变电站的防雷接地技术通用版

合集下载

变电站设施的防雷与接地技术

变电站设施的防雷与接地技术

变电站设施的防雷与接地技术随着电力系统的发展,变电站的重要性在电力传输和供应中愈加突出。

然而,由于变电站常常处在露天环境下并且承担着电力传输的任务,其设备和设施容易受到雷电的影响。

因此,实施适当的防雷与接地技术对于确保变电站的正常运行和电力安全至关重要。

首先,变电站应该配备适当的防雷设施。

常见的防雷设施包括避雷针和避雷网。

避雷针是安装在建筑物或设备上的尖峰,主要作用是引导雷电流经过,从而将雷电流安全地释放到大地中。

而避雷网则是由金属网制成的防雷网,其目的是将雷电流均匀地分散到大地中,减少雷电对设备和设施的影响。

这样的防雷设施能够通过优化电场分布和消散雷电能量,减少雷电对设备的冲击,从而保证变电站的正常运行和设备的安全性。

其次,变电站在设计和建设过程中需要注意合理的接地系统。

接地系统不仅可以防止雷电对设备的破坏,还可以保护人身安全。

常见的接地系统包括保护接地、操作接地和仪表接地。

保护接地是指将变电站的主要设备和设施与地面形成良好的接触,以便在发生故障时将电流导入地面,从而保护设备和人身安全。

操作接地主要是为了保证操作人员的安全,当需要进行设备维修和检修时,操作人员要将设备接地并使用合适的防护设备,以防止电流通过人体造成伤害。

仪表接地是指将仪表设备与大地连接,确保测量结果准确可靠。

在设计接地系统时,需要考虑以下因素:变电站的地质条件、土壤电阻率、接地电阻的要求、外部干扰和雷电破坏等因素。

地质条件和土壤电阻率将直接影响接地电阻的大小。

接地电阻的要求要符合相关的国家或地区标准,以保证系统正常运行。

外部干扰也是影响接地系统的重要因素,例如邻近大型建筑物或混凝土表面的覆盖。

因此,在设计接地系统时,应该综合考虑这些因素,确定适合的接地技术。

除了以上措施,还可以采取其他的防雷与接地技术来提高系统的可靠性和抗雷击能力。

例如,可以使用避雷器来抑制和消除过电压,保护变电设备不受雷击影响。

避雷器通常安装在设备的进出线路上,当过电压出现时,避雷器能够将过电压引流到地面,保护设备的安全。

变电站的防雷接地技术模版

变电站的防雷接地技术模版

变电站的防雷接地技术模版变电站的防雷接地技术在现代电力系统中起着至关重要的作用。

接地系统的质量直接关系到变电站的运行安全和稳定性。

为此,需要采取一系列科学合理的防雷接地措施。

本文将对变电站防雷接地技术进行详细介绍。

1. 变电站的防雷接地目标是提高变电站的防雷能力,保证变电站的设备和人员免受雷电灾害的侵害。

具体来说,防雷接地技术的目标包括以下几个方面:(1) 提供良好的接地条件,降低设备的接地电阻,减小接地电阻对设备的影响。

(2) 合理选择接地电阻的大小,确保接地电阻能够满足工作条件。

(3) 在设计过程中考虑不同变电站的特点,如土壤电阻率、湿度等因素,制定相应的防雷接地方案。

2. 在变电站的防雷接地设计中,地网是一个重要的组成部分。

地网的作用是将雷电流迅速引入地下,避免对设备和人员造成危害。

为了确保地网的效果,应采取以下几个措施:(1) 选择导电性能好的材料,如铜、镀锌钢等,来构建地网。

这样可以降低接地电阻,提高接地效果。

(2) 最大限度地增加地网的接地面积,通过合理布置地网,使地网与大地的接触面积最大化。

(3) 进行接地体的环境电磁兼容性设计,避免雷电流对设备正常运行的干扰。

3. 变电站的防雷接地技术还包括防雷装置的选择和安装。

防雷装置主要有避雷针、避雷器等。

在选择和安装防雷装置时,需要考虑以下几个方面:(1) 根据变电站的环境条件和雷电活动情况,选择合适的防雷装置。

例如,当雷电活动频繁时,应选择灵敏度高的防雷装置。

(2) 避雷器的接地引下线应与变电站的主接地体相连,确保避雷器能够快速将雷电流引入地下。

(3) 避雷器的接地电阻应尽量小,以确保避雷器能够正常工作。

4. 防雷接地技术的设计还应考虑到防雷装置与设备的连接。

具体来说,应采取以下几个措施:(1) 创建一个低阻连接,确保雷电流能够顺利引入地下,而不对设备造成危害。

(2) 合理布置接地引下线,避免交叉干扰,确保防雷装置的正常工作。

(3) 防止接地回路的断开,采取适当的接地保护措施,如设置避雷器来保护接地引下线。

变电站防雷接地技术

变电站防雷接地技术

变电站防雷接地技术摘要:变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。

如果变电站发生雷击事故,将造成大面积的停电,给社会生产和人民生活带来不便,这就要求防雷措施必须十分可靠,所有如何有效、合理对变电所采取防雷接地保护措施有着十分重要的意义,因此,必须加强变电所雷电防护问题的认识与研究。

关键词:变电站;防雷措施;接地电阻;直击雷防护一变电站防雷接地的研究意义雷电一直是危害电力系统安全稳定运行的重要因素之一,如果变电站发生雷击事故,将造成大面积停电,给社会生产和人民生活带来不便,这就要求防雷措施必须十分可靠。

目前,电力系统高压部分的雷电防护措施已经比较完善,而低压系统是由大量电子、微电子等弱电设备组成,由于其耐压水平低,雷电波侵入弱电系统时易导致设备的误动、击穿,严重影响了电力系统的安全稳定运行。

国内外对二次系统的防护主要从电磁兼容角度进行研究,并未提出完善的保护措施。

二变电站的防雷保护首先来分析变电站遭受雷击的主要原因:雷电是雷云层接近大地时,地面感应出相反电荷,当电荷积聚到一定程度,产生云和云之间以及云和大地之间放电,迸发出光和声的现象。

供电系统在正常运行时,电气设备的绝缘处于电网的额定电压作用之下,但是由于雷击的原因,供配电系统中某些部分的电压会大大超过正常状态下的数值,通常情况下变电站雷击有两种情况:一是雷直击于变电站的设备上,二是架空线路的雷电感应过电压和直击雷过电压形成的雷电波沿线路侵入变电站。

其具体表现形式如下:1、直击雷过电压雷云直接击中电力装置时,形成强大的雷电流,雷电流在电力装置上产生较高的电压,雷电流通过物体时,将产生有破坏作用的热效应和机械效应。

2、感应过电压当雷云在架空导线上方,由于静电感应,在架空导线上积聚了大量的异性束缚电荷,在雷云对大地放电时,线路上的电荷被释放,形成的自由电荷流向线路的两端,产生很高的过电压,此过电压会对电力网络造成危害。

变电站的防雷接地技术(三篇)

变电站的防雷接地技术(三篇)

变电站的防雷接地技术变电站作为电力系统中的重要组成部分,其正常运行对于电力系统的稳定供电具有重要意义。

而雷电是导致电力设备损坏和电力系统故障的主要原因之一,因此,在变电站的设计和建设过程中,防雷接地技术是至关重要的。

一、防雷接地的基本概念和作用防雷接地是指通过合理布置接地设施,在雷电侵袭时迅速引导雷电流入地下,减少雷电对设备和系统的损害。

其主要作用有以下几个方面:1. 接地安全:良好的接地系统可以防止雷电对设备和人员的危害,保证安全运行。

2. 电气设备的保护:合理的接地系统可以将雷电流迅速引到地下,避免雷击对设备造成直接或间接的损害。

3. 系统可靠性:优良的接地系统可以提高系统的可靠性,减少故障发生的可能性。

二、变电站防雷接地技术1. 接地系统的设计变电站的接地系统主要由接地电阻、接地极、接地网和接地体等组成。

(1)接地电阻:接地电阻是指将接地极与大地相连的电阻。

它的主要作用是限制接地系统的电流在合理范围内,在雷击时减少对设备的伤害。

接地电阻的设计要根据变电站的场地情况和工程要求灵活选择。

(2)接地极:接地极是将接地电阻埋设在地下的部分。

它的选择要考虑土壤的导电性、外部介质的腐蚀性以及可靠性等因素。

常用的接地极有水平接地极、竖直接地极和涂铜接地极等。

(3)接地网:接地网是由多个接地极和导线连接而成的网状结构。

它通过增大接地面积,降低接地电阻,提高接地的可靠性和稳定性。

接地网的布置要根据变电站的场地和设备的要求进行合理设计。

(4)接地体:接地体是指其他与接地系统有关的构造物,如金属结构、设备等。

接地体的选择和设计要根据具体的变电站情况和设备要求进行合理布置。

2. 接地材料的选择接地材料的选择要考虑其导电性能、耐腐蚀性能和可靠性等因素。

常用的接地材料有裸铜导线、镀锌钢导线、铜包钢导线和铜排等。

其中,裸铜导线具有良好的导电性能和耐腐蚀性能,是较为理想的接地材料。

3. 接地设施的布置变电站的接地设施要合理布置,使得接地系统的电流均匀分布、电势降低,并减少相互干扰。

变电站防雷接地技术

变电站防雷接地技术
说 , 变 电站 的接 地 电 阻 应 控 制 在 5 D 以 下 ,对
【 关键词 】变电站 防雷接地 雷 电入侵
3变电站的防雷接地技术
3 . 1 防 雷 接 地 装 置
于重要节点处的变 电站,其接地 电阻更要小于
0 . 5 D,除 此 之 外 , 在 进 行 变 电 站 防 雷接 地装 置
或化 学腐蚀 的可能性。在进行接地线敷设时 ,
需要注意以下几个方面 :一是接 电线 的连接应 采用焊接方式,且当采 用搭接焊接 时,搭接长 度 应为扁钢 的 2倍 、圆钢 的 6倍 ;二是接地线 与管道等进行连接时宜采 用焊接方式 ,且连接 点应选择近处,并在管道阀门处设置跨 接线 ; 三是接电线与电气设备 间的连接 可采用螺栓或 焊接方式,而与接地极间的连接 宜采用焊接方
地网。 ’
出了更高 的要求 。变 电站作 为电力系统中电压
等 级 变 换 、 电 能集 中 分配 的 场 所 , 对 电 力 系 统
般 来 说, 防雷接 地装 置主 要 由接地 体
与接地线两大部分组成 。 ( 1 )接 地体。接地 体根据属 性不 同可 以 分为 自然接地体与人工接地体 两类。 自然接 地 体是指利用大地 中已经存 在的管道、钢筋等金
而感应雷也称二次雷,是 由于雷云电磁感应 而 在 电气设备上产生的一种过电压,对 电气设备 也有着严重 的破坏 。根据雷击形式的不同,变 电站 的防雷措施也应当有针对性地入手 。
P o we r E l e c t r o n i c s ● 电力 电子
变电站防雷接地技术
文/ 王 志平
的控制调度 中心 ,内部布置有大量二次 系统通 随着 我 国经 济社会 的迅 速发
展 , 社 会 用 电 量 不 断 增 加 , 电 力

110kV220kV变电站防雷接地技术

110kV220kV变电站防雷接地技术

110kV220kV变电站防雷接地技术发布时间:2021-06-25T10:36:41.827Z 来源:《中国电业》2021年3月第7期作者:吴承俊[导读] 110kV220kV变电站是我国输配电网络中主要的高压变电站类型,直接承担着我国大部分的高压输配电任务,变电站的安全运行关系着电网的安全稳定运行吴承俊桂林丰源电力勘察设计有限责任公司广西桂林 541001摘要:110kV220kV变电站是我国输配电网络中主要的高压变电站类型,直接承担着我国大部分的高压输配电任务,变电站的安全运行关系着电网的安全稳定运行。

而雷电灾害是影响变电站运行的主要外部因素,一旦发生雷电故障,将导致严重的后果。

因此,本文主要分析110kV220kV变电站防雷接地技术的应用。

关键词:变电站;防雷接地技术;应用1.110kV220kV变电站出现雷击现象的主要因素由于110kV220kV变电站具有相对特殊的功能和特性,其一般位于相对空旷的区域,户外电气设备基本为金属设备,因此发生雷击的可能性非常高,一旦变电站发生雷击,可能导致严重事故,如停电将对社会的生产生活造成较大影响,也可能导致设备损坏造成严重的经济损失。

为了保护电气设备不受雷电的影响,有必要对变电站的防雷接地技术进行深入研究,一般来说,在变电站正常运行期间,电网电气设备以额定电压运行,但是在雷雨天气中,雷击导致输配电系统中的某些线路出现过电压,进而影响到变电站,根据不同的雷击方式,变电站的雷击过电压主要有以下几种[4]。

1.1雷直击设备过电压雷电直接击中电气设备后,会在电气设备中产生大的雷电流和超高压,同时还会释放出大量的热量,出现的热量将直接影响电气设备的正常运行,容易造成电气设备损坏,影响变电站的正常运行。

1.2雷直击线路及感应雷过电压当雷场移至架空线上时,在静电感应的影响下,会导致架空线上更多的异常束缚电积累,雷云一旦释放地面,将在架空输电线路上造成极高的感应过电压,此外,雷直击中输电线路时,在线路上形成雷电波,雷电波沿着输电线路侵入变电站,从而导致变电站电气设备过电压,这些过电压的出现会对变电站造成严重损害。

变电站的防雷接地技术模版

变电站的防雷接地技术模版

变电站的防雷接地技术模版防雷接地技术是变电站建设中至关重要的一项工作,它关系到电力设备的安全运行和用电质量的稳定。

以下是一个____字的变电站防雷接地技术模板,供参考。

第一章引言1.1 研究背景随着电力设备的不断进步和发展,变电站的规模和复杂程度也在不断增加。

在变电站中,雷击是一个常见的自然灾害,对设备的绝缘强度和继电保护的正常运行都会造成很大的影响。

因此,进行合理的防雷接地工作对于保障变电站的安全运行具有重要意义。

1.2 研究目的本文旨在研究变电站的防雷接地技术,分析其原理和方法,并提出一套完整的防雷接地技术模版,以指导变电站的防雷接地工作。

第二章防雷接地技术原理2.1 雷击特点及危害防雷接地技术的研究首先需要了解雷击特点及其对设备的危害。

雷击是一种高能量的自然现象,其能量可达数百万伏特,数百千安培。

雷电产生的电磁场和电压脉冲会对设备的电气性能产生破坏,甚至会引发火灾和爆炸。

2.2 防雷接地原理防雷接地技术依靠合理布置的接地装置将雷击电流引入地下,分散其能量,降低其危害。

接地系统的主要功能包括:引导和分散雷电能量、保护设备免受过电压的侵害、保护人身安全等。

常见的防雷接地技术包括平面接地、等效接地电阻的控制和良好的接地系统设计等。

第三章防雷接地技术方法3.1 接地系统设计3.1.1 接地体材料选择接地体的材料选择对系统的性能有重要影响。

常见的接地体材料有铜、铝、镀锌钢等。

根据预算和性能要求,选择合适的接地体材料。

3.1.2 接地体形状设计接地体的形状对其导电性能和机械强度有很大的影响。

接地体的形状应尽量接近理想导体,以增加其导电性能。

3.1.3 接地体布置设计接地体的布置设计应考虑到雷电击中的可能性,以保证雷电能够有效地引入地下。

变电站的接地系统应合理布置,保证接地电阻满足要求。

3.2 接地系统施工3.2.1 接地体施工接地体的施工应注意连接接地体和主体设备之间的接触性能和接地电阻。

接地体与地下土壤的接触性能越好,接地电阻越低。

变电站接地设计及变电站的防雷技术措施

变电站接地设计及变电站的防雷技术措施

变电站接地设计及变电站的防雷技术措施变电站接地设计及变电站的防雷技术措施电工天下:变电站接地设计及变电站的防雷技术措施,包括工作接地与保护接地的设计要求,变电站接地设计的必要性,变电站接地设计原则,变电站接地电阻的测量,变电站弱电设备防雷措施等。

变电站接地系统的合理与否是直接关系到人身和设备安全的紧要问题。

随着电力系统规模的不断扩大,接地系统的设计越来越多而杂。

变电站接地包含工作接地、保护接地、雷电保护接地。

工作接地即为电力系统电气装置中,为运行需要所设的接地;保护接地即为电气装置的金属外壳、配电装置的构架和线路杆塔等,由于绝缘损坏有可能带电,为防止其危及人身和设备的安全而设的接地;雷电保护接地即为为雷电保护装置向大地泄放雷电流而设的接地。

变电站接地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。

1变电站接地设计的必要性接地是避雷技术最紧要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装置导入大地。

因此,没有合理而良好的接地装置,就不能有效地(防雷)。

从避雷的角度讲,把接闪器与大地做良好的电气连接的装置称为接地装置。

接地装置的作用是把雷电对接闪器闪击的电荷尽快地泄放到大地,使其与大地的异种电荷中和。

变电站的接地网上连接着全站的高处与低处压电气设备的接地线、低压用电系统接地、电缆屏蔽接地、(通信)、(计算机)监控系统设备接地,以及变电站维护检修时的一些临时接地。

假如接地电阻较大,在发生电力系统接地故障或其他大电流入地时,可能造成地电位异常上升;假如接地网的网格设计不合理,则可能造成接地系统电位分布不均,局部电位超过规定的安全值,这会给出运行人员的安全带来威逼,还可能因反击对低压或二次设备以及电缆绝缘造成损坏,使高压窜入掌控保护系统、变电站监控和保护设备会发生误动、拒动,酿成事故,甚至是扩大事故,由此带来巨大的经济损失和社会影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安全管理编号:YTO-FS-PD287
变电站的防雷接地技术通用版
In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities.
标准/ 权威/ 规范/ 实用
Authoritative And Practical Standards
变电站的防雷接地技术通用版
使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。

文件下载后可定制修改,请根据实际需要进行调整和使用。

1接地装置
保护和屏蔽措施都要求有科学可靠的接地装置。

1.1接地体
接地体可分为自然接地体和人工接地体,设计中通常采用人工接地体,以便达到所规定的接地电阻,并避免外界其他因素的影响。

人工接地体又可分为水平接地体和垂直接地体。

接地体的接地电阻值取决于接地体与大地的接触面积、接触状态和土壤性质。

垂直接地体之间的距离为5m左右,顶部埋深0.5~0.8m。

接地体与道路或通道出入口的距离不小于3m,当小于3m时,接地体的顶部处应埋深1m以上,或采用沥青砂石铺路面,宽度超过2m。

埋在土壤中的接地装置连接部位应按规范规定的搭接长度焊接以达到电气连接。

焊接部位应作防腐处理。

1.2接地线
接地线即接地体的外引线,连接被保护或屏蔽设施的
连线,可设主接地线、等电位连接板和分接地线。

防雷接地装置的接地线即防雷接闪装置的引下线,可采用圆钢或扁钢,两端按规定的搭接长度焊接达到电连接。

防静电保护和防干扰屏蔽装置的主接地线一般采用多股铜芯电缆,分接地线采用多股铜芯软线。

2防雷保护措施
防雷措施总体概括为2种:①避免雷电波的进入;②利用保护装置将雷电波引入接地网。

防雷保护措施应根据现场常见的雷击形式、频率、强度以及被保护设施的重要性、特点安装适宜的保护装置。

2.1避雷针或避雷线
雷击只能通过拦截导引措施改变其入地路径。

接闪器有避雷针、避雷线。

小变电所大多采用独立避雷针,大变电所大多在变电所架构上采用避雷针或避雷线,或两者结合,对引流线和接地装置都有严格的要求。

2.2避雷器
避雷器能将侵入变电所的雷电波降低到电气装置绝缘强度允许值以内。

我国主要是采用金属氧化物避雷器(MOA),西方国家除用MOA外,还在所有电气装置上安装空气间隙,作为MOA失效后的后备保护。

2.3浪涌抑制器
采用过压保护器(电涌保护)、防雷端子等提高电气设备自身的防护能力,防止电气设备、电子元件被击坏。

在重要设备的电源配入、配出口均应加装电源防雷器,选用的电源防雷器具有远传通讯接点,接入后台管理机。

当发生雷击事故时,如电源防雷模块遭到损坏,在后台监控机上就能显示其状态。

在控制、通讯接口处加装浪涌抑制器。

2.4接地装置
独立避雷针要求单独设置接地装置;建筑物避雷网的引下线应与建筑物的通长主筋(不少于2根)及建筑物的环状基础钢筋焊接,并与室外的人工接地体相连,与工作接地共地,形成等电位效应。

为了保证防雷装置的安全可靠,引下线应不少于2根,在高土壤电阻系数地区,可采用多根引下线以降低冲击接地电阻,引下线要求机械连接牢固,电气接触良好。

变电站的防雷接地电阻值要求不大于1Ω。

3防雷电感应
现代变电站都有较完善的直击雷防护系统,户外设备直接遭雷击损坏的概率较小。

但雷击防雷系统时所产生的雷电放电及电磁脉冲,以及雷电过压通过金属管道、电缆会对变电站控制室内各种弱电设备产生严重的电磁干扰,从而影响整个系统的正常运行。

变电站防雷系统落雷时,会产生2个方面的影响:①雷电流要通过站内接地网(主要靠集中接地装置)泄入大地,
在地网上产生一定的冲击电位,严重时会在一些部位产生反击,甚至产生局部放电现象,危及电气设备绝缘;②雷电流通过避雷针的接地引下线入地时,会在周围空间产生强大的暂态电磁场,从而在各种通讯、测量、保护、控制电缆、电线,甚至户内弱电设备的部件上产生暂态电压,影响这些设备的正常运行。

3.1雷击时暂态感应电压分析
雷击厂站有2种情况:①雷击站内的构架或独立避雷针;②雷击站内所在建筑物的防雷系统。

雷电放电会对周围空间,包括控制室内造成传导或幅射的电磁干扰。

在雷电波等值频率范围内,这些干扰主要是电感耦合型的。

从户外设备引入控制室的各种电缆、电线,在户外绝大部分是走地下电缆沟的,雷电放电形成的空间电磁场对其影响不大,这主要是因为线的走向与避雷针是垂直的。

但在建筑物内走线时就容易产生感应回路,而且这些回路的一端接入输入阻抗大的电子设备,相当于开路,穿透建筑物钢筋水泥墙壁的电磁脉;中会在这些回路中感应出幅值较高的暂态电压。

(1)雷击变电站内靠近控制室的避雷针时,情况相当复杂,因为整个建筑物的各个导电构件,包括防雷系统、水泥墙及地板中的钢筋、金属横粱等的影响都需要考虑。

(2)建筑物防雷系统除避雷针外还包括由接地引下线、
水平连接母线及引下线下的接地装置构成的泄流系统。

雷击时,雷电流经过离室内务回路相当近的各接地引下线泄入地网,在各回路周围空间产生很强的暂态电磁场。

因接地引下线紧贴墙壁,故此时墙中的钢筋甚至墙上专门设置的屏蔽网已基本不起屏蔽作用。

因为只有处于非磁饱和状态的屏蔽材料才能具备预期的屏蔽效果,而由于强辐射源离屏蔽层很近,若屏蔽层又不是用饱和电平较高的磁性材料做成,则其屏蔽效果是很差的。

另外磁通也可以穿过较大的孔眼直接与较近处的回路耦合。

3.2防护措施
为保证弱电设备的正常运行,可从以下几方面采取措施:(1)采用多分支接地引下线,使通过接地引下线的雷电流大大减小。

(2)改善屏蔽,如采用特殊的屏蔽材料甚至采用磁特性适当配合的双层屏蔽。

(3)改进泄流系统的结构,减小引下线对弱电设备的感应并使原有的屏蔽网能较好地发挥作用。

(4)除电源入口处装设压敏电阻等限制过压的装置外,在信号线接入处应使用光电耦合元件或设置具有适当参数的限压装置。

(5)所有进出控制室的电缆均采用屏蔽电缆,屏蔽层公用一个接地网。

(6)在控制室及通讯室内敷设等电位,所有电气设备的外壳均与等电位汇流排连接。

4微机保护防干扰屏蔽措施
变电站的微机保护设备容易受到电磁干扰,由于受到
电磁感应,在被测信号上产生叠加的串模干扰e。

;由于受到静电感应、地电位差异的影响,在信号线任一输入端与地之间产生叠加的共模干扰ec。

防干扰措施通常采取屏蔽和接地相结合,将所有屏蔽电缆分屏屏蔽,用截面
积>2.5mm2多股铜芯软线作为接地线,分别与汇流接地母排电连接,汇流接地母排与屏体绝缘,并采用单芯屏蔽电缆(>95mm2)与室外接地体做一点连接。

5结束语
根据防雷设计的整体性、结构性、层次性、目的性,及整个变电站的周围环境、地理位置、土质条件以及设备性能和用途,采取相应雷电防护措施。

对处在不同区域的设备系统进行等电位连接和安装电源防雷装置及浪涌电压保护装置,使得处在不同层次的设备系统达到统一的防雷效果。

变电站设计时应尽可能使象微波塔这样有引雷作用的建筑物远离控制室和通讯室,特别是当其周围没有更高的屏蔽物时。

建筑物防雷系统,尤其是泄流系统的设计对感应电压的幅值有明显的影响。

在设计时应根据实际情况采用最优方案,尽量减少感应,同时也要采取其他措施以保护敏感的弱电设备。

该位置可输入公司/组织对应的名字地址
The Name Of The Organization Can Be Entered In This Location。

相关文档
最新文档