观分布容积V

(4)清除率Cl

(5)(血浆浓度时间)曲线下面积AUC

第八章单室模型

与血管内给药相比:①血管外给药后,药物存在一个吸收过程②药物逐渐被吸收进入血液循环,而血管内给药时药物直接进入血液循环。

1、血药浓度法存在困难的情况:

(1)某些药物用量甚微,或由于在体内的表观分布容积太大,从而血药浓度过低,

难以准确测定;

(2)血浆成分复杂,杂质的干扰严重;

(3)一些内源性物质,采用血药浓度法研究药物动力学存在体内基础浓度的影响;(4)血样的采集比较复杂,多次采血对人体有损伤。

2、采用尿排泄数据求算药物动力学参数时药物须符合的条件:

(1)大部分药物以原形从尿中排泄;

(2)药物经肾排泄过程符合一级动力学过程,即尿中原形药物产生的速率与体内当时的药量成正比。

3、血药法的局限:

(1)缺乏高灵敏度、高精密度的药物定量检测方法

(2)毒性大、剂量小、V大的药物血浓低难以准确测定

(3)血中存在干扰测定的物质

(4)不便多次采血

4、尿药法的优点:

(1)尿样量大;取尿样无伤害;(2)尿样中蛋白类内源性干扰物少

5、尿排泄速率法与亏量法比较:

6、单室模型静脉注射给药动力学参数求法:

(1)血药法(血药浓度的对数对时间作图)

lg

303

.2

lg C

t

k

C+

-

=

(2)尿药速率法(尿药排泄速率的对数对时间作图)t

k

X

k

t

X

e

u

303

.2

lg

lg

-

=

?

?

(3)尿药亏量法(尿药排泄亏量的对数对时间作图)

t k

k X k X X e u u 303

.2lg

)lg(0-=-∞

7、残数法求 k 和 ka 的步骤: (1)作 lgC ~t 图

(2)以消除相(曲线尾段)几个点作直线,用斜率求 k (3)直线外推得外推线,求吸收相各时间点外推线相应的外推浓度C1外推、C2外推、

C3外推 … …

(4)外推浓度-实测浓度 = 残数浓度(Cr)

(5)作lgCr ~t 图的残数线,从残数线的斜率求出ka

8、滞后时间(lag time ):血管外给药后,药物往往不能立即从给药部位吸收进入血液循环。从给药开始到血液中出现药物所需要的时间,称为滞后时间。 9、Css (稳态血药浓度、坪浓度):指药物进入体内的速率等于体内消除的速率时的血药浓度。

10、达坪分数fss (n ):指n 次给药后的血药浓度Cn 与坪浓度Css 相比,相当于Css

的分数。

11、平均稳态血药浓度:当血药浓度达到平衡后,在一个剂量间隔时间内,血药浓度

—时间曲线下的面积除以间隔时间所得的商。 12、MRT :药物在体内平均滞留时间。

13、负荷剂量:首次给予的较大的剂量,使血药浓度达到稳态血药浓度的90% 以上的

剂量,也叫冲击量和首剂量。

14、单剂量静脉注射给药的药量X-时间t 的关系式 kt

e X X -?=0

血浓C-时间t 的关系式 kt

e C C -?=0

lnC -t 的关系式 lnC=-kt+ lnC 0 lgC-t 的关系式 0lg 303

.2lg C t k

C +-

= 生物半衰期 ln2=0.693 k

t 693

.021= 表观分布容积V 0

C X V =

血药浓度—时间曲线下面积(AUC ) V

k X k C AUC ?==00

体内总清除率(Cl ) kV =L C AUC

X 0

L C =

∞u X =

k X k e 0(1—kt

e -)= k

X k e 0 肾排泄率 0

X X f u

r ∞

=

15、静脉滴注:体内血药浓度C 与时间t 的函数关系式 )1(0

kt e kV

k C --= 稳态血药浓度(或坪浓度) kV

k C ss 0

= 稳态后停止滴注t k e kV

k C '

-=

0 其对数形式为 kV

k t k

C 0lg 303.2lg +'-

=

稳态前停止滴注)1(lg 303.2lg 0kT e kV

k t k

C --+'-=

负荷剂量ss VC X =*0 静脉滴注速率 k

X k *

=00

生物药剂学与药代动力学复习资料

1.生物药剂学(Biopamaceutics)是研究药物及其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素和人体生物因素与药效的关系的一门科学。 吸收(Absorption):药物从用药部位进入体循环的过程。 分布(Distribution):药物进入体循环后向各组织、器官或者体液转运的过程。 代谢(Motabolism):药物在吸收过程或进入体循环后,受肠道菌丛或体内酶系统的作用,结构发生转变的过程。 排泄(Excretion):药物或其代谢产物排出体外的过程。 影响药物疗效的因素 一剂型因素 狭义普通剂型:片剂、胶囊剂、注射剂等 广义:化学性质、物理性质、剂型及用药方法、辅料性质与用量、配伍及相互作用,工艺过程、操作条件及贮存 二生物因素种族性别年龄、生理和病理、遗传 2.生物膜 结构:主要是脂质、蛋白质和少量糖类组成。细胞膜经典模型,疏水在内亲水在外的脂质双分子层;生物膜液态镶嵌模型,镶嵌有蛋白质的流体脂双层;晶格镶嵌模型,流动性脂质的可逆性变化 性质:①.不对称性②.流动性③.半透性 3. 药物的跨膜转运途径与机制(细胞通道转运和细胞旁路通道转运) 转运机制: ⑴被动转运passive transport从高浓度一侧向低浓度扩散,都不需载体,不耗能,无膜变形。 单纯扩散浓度差一级速率过程,服从Fick’s扩散定律:dC/dt=DAk(C GI-C)/h。 膜孔转运大分子药物或与蛋白质结合药物不通过,孔内为正电荷,利于阴离子通过。 被动转运特点①顺浓度梯度②不需要载体③膜对药物无选择性④不消耗能量⑤扩散过程与细胞代谢无关⑥不受细胞代谢抑制剂影响⑦不存在转运饱和现象和同类物竞争抑制现象 ⑵载体媒介转运carrier-mediated transport借助生物膜上的载体蛋白作用,使药物透过生物膜而被吸收的过程 ①促动扩散facilitated diffusion特点a特殊蛋白帮助b高浓度到低浓度c饱和d 竞争 ②主动转运active transport特点a逆浓度梯度b消耗能量c有载体参与d有竞争现象e结构特异,受代谢抑制剂影响 ⑶膜动转运入胞作用(胞饮和吞噬)出胞作用 4.小肠是药物吸收的主要部位,也是药物主动转运吸收的特异部位。小肠的PH是5~7.5是弱碱性药物吸收的最佳环境。原因:环状褶皱、绒毛和微绒毛的存在,和小肠绒毛内的很

生物药剂学与药物动力必做题

《生物药剂学与药物动力学》课程习题 第一章 1.什么是生物药剂学?它的研究内容是什么? 答:研究药物极其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素,机体生物因素和药物疗效之间相互关系的科学 研究内容:研究药物的理化性质与体内转运的关系;研究剂型、制剂处方和制剂工艺对药物体内过程影响;根据机体的生理功能设计缓控释制剂;研究微粒给药系统在血液循环中的命运,为靶向给药系统设计奠定基础;研究新的给药途径与给药方法;研究中药制剂的溶出度和生物利用度。 2.药物在体内的排泄、消除与处置指什么? 答:药物或其代谢产排出体外的过程称排泄。代谢与排泄过程药物被清除合称为消除。药物的分布、代谢和排泄过程称为处置。 3.简述片剂口服后的体内过程? 答:片剂口服后的体内过程包括片剂崩解、药物的溶出、吸收、分布、代谢和排泄 第二章 一、填空题 1. 生物膜具有流动性、不对称性和半透性特点。 2.药物的主要吸收部位是小肠。 3. 膜孔转运有利于水溶性小分子药物的吸收。 -pH= ㏒(Ci/Cu)。 4. 根据Henderson-Hasselbalch方程式求出,碱性药物的pk a 5. 固体制剂溶出度参数可通过单指数模型、 Higuchi方程和 Ritger-Peppas模型等拟合方程求算。 二、名词解释 1. pH-分配假说:药物的吸收取决于药物在胃肠道中的解离状态和油/水分配系数的学说。 2. 肠肝循环:经胆汁排泄的药物在小肠移动期间返回肝门静脉,经肝脏进入体循环,然后再分泌直至最终排出体外的过程。

3. 肝首过效应:药物透过胃肠道膜吸收经肝门静脉入肝后,在肝药酶作用下药药物可产生生物转化,导致药物进入体循环量减少的现象。 4. 被动转运:药物的生物膜转运服从浓度梯度扩散原理,即从高浓度一侧向低浓度一侧扩散的过程,分为单纯扩散与膜孔转运 三、问答题 1. 简述载体媒介转运的分类及特点? 答:载体媒介转运分为促进扩散与主动转运。促进扩散过程需要载体,顺浓度梯度转运不消耗能量,存在结构类似物的竞争和载体转运饱和。主动转运过程需要载体,逆浓度梯度,消耗能量,与细胞代谢有关,受代谢抑制剂的影响,结构转运的速率与数量受载体量与活性影响,结构类似物转运抑制,存在结构特异性和部位特异性。 1.简述促进口服药物吸收的方法? 答:促进口服药物吸收的方法:(1)增加药物的溶出速度:①增加药物溶解度,包括将药物制成可溶性盐,制成无定形药物,加入表面活性剂,制成亚稳定型状态,采用亲水性包合材料如HP-β-环糊精、二甲基-β-环糊精等制成包合物;②增加药物表面积,减小粒径:制成固体分散体、采用微粉化技术等。(2)加入吸收促进剂促进药物透膜吸收。 第三章 一、填空题 1. 药物经肌内注射有吸收过程,一般脂溶性药物通过毛细血管壁直接扩散, 水溶性药物中分子量小的可以穿过毛细血管内皮细胞膜上的孔隙快速扩散进入毛细血管,分子量很大的药物主要通过淋巴系统吸收。 2. 蛋白质多肽药物经黏膜吸收是近年研究的热点,主要给药途径包括经肺部、经直肠、经鼻腔等。

(完整版)生物药剂学与药物动力学名词解释大全

《生物药剂学与药物动力学》名词解释大全 ①生物药剂学:是研究药物极其剂型在体内的吸收,分布,代谢与排泄的过程,阐明药物的剂型因素,机体生物因素和药效之间相互的科学。 ②治疗药物监测(TDM)又称临床药动学监测,是在药动学原理的指导下,应用灵敏快速分析技术,测定血液中或其他体液中药物的浓度,分析药物浓度与疗效及毒性间的关系,进而设计或调整给药方案。临床意义:1.使给药方案个体化,2.诊断和处理药物过量中毒3.进行临床药动学和药效学的研究 4.探讨新药给药方案 5.节省患者治疗时间,提高治疗成功率 6.降低治疗费用 7.避免法律纠纷。 ③分布(distribution):药物进入循环后向各组织、器官或者体液转运的过程。 ④代谢(metabolism):药物在吸收过程或进入人体循环后,受肠道菌丛或体内酶系统的作用,结构发生转变的过程。又叫生物转化。 ⑤吸收:是药物从用药部位进入人体循环的过程。 ⑥排泄(excretion):药物或其代谢产物排出体外的过程。 ⑦转运(transport):药物的吸收、分布和排泄过程统称转运。 ⑧处置(disposition):分布、代谢和排泄的过程。 ⑨清除(elimination):代谢与排泄过程药物被清除,合称为清除。 ⑩BCS: 是依据药物的渗透性和溶解度,将药物分成四大类,并可根据这两个特征参数预测药物在体内-体外的相关性。 11 表观分布容积(apparent volume of distribution):是体内药量与血药浓度相互关系的一个比例常数,它可以设想为体内的药物按血浆浓度分布时,所需要体液的理论容积。Dn::溶出数。Do:计量数。An:吸收数 12 清除率:是单位时间内从体内消除的含血浆体积或单位时间丛体内消除的药物表观分布容积。 13 体内总清除率:是指机体在单位时间内能清除掉多少体积的相当于流经血液的药物。 14 生物利用度(Bioacailability,BA):是指剂型中的药物被吸收进入体循环的速度和程度。是评价药物有效性的指标。通常用药时曲线下浓度、达峰时间、峰值血药浓度来表示。(它的吸收程度用AUC表示,而且吸收速度是以用药后到达最高血药浓度的时间即达峰时间来表示。)评价指标AUC,Tmax,Cmax。 15 绝对生物利用度(absolute bioavailability, Fabs):是药物吸收进入体循环的量与给药剂量的比值,是以静脉给药制剂为参比制剂获得的药物吸收进入体循环的相对量。 16 相对生物利用度(relative bioavailability,Frel):又称比较生物利用度,是以其他非静脉途径给药的制剂为参比制剂获得的药物吸收进入体循环的相对量,是同一种药物不同制剂之间比较吸收程度与速度而得到的生物利用度。 17 生物等效性(Bioequivalence,BE):是指一种药物的不同制剂在相同试验条件下,给以相同剂量,反映其吸收程度和速度的主要药物动力学参数无统计学差异。 18 药学等效性(Pharmaceutical equivalence):如果两制剂含等量的相同活性成分,具有相同的剂型,符合同样的或可比较的质量标准,则可以认为它们是药学等效性。 19 首关效应:药物在消化道和肝脏中发生的生物转化作用,使部分药物被代谢,最终进入体循环的原型药物量减少的现象。 20 药代动力学:应用动力学原理和数学模型,定量的描述药物的吸收、分布、代谢、排泄过程随时间变化的动态规律,研究体内药物的存在位置、数量与时间之间的关系的一门科学。。 21 速率常数:是描述速度过程重要的动力学参数。速率常数越大,该过程进行也越快。单位为min-1或h-1。 22 生物半衰期:是指药物在体内的药物量或血药浓度通过各种途径消除一半所需要的时间,用t1/2表示。特点:一级速率过程的消除半衰期与剂量无关,而消除速率常数成反比因而半衰期为常数。 23 滞后时间:有些口服制剂,服用后往往要经过一段时间才能吸收,滞后时间是指给药开始只血

生物药剂学与药物动力学试卷及答案

生物药剂学与药物动力学期末考试试题 一.单项选择题(共15题,每题1分,共15分) 1.大多数药物吸收的机理是(D ) A.逆浓度关进行的消耗能量过程 B.消耗能量,不需要载体的高浓度向低浓度侧的移动过程 C.需要载体,不消耗能量的高浓度向低浓度侧的移动过程 D.不消耗能量,不需要载体的高浓度向低浓度侧的移动过程 E.有竞争转运现象的被动扩散过程 2.不影响药物胃肠道吸收的因素是(D ) A.药物的解离常数与脂溶性 B.药物从制剂中的溶出速度 C.药物的粒度 D.药物旋光度 E.药物的晶型 3.不是药物胃肠道吸收机理的是( C ) A.主动转运 B.促进扩散 C.渗透作用 D.胞饮作用 E.被动扩散 4.下列哪项符合剂量静脉注射的药物动力学规律(B ) A.平均稳态血药浓度是(Css)max与(css)min的算术平均值 B.达稳态时每个剂量间隔内的AUC等于单剂量给药的AUC C.达稳态时每个剂量间隔内的AUC大于单剂量给药的AUC

D.达稳态时的累积因子与剂量有关 E.平均稳态血药浓度是(css)max与(Css)min的几何平均值 5.测得利多卡因的消除速度常数为0.3465h,则它的生物半衰期( C ) A.4h B.1.5h C.2.0h D.O.693h E.1h 6.下列有关药物表观分布溶积的叙述中,叙述正确的是( A ) A.表观分布容积大,表明药物在血浆中浓度小 B.表观分布容积表明药物在体内分布的实际容积 C.表观分布容积不可能超过体液量 D.表观分布容积的单位是“升/小时” E.表现分布容积具有生理学意义 7.静脉注射某药,X0=60rag,若初始血药浓度为15ug/ml,其表观分布容积V为( D ) A.20L B.4ml C.30L D.4L E.15L 8.地高辛的半衰期为40.8h,在体内每天消除剩余量百分之几( A ) A.35.88 B.40.76 C.66.52 D.29.41 E.87.67 9.假设药物消除符合一级动力学过程,问多少个tl/2药物消除 99.9%?( D ) A.4h/2 B.6tl/2 C.8tl/2 D.10h/2 E.12h/2 10.关于胃肠道吸收下列哪些叙述是错误的( C) A.当食物中含有较多脂肪,有时对溶解度特别小的药物能增

生物信息学现状与展望

研究生课程考试卷 学号、姓名: j20112001 苗天锦 年级、专业:2011生物化学与分子生物学 培养层次:硕士 课程名称:生物信息学 授课学时学分: 32学时 2学分 考试成绩: 授课或主讲教师签字:

生物信息学现状与展望 摘要:生物信息学是一门新兴学科,起步于20世纪90年代,至今已进入"后基因组时代",本文对生物信息学的产生背景及其研究现状等方面进行了综述,并展望生物信息学的发展前景。生物信息学的发展在国内、外基本上都处在起步阶段。 关键词:生物信息学;生物信息学背景;发展前景 一、生物信息学概述 1.生物信息学发展历史 随着生物科学技术的迅猛发展,生物信息数据资源的增长呈现爆炸之势,同时计算机运算能力的提高和国际互联网络的发展使得对大规模数据的贮存、处理和传输成为可能,为了快捷方便地对已知生物学信息进行科学的组织、有效的管理和进一步分析利用,一门由生命科学和信息科学等多学科相结合特别是由分子生物学与计算机信息处理技术紧密结合而形成的交叉学科——生物信息学(Bioinformatics)应运而生,并大大推动了相关研究的开展, 被誉为“解读生命天书的慧眼”【1】。 研究生物细胞的生物大分子的结构与功能很早就已经开始,1866年孟德尔从实验上提出了假设:基因是以生物成分存在。1944年Chargaff发现了著名的Chargaff规律,即DNA中鸟嘌呤的量与胞嘧定的量总是相等,腺嘌呤与胸腺嘧啶的量相等。与此同时,Wilkins与Franklin用X射线衍射技术测定了DNA纤维的结构。1953年James Watson 和FrancisCrick在Nature杂志上推测出DNA 的三维结构(双螺旋)。Kornberg于1956年从大肠杆菌(E.coli)中分离出DNA 聚合酶I(DNA polymerase I),能使4种dNTP连接成DNA。Meselson与Stahl (1958)用实验方法证明了DNA复制是一种半保留复制。Crick于1954年提出了遗传信息传递的规律,DNA是合成RNA的模板,RNA又是合成蛋白质的模板,称之为中心法则(Central dogma),这一中心法则对以后分子生物学和生物信息学的发展都起到了极其重要的指导作用。经过Nirenberg和Matthai(1963)的努力研究,编码20氨基酸的遗传密码得到了破译。限制性内切酶的发现和重组DNA的克隆(clone)奠定了基因工程的技术基础【2】。自1990年美国启动人类基因组计划以来,人与模式生物基因组的测序工作进展极为迅速。迄今已完成了约40多种生物的全基因组测序工作,人基因组约3x109碱基对的测序工作也接近完成。至2000年6月26日,被誉为生命“阿波罗计划”的人类基因组计划终于完成了工作草图,预示着完成人类基因组计划已经指日可待。生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研究的前沿。 2.生物信息学研究方向 2.1 序列比对

生物药剂学与药物动力学习题集

第一章生物药剂学概述 1、生物药剂学(biopharmaceutics):是研究药物及其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物 的剂型因素,机体生物因素和药物疗效之间相互关系的科学。 2、剂型因素(出小题,判断之类的) 药物的某些化学性质 药物的某些物理因素 药物的剂型及用药方法 制剂处方中所用的辅料的性质及用量 处方中药物的配伍及相互作用 3、生物因素(小题、填空):种族差异、性别差异、年龄差异、生理和病理条件的差异、遗传因素 4、药物的体内过程:吸收、分布、代谢、排泄 吸收(Absorption):药物从用药部位进入体循环的过程。 分布(Distribution):药物进入体循环后向各组织、器官或者体液转运的过程。 代谢(Motabolism):药物在吸收过程或进入体循环后,受肠道菌丛或体内酶系统的作用,结构发生转变的过程。排泄(Excretion):药物或其代谢产物排出体外的过程。 转运(transport):药物的吸收、分布和排泄过程统称为转运。 处置(disposition):分布、代谢和排泄过程称为处置。 消除(elimination):代谢与排泄过程药物被清除,合称为消除。 5、如何应用药物的理化性质和体内转运关系指导处方设计? 不好 筛选合适的盐 筛选不同的晶型 改善化合物结构 微粉化包含物固体分散物 无影响 增加脂溶性 改善化合物结构 胃中稳定性 稳定 不稳定 肠代谢研究代谢药物 6、片剂口服后的体内过程有哪些? 答:片剂口服后的体内过程有:片剂崩解、药物的溶出、吸收、分布、代谢、排泄。 第二章口服药物的吸收 1、生物膜的结构:三个模型 细胞膜经典模型(lipid bilayer),生物膜液态镶嵌模型(fluid mosaic model) ,晶格镶嵌模型 细胞膜的组成:①、膜脂:磷脂、胆固醇、糖脂 ②、少量糖类 ③、蛋白质 生物膜性质

生物信息学课程设计

生物信息学课程设计报告 题目:用blast、clustalx2和mega来分析鼠伤寒沙门氏菌的四环素抗性基因 专业:生物技术 班级:11-2 学号:11114040235 姓名:邹炜球 指导教师:马超 广东石油化工学院生物工程系 2013年 12 月 21 日

摘要 生物信息学(Bioinformatics)是研究生物信息的采集,处理,存储,传播,分析和解释等各方面的一门学科,它通过综合利用生物学,计算机科学和信息技术而揭示大量而复杂的生物数据所赋有的生物学奥秘。本课程设计主要通过分析鼠伤寒沙门氏菌的四环素抗性基因来介绍生物信息学里面常用的数据库NCBI和一些常用的软件(如blast、clustalx2、Primer Premier 5和mega),由于生物信息学这一门课在生物研究领域所起到的作用非常大,所以熟练一些常用的生物信息学软件和数据库是非常有必要的。 关键词:NCBI、blast、clustalx2、Primer Premier 、mega、生物信息学、序列比对、系统发育树

目录 1绪论 (4) 1.1生物信息学的发展概况 (4) 1.2生物信息学的发展展望 (4) 2 课题设计内容 (5) 2.1以某一基因或蛋白为研究对象搜索一条序列(DNA长度为300-1500bp,蛋白质序列 为100-500)及相关信息,并分别表示出他的GENBANK和FASTA格式 (6) 2.2以设计内容1为目标序列进行BLAST分析 (7) 2.3通过BLAST或相关软件下载8条基因或蛋白质序列 (9) 2.4以8条基因序列进行多序列比对 (10) 2.5依照设计内容4构建系统发育树 (10) 2.6以其中一条基因序列设计一条长度为200-500bp的一对引物 (12) 参考文献 (16)

生物药剂学和药物动力学重点总结

1.生物药剂学(biopharmaceutics,biopharmacy)——研究药物及其剂型在体内的吸收、 分布、代谢与排泄过程,阐明药物的剂型因素,机体生物因素和药物疗效之间相互关系的科学。 2.生物药剂学的剂型因素和生物因素. 1剂型因素:化学性质、物理性质、剂型及服法、辅料、药物配伍、工艺条件等。 2生物因素 3.口服药物消化道吸收的因素、解离度、脂溶性和分子量2、溶出速率3、药物 4.影响体内药物分布的主要因素:体内循环与血管透过性的影响、药物与血浆蛋白结合的能力、药物的的理化性质与透过生物膜的能力、药物与组织的亲和力、药物相互作用对分制的影响。 5.影响药物代谢的因素给药途径对药物代谢的影响、给药剂量和剂型对药物代谢的影响、药物光学异构性对药物代谢的影响、、酶抑制和诱导对药物代谢的影响、生理因素对药物 入体循环的过程。分布(Distribution):药物进入体循环后向各组织、器官或者体液转运的过程。代谢(Motabolism):药物在吸收过程或进入体循环后,受肠道菌丛或体内酶系统的作用,结构发生转变的过程。排泄(Excretion):药物或其代谢产物排出体外的过程。转运(transport):分布和排泄过程统称为转运。处置(disposition):分布、代谢和排泄过程称为处置。消除(elimination):代谢与排泄过程药物被清除,合称为消除。 5片剂口服后的体内过程有:片剂崩解、药物的溶出、吸收、分布、代谢、排泄。 7生物膜的结构:细胞膜的组成:①膜脂:磷脂、胆固醇、糖脂②少量糖③蛋白质。 生物膜性质:膜的流动性;膜结构的不对称性;膜结构的半透性。 8膜转运途径。细胞通道转运:药物借助其脂溶性或膜内蛋白的载体作用,透过细胞而被是小分子水溶性的药物转运吸收的通道。细胞旁路通道转运:是指一些小分子物质通过细胞间连接处的微孔进入体循环的过程。是脂溶性药物及一些经主动机制吸收药物的通道。 9药物通过生物膜的几种转运机制及特点: (一)、被动转运(passive transport)是指药物的膜转运服从浓度梯度扩散原理,即从高①.单纯扩散(passive diffusion) 又称脂溶扩散,脂溶性药物可溶于脂质而通过生物膜. 绝大多数有机弱酸或有机弱碱药物在消化道内吸收.1)药物的油/水分配系数愈大,在

生物信息学在药物设计中的应用

生物信息学在药物设计中的应用 SJ 摘要:生物信息学是在数学、计算机和生命科学的基础上形成的一门新型交叉学科,是指为理解各种数据的生物学意义,运用数学、计算机科学与生物学手段进行生物信息的收集、加工、储存、传播、分析与解析的科学。随着生物信息学的发展,其在药物开发中起着越来越重要的作用。本文简要的综述了生物信息学在药物设计中的应用。 关键词:生物信息学;药物设计;靶标 1 生物信息学 1.1生物信息学概述 自1990年人类基因组计划正式启动以来,其迅猛发展造成了生物学数据的迅速膨胀,大量多样化生物学数据蕴含着大量生物学规律,这些规律是解决许多生命之谜的关键所在。因此人们对生物学数据搜集、管理、处理、分析、释读能力的要求迅速提升,计算机技术也越来越多地应用于处理人类基因组研究产生的海量数据及相关生物信息。一门由生物学、计算机科学及应用数学等学科交叉形成的新兴学科——生物信息学应运而生。生物信息学利用计算机科学技术,结合生物学、数学、物理学、化学、信息学和系统科学等理论和方法,通过高容量的数据库、繁多的搜索系统、快速的网络通讯和分析工具对生物信息资源进行收集、存储、分析、利用、共享、服务、研究与开发。 其研究重点主要体现在基因组学和蛋白组学两方面。具体说,是从核酸和蛋白质序列出发,分析序列中表达的结构与功能的生物信息。目前基因组学的研究出现了几个重心的转移:一是将已知基因的序列与功能联系在一起的功能基因组学研究;二是从作图为基础的基因分离转向以序列为基础的基因分离;三是从研究疾病的起因转向探索发病机理;四是从疾病诊断转向疾病易感性研究。生物芯片(Biochip)的应用将为上述研究提供最基本和必要的信息及依据,将成为基因组信息学研究的主要技术支撑。生物信息学的发展为生命科学的进一步突破及药物研制过程革命性的变革提供了契机。就人类基因组来说,得到序列仅仅是第一步,后一步的工作是所谓后基因组时代的任务,即收集、整理、检索和分析序列中表达的蛋白质结构与功能的信息,找出规律。 1.2生物信息学的阶段 前基因组时代(20世纪90年代前):这一阶段主要是各种序列比较算法的建立、生物数据库的建立、检索工具的开发以及DNA和蛋白质序列分析等。

生物药剂学与药物动力学考试复习

生物药剂学与药物动力学 第一章 生物药剂学概述 1、 生物药剂学:是研究药物及其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素,机体生物因素和药物疗效之间相互关系的科学。 2、 研究生物药剂学的目的:为了正确评价药物制剂质量,设计合理剂型、处方及制备工艺,为临床合理用药提供科学依据,使药物发挥最佳的治疗作用并确保用药的有效性和安全性。 3、 影响剂型体内过程的剂型因素 药物的某些化学性质、药物的某些物理因素、药物的剂型及用药方法、制剂处方中所用的辅料的性质及用量、处方中药物的配伍及相互作用 4、 影响剂型体内过程的生物因素:种族差异、性别差异、年龄差异、生理和病理条件的差异、遗传因素 第二章 口服药物的吸收 1、被动转运的特点: (1)从高浓度侧向低浓度侧的顺浓度梯度转运; (2)不需要载体,膜对药物无特殊选择性; (3)不消耗能量,扩散过程与细胞代谢无关,不受细胞代谢抑制剂的影响; (4)不存在转运饱和现象和同类物竞争抑制现象; 2、膜孔转运中分子小于微孔的药物吸收快,如水,乙醇,尿素,糖类等。大分子药物或与蛋白质结合的药物不能通过含水小孔吸收。 3、主动转运的转运速率可用米氏(Michaelis-Menten )方程描述: 4、主动转运的特点 ①逆浓度梯度转运;②需要消耗机体能量;③需要载体参与;④速率及转运量与载体量及其活性有关;⑤存在竞争性抑制作用;⑥受代谢抑制剂影响;⑦有结构特异性和部位特异性 5、被动转运与载体媒介转运速率示意图,如右图 6、胃排空:胃内容物从胃幽门排入十二指肠的过程。 7、胃空速率:胃排空的快慢用胃空速率来描述。 8、影响胃空速率的因素:①食物理化性质的影响;②胃内容物黏度、渗透压; ③食物的组成;④药物的影响。 9、肝首过效应:透过胃肠道生物膜吸收的药物经肝门静脉入肝后,在肝药酶作用下药物可产生生物转化。药物进入体循环前的降解或失活称为“肝首过代谢”或“肝首过效应”。 答:①静脉、肌肉注射;②口腔黏膜吸收;③经皮吸收;④经鼻给药;⑤经肺吸收;⑥直肠给药。 11、避免首过效应的剂型:①贴剂皮肤给药;②气雾剂和粉雾剂经呼吸道或经鼻黏膜吸收;③口腔粘附片黏膜吸收。 12、肠肝循环:指经胆汁排入肠道的药物,在肠道中又重新被吸收,经门静脉又返回肝脏的现象。肠肝循环现象在药动学上表现为药时曲线出现双峰现象。 13、引起肠肝循环的因素:现象主要发生在经胆汁排泄的药物中,有些由胆汁排入肠道的原型药物如毒毛旋花子苷G ,极性高,很少能再从肠道吸收,而大部分从粪便排出。有些药物如氯霉素、酚酞等在肝内与葡萄糖醛酸结合后,水溶性增高,分泌人胆汁,排入肠道,在肠道细菌酶作用下水解释放出原型药物,又被肠道吸收进入肝脏。 14、pH-分配假说:药物的吸收取决于药物在胃肠道中的解离状态和油/水分配系数。 胃肠液中未解离型与解离型药物浓度之比是药物解离常数pKa 与消化道pH 的函数,可用Henderson-Hasselbalch 方程表达: 弱酸性药物: 弱碱性药物: 式中,分别为未解离型和解离型药物的浓度。 转运速率 浓度 载体媒介被动转运

生物药剂学名词解释大合集

1.生物药剂学:是研究药物极其剂型在体内的吸收,分布,代谢与排泄的过程,阐明药物的剂型因素,机体生物因素和药效之间相互的科学。 2治疗药物监测(TDM)又称临床药动学监测,是在药动学原理的指导下,应用灵敏快速分析技术,测定血液中或其他体液中药物的浓度,分析药物浓度与疗效及毒性间的关系,进而设计或调整给药方案。 临床意义:1.使给药方案个体化,2.诊断和处理药物过量中毒3.进行临床药动学和药效学的研究4.探讨新药给药方案5.节省患者治疗时间,提高治疗成功率6.降低治疗费用7.避免法律纠纷。 3.分布(distribution):药物进入循环后向各组织、器官或者体液转运的过程。 4.代谢(metabolism):药物在吸收过程或进入人体循环后,受肠道菌丛或体内酶系统的作用,结构发生转变的过程。又叫生物转化。 5.吸收:是药物从用药部位进入人体循环的过程。 6.排泄(excretion):药物或其代谢产物排出体外的过程。 7.转运(transport):药物的吸收、分布和排泄过程统称转运。 8.处置(disposition):分布、代谢和排泄的过程。 9.清除(elimination):代谢与排泄过程药物被清除,合称为清除。 10.BCS: 是依据药物的渗透性和溶解度,将药物分成四大类,并可根据这两个特征参数预测药物在体内-体外的相关性。 11.表观分布容积(apparent volume of distribution):是体内药量与血药浓度相互关系

的一个比例常数,它可以设想为体内的药物按血浆浓度分布时,所需要体液的理论容积。Dn::溶出数。Do:计量数。An:吸收数 12清除率:是单位时间内从体内消除的含血浆体积或单位时间丛体内消除的药物表观分布容积。 13体内总清除率:是指机体在单位时间内能清除掉多少体积的相当于流经血液的药物。14生物利用度(Bioacailability,BA):是指剂型中的药物被吸收进入体循环的速度和程度。是评价药物有效性的指标。通常用药时曲线下浓度、达峰时间、峰值血药浓度来表示。绝对生物利用度(absolute bioavailability, Fabs):是药物吸收进入体循环的量与给药剂量的比值,是以静脉给药制剂为参比制剂获得的药物吸收进入体循环的相对量。 相对生物利用度(relative bioavailability,Frel):又称比较生物利用度,是以其他非静脉途径给药的制剂为参比制剂获得的药物吸收进入体循环的相对量,是同一种药物不同制剂之间比较吸收程度与速度而得到的生物利用度。 15生物等效性(Bioequivalence,BE):是指一种药物的不同制剂在相同试验条件下,给以相同剂量,反映其吸收程度和速度的主要药物动力学参数无统计学差异。 15药学等效性(Pharmaceutical equivalence):如果两制剂含等量的相同活性成分,具有相同的剂型,符合同样的或可比较的质量标准,则可以认为它们是药学等效性。 16首关效应:药物在消化道和肝脏中发生的生物转化作用,使部分药物被代谢,最终进入体循环的原型药物量减少的现象。 17药代动力学:应用动力学原理和数学模型,定量的描述药物的吸收、分布、代谢、排泄过程随时间变化的动态规律,研究体内药物的存在位置、数量与时间之间的关系的一门科

最新生物药剂学与药物动力学试卷及答案

生物药剂学与药物动力学期末考试试题一.单项选择题(共15题,每题1分,共15分) 1.大多数药物吸收的机理是(D ) A.逆浓度关进行的消耗能量过程 B.消耗能量,不需要载体的高浓度向低浓度侧的移动过程 C.需要载体,不消耗能量的高浓度向低浓度侧的移动过程 D.不消耗能量,不需要载体的高浓度向低浓度侧的移动过程 E.有竞争转运现象的被动扩散过程 2.不影响药物胃肠道吸收的因素是(D ) A.药物的解离常数与脂溶性 B.药物从制剂中的溶出速度 C.药物的粒度 D.药物旋光度 E.药物的晶型 3.不是药物胃肠道吸收机理的是(C ) A.主动转运 B.促进扩散 C.渗透作用 D.胞饮作用 E.被动扩散 4.下列哪项符合剂量静脉注射的药物动力学规律(B ) A.平均稳态血药浓度是(Css)max与(css)min的算术平均值 B.达稳态时每个剂量间隔内的AUC等于单剂量给药的AUC C.达稳态时每个剂量间隔内的AUC大于单剂量给药的AUC

D.达稳态时的累积因子与剂量有关 E.平均稳态血药浓度是(css)max与(Css)min的几何平均值 5.测得利多卡因的消除速度常数为0.3465h,则它的生物半衰期(C ) A.4h B.1.5h C.2.0h D.O.693h E.1h 6.下列有关药物表观分布溶积的叙述中,叙述正确的是(A ) A.表观分布容积大,表明药物在血浆中浓度小 B.表观分布容积表明药物在体内分布的实际容积 C.表观分布容积不可能超过体液量 D.表观分布容积的单位是“升/小时” E. 7.静脉注射某药,X0=60mg,若初始血药浓度为15ug/ml,其表观分布容积V为(D ) A.20L B.4ml C.30L D.4L E.15L 8.地高辛的半衰期为40.8h,在体内每天消除剩余量百分之几(A ) A.35.88 B.40.76 C.66.52 D.29.41 E.87.67 9.假设药物消除符合一级动力学过程,问多少个tl/2药物消除99.9%?(D ) A.4h/2 B.6tl/2 C.8tl/2 D.10h/2 E.12h/2 10.关于胃肠道吸收下列哪些叙述是错误的(C) A.当食物中含有较多脂肪,有时对溶解度特别小的药物能增加

生物药剂学与药物动力学

一、药物动力学概述 (1)、药物动力学研究的内容有哪些? 答:(1)药物动力学的建立;(2)预测不同给药方案下的血浆、组织和尿液的药物浓度;(3)探讨药物浓度与药物疗效或毒性之间的关系;(4)估算药物和/或代谢物的可能积蓄;(5)探讨药物结构与药物动力学及药效学之间的关系;(6)探讨生理或疾病的变化如何影响药物的吸收、分布与消除;(7)探讨药物极性因素与药物动力学之间的关系,开发新型给药系统;(8)根据药物动力学参数进行临床药物治疗方案的确定;(9)从药物动力学观点对药物质量进行认识和评价;(10)新药的生物利用度和生物等效性研究。 (2)、简述常用的药物动力学参数及其意义。 答:(1)生物半衰期t1/2:可判断药物在体内的停留时间;(2)消除速率常数K:可衡量药物从体内消除的快慢;(3)表观分布容积V:课评价药物在体内分布的程度,判断药物在体内的积蓄情况;(4)消除速率CL:为K与V的综合参数,具有生理学意义,可判断消除器官的功能;(5)给药曲线下面积AUC:可评价血管外给药物制剂药物在体内吸收总量的大小。 (3)、简述影响药物分布的因素。 答:(1)组织器官血流量;(2)血管的通透性;(3)药物与血浆蛋白的结合率;(4)药物与组织亲和力;(5)药物相互作用;(6)药物理化性质;(7)药物剂型因素。 (4)、建立药物动力学模型有什么意义?一室模型与二室模型有什么区别? 答:建立药物动力学模型并不具有解剖学和生理学意义,它是将整个机体按药物转运速率特征划分为若干个独立的隔室,这些隔室连接起来构成一个完整的系统,反映药物在机体的动力学特征,称为隔室模型。 (5)为什么同一药物在不同的文献报道中会出现不同模型的报到? 答: (6)药物动力学的速度类型有哪些?简述一级动力学的特点。 答:速度类型有一级速率过程、零级速率过程、非线性速率过程。一级动力学的特点是:(1)药物的生物半衰期与给药剂量无关;(2)一次给药的血药浓度—时间曲线下面积与给药剂量成正比;(3)一次给药情况下,尿药排泄量与给药剂量成正比。 (7)如何理解表观分布容积中“表观”的含义?表观分布容积有没有上下限? 答:表观,因为它并不代表有生理意义的真正容积。而它的比值是时间的函数。由于分配容积大小可推测药物在体内分布及结合情况,故它有广泛的实用意义。(Vd)值大,其药理意义是提示该药分布广或者是药物与生物高分子有大量结合,亦或两者兼有之。 (8)如果一种药物分不到一室模型中,是否意味着组织中没有药物? 答:

生物药剂学与药动学

生物药剂学与药动学第一节生物药剂学概述 1、生物药剂学研究中得剂型因素不包括 ( 药物得疗效与毒副作用 ) 2、以下不属于生物药剂学研究中得剂型因素 ( 药物得包装 ) <1>药物从血液向组织器官转运得过程就是 ( 分布 ) <2> 、药物在机体内发生化学结构得变化得过程就是 ( 代谢 ) <3> 、药物在机体内发生化学结构得变化及由体内排出体外得过程就是 ( 消除 ) <4> 、药物从给药部位进入体循环得过程就是 ( 吸收 ) <5> 、原型药物或其代谢物由体内排出体外得过程就是 ( 排泄 ) 口服药物得吸收 1、某有机酸类药物在小肠中吸收良好,主要因为 ( 小肠得有效面积大) 2、下列不属于影响药物溶出有效面积因素得就是 ( 药物得多晶型 ) 3、关于弱酸性药物得吸收叙述正确得就是 ( 弱酸性条件下药物吸收增多 ) 4、内容物在胃肠得运行速度正确得就是 ( 十二指肠>空肠>回肠 ) 5、食物可以促进药物吸收得就是 ( 维生素B2 ) 6、关于影响胃空速率得生理因素不正确得就是 ( 药物得理化性质 ) 7、首过效应主要发生于下列哪种给药方式 ( 口服给药 ) 8、大多数药物通过生物膜得转运方式为 ( 被动扩散 ) 9、以下转运机制中药物从生物膜高浓度侧向低浓度侧转运得就是 ( B与C选项均就是 ) 10、对药物胃肠道吸收无影响得就是 ( 药物得旋光度 ) 11、大多数药物吸收得机制就是 ( 不消耗能量,不需要载体得高浓度向低浓度侧得移动过程 ) 12、有关药物吸收描述不正确得就是 ( 小肠可能就是蛋白质多肽类药物吸收较理想得部位 ) 13、主动转运得特点不包括 ( 不受代谢抑制剂得影响 ) 14、弱酸性药物与抗酸药同服时,比单独服用该药 ( 在胃中解离增多,自胃吸收减少 ) 15、弱碱性药物与抗酸药同服时,比单独服用该药 ( 在胃中解离减少,自胃吸收增多 ) 16、可作为多肽类药物口服吸收得部位就是 ( 结肠 ) 17、对一些弱酸性药物有较好吸收得部位就是 ( 胃 )

(完整版)生物药剂学与药物动力学简答题

1.如何从制剂因素来提高药物的口服吸收? A增加药物溶出速度 a制成盐类 b制成无定型药物 c加入表面活性剂 d用亲水性包含材料制成包含物 B增加药物的表面积 C加入口服吸收促进剂 2.从pH—分配理论的观点,简述药物的理化性质对药物跨膜转运的影响,以及我们如何利用这个规律去提高药物的胃肠道吸收。 对弱酸或弱碱性药物而言,由于受到为肠道内pH值的影响,药物以分子型和接力型两种形式存在。构成消化道上皮细胞膜内类脂膜,它是药物吸收的屏障,通常脂溶性较大未解离型分子易通过,解离后离子型不易通过。为肠道内已溶解药物的吸收会受到未解离型药物的比例和未解离药物脂溶性大小的影响。通常弱酸性药物在胃液中几乎完全不解离,程度高,吸收差。他们的吸收只能通过提高胃液pH值来实现。正常小肠的pH 值接近中性,通常pKa>3.0的酸以及pKa<7.8的碱很容易吸收。 3.鼻粘膜给药的途径 A鼻粘膜内血管丰富,鼻黏膜渗透性高,有利于全身吸收 B可避开肝首过效应,消化道内代谢和药物在肠胃液中的降解。 C吸收程度和速度有时可与静脉注射相当 D鼻腔内给药方便易行 4.影响软膏中药物透皮吸收的因素 生理因素、剂型因素、透皮吸收促进剂、离子导入技术的应用 5.影响要鼻腔吸收的药物理化性质与生理因素有那些? 生理因素:A鼻黏膜极薄,黏膜内毛细血管丰富,药物洗手后直接进入体循环可避免肝脏的首过作用及药物在肠胃道的溶解。 B成人鼻腔内分必物的正常pH为5.5—6.5 C鼻黏膜纤毛的同步运动与清除外来异物的功能 理化性质:A药物的脂溶性和解离度 B药物的相对分子量和粒子大小 C吸收促进剂于多肽蛋白类药物的吸收 6.如何通过制剂学方法来增加药物的淋巴转运? 可以通过改造药物的大小 A将药物修饰成仍具有原来生物活性的高分子化合物 B利用现代制剂技术,制备脂质体、微孔微粒、纳米粒、复合乳剂等各种载药系统。7.简述影响药物代谢的生理因素 年龄,性别,种族、个体差异,饮食 8.如何利用药物代谢的规律来知道药物及其制剂设计? A前体药物类制剂的设计:如左旋多巴在体内经酶解脱羧后再生为多巴胺,而发挥治疗作用 B药物代谢的饱和现象和制剂的设计 C药酶抑制与制剂设计 D药物代谢和剂型改革 9.简述药物从肾脏排泄的机理,若病人苯巴比妥过量中毒,从肾脏排泄机理角度如何指导

生物药剂学与药物动力学习题及答案

1 大多数药物吸收的机理是(D ) A 逆浓度差进行的消耗能量过程 B 消耗能量,不需要载体的高浓度向低浓度侧的移动过程 C 需要载体,不消耗能量的高浓度向低浓度侧的移动过程 D 不消耗能量,不需要载体的高浓度向低浓度侧的移动过程 E 有竞争转运现象的被动扩散过程 2 PH分配学说适用于药物在胃肠道中的吸收机制的是被动扩散 3 血液中能向各组织器官运转分布的药物形式为游离药物 4 影响胃肠道吸收的药物理化性质因素为()A 胃肠道Ph B 胃空速率C 溶出速率D 血液循环E 胃肠道分泌物 5 某药物的表观分布容积为5 L ,说明药物主要在血液中 6 弱酸性药物在胃中吸收较好的原因是弱酸性药物在胃中主要以未解离型形式存在 7 大多数药物在小肠中的吸收比pH分配假说预测值要高的原因是小肠粘膜具有巨大的表面积 .药物胃肠道的主要及特殊吸收部位是小肠9.同一种药物口服吸收最快的剂型是溶液剂 10 .对药物表观分布容积的叙述表观分布容积大,表明药物在体内分布越广 11.药物的血浆蛋白结合率很高,该药物(D)A.半衰期短B吸收速度常数ka大C.表观分布容积大D表观分布容积小E半衰期长12.静脉注射某药物500mg,立即测出血药浓度为1mg/mL,按单室模型计算,其表观分布容积为(B) A.0.5 L B.5 L C.25 L D.50L E.500L 13.药物的消除速度主要决定(C)A.最大效应B.不良反应的大小C.作用持续时间D 起效的快慢E.剂量大小 1 、正确论述生物药剂学研究内容的是(C)A 、探讨药物对机体的作用强度B 、研究药物作用机理 C 、研究药物在体内情况 D 、研究药物制剂生产技术 2 、能避免首过作用的剂型是(D)A 、骨架片B 、包合物C 、软胶囊D 、栓剂 3 、进行生物利用度试验时,整个采样时间不少于(C ) A 、1-2 个半衰期 B 、2-3 个半衰期 C 、3-5 个半衰期 D 、5-8 个半衰期 E 、8-10 个半衰期 4 、药物剂型与体内过程密切相关的是(A )A 、吸收B 、分布C 、代谢D 、排泄 5 、药物疗效主要取决于(A )A 、生物利用度 B 、溶出度 C 、崩解度 D 、细度 6 、影响药物吸收的下列因素中不正确的是(A ) A 、解离药物的浓度越大,越易吸收 B 、物脂溶性越大,越易吸收 C 、药物水溶性越大,越易吸收 D 、药物粒径越小,越易吸收 7 、药物吸收的主要部位是(B)A 、胃 B 、小肠 C 、结肠 D 、直肠 8 、下列给药途径中,除(C)外均需经过吸收过程A 、口服给药 B 、肌肉注射 C 、静脉注射 D 、直肠给药 9 、体内药物主要经(A)排泄A 、肾 B 、小肠 C 、大肠 D 、肝 10 、体内药物主要经(D)代谢A 、胃B 、小肠C 、大肠D 、肝 11 、同一种药物口服吸收最快的剂型是(C )A 、片剂B 、散剂C 、溶液剂D 、混悬剂 12 、药物生物半衰期指的是(D ) A 、药效下降一半所需要的时间 B 、吸收一半所需要的时间 C 、进入血液循环所需要的时间 D 、血药浓度消失一半所需要的时间 [1-5] A 、主动转运 B 、促进扩散 C 、吞噬 D 、膜孔转运 E 、被动转运 1 、逆浓度梯度(A ) 2 、需要载体,不需要消耗能量是(B ) 3 、小于膜孔的药物分子通过膜孔进入细胞膜的是(D) 4 、细胞摄取固体微粒的是(C ) 5 、不需要载体,不需要能量的是(E) [6-10] A 、C=C 0(1-enk τ)/(1-e-k τ )·e-k t B 、F=(AUC0 →∝)口服/ AUC0 →∝)注射 C 、C=KaFK 0 /V (Ka-k )·(e -k t - e -kat ) D 、C=k0 /kV·(1- e-k t ) E 、C=C0e-k t 1 、表示某口服制剂的绝对生物利用度是(B ) 2 、表示单室模型,多剂量静脉注射给药后的血药浓度变化规律是(A ) 3 、表示单室模型,单剂量静脉注射给药后的血药浓度变化规律是(E) 4 、表示单室模型,单剂量静脉滴注给药后的血药浓度变化规律是(D) 5 、表示单室模型,单剂量口服给药后的血药浓度变化规律是(C ) 1 、生物药剂学中的剂型因素对药效的影响包括(ABCD) A 、辅料的性质及其用量 B 、药物剂型 C 、给药途径和方法 D 、药物制备方法 2 、药物通过生物膜的方式有(ABCD)A 、主动转运B 、被动转运C 、促进扩散D 、胞饮与吞噬 3 、生物利用度的三项参数是(ACD )A 、AUC B 、t 0.5 C 、T max D 、C max 4 、生物利用度试验的步骤一般包括(ABCE )A 、选择受试者B 、确定试验试剂与参比试剂C 、进行试验设计D 、确定用药剂 量 E 、取血测定 5 、主动转运的特征(DE )A 、从高浓度区向低浓度区扩散B不需要载体参加C不消耗能量D有饱和现象E有结构和部位专属性 6 、肝脏首过作用较大的药物,可选用的剂型是(CDE)A 、口服乳剂B 、肠溶片剂C 、透皮给药制剂D气雾剂E 、舌下片剂 7 、对生物利用度的说法正确的是(BCD) A 、要完整表述一个生物利用度需要AUC ,Tm 两个参数 B 、程度是指与标准参比制剂相比,试验制剂中被吸收药物总量的相对比值 C 、溶解速度受粒子大小,多晶型等影响的药物应测生物利用度 D 、生物利用度与给药剂量无关 E 、生物利用度是药物进入大循环的速度和程度一、 A型题(最佳选择题) 1、下列叙述错误的是D A、生物药剂学是研究药物在体内的吸收、分布、代谢与排泄的机理及过程的边缘科学 B、大多数药物通过被动扩散方式透过生物膜 C、主动转运是一些生命必需的物质和有机酸、碱等弱电解质的离子型等,借助载体或酶促系统从低浓度区域向高浓度区域转运的过程 D、被动扩散一些物质在细胞膜载体的帮助下,由高浓度向低浓度区域转运的过程 E、细胞膜可以主动变形而将某些物质摄入细胞内或从细胞内释放到细胞外,称为胞饮

相关文档
最新文档