微波电路设计基础资料讲解

合集下载

微波电路电子自动化设计讲义

微波电路电子自动化设计讲义

微波电路电子自动化设计讲义微波电路电子自动化设计讲义.txt6宽容润滑了彼此的关系,消除了彼此的隔阂,扫清了彼此的顾忌,增进了彼此的了解。

本文由ilovmiaomiao贡献pdf文档可能在WAP端浏览体验不佳。

建议您优先选择TXT,或下载源文件到本机查看。

微波电路 EDA讲义电子科技大学张勇国云川编目录第一章绪论 (1)§1.1 微波电路 (1)§1.1.1 什么是微波电路?......1 §1.1.2 微波电路的发展 (2)§1.2 什么是微波电路EDA?......3 §1.3 微波电路设计软件概述 (5) §1.3.1 Agilent ADS......5 §1.3.2 Ansoft HFSS......6 §1.3.3 其他软件 (6)第二章建模方法 (7)§2.1 建模方法概述 (7)§2.1.1 模型的基本要求......7 §2.1.2 建立元器件模型的方法 (7)§2.2 微波传输线模型 (9)§2.2.1 微带传输线......10 §2.2.2 微带线不均匀区的建模 (12)§2.3 微波半导体器件模型 (16)§2.3.1 微波半导体二极管模型......16 §2.3.2 微波半导体三级管模型(18)第三章微波电路的分析方法 (27)§3.1 传递矩阵法 (27)§3.1.1 传递矩阵(A矩阵)与二端口电路......27 §3.1.2 基本单元电路对应的矩阵形式......29 §3.1.3 简单级联电路的分析......30 §3.1.4 分支电路的分析 (32)§3.2 节点导纳矩阵(待定导纳矩阵)法 (40)§3.2.1 不定(待定)导纳矩阵定义......40 §3.2.2 不定(待定)导纳矩阵性质 (42)§3.2.3 微波元器件的不定导纳矩阵......43 §3.2.4 电路导纳矩阵的建立方法......45 §3.2.5 用节点导纳矩阵分析电路的方法 (48) §3.3 散射矩阵法 (50)§3.3.1 S参数矩阵与电路特性参数关系……50 §3.3.2 双口网络级联的S参数……51 §3.3.3 多口网络互联的S参数(散射矩阵的连接生长法) (52)I§3.3.4 多口S矩阵的端口简化 (58)§3.4 三种分析方法的比较......60 习题 (61)第四章最优化方法和最优化设计 (63)§4.1 最优化设计的基本原理......63 §4.2 目标函数 (65)§4.2.1 误差函数......65 §4.2.2 目标函数......66 §4.2.3 目标函数极值及全域最小值问题 (68)§4.3 最优化方法概述......71 §4.4 一维搜索法 (73)§4.4.1 区间消去法的基本原理......73 §4.4.2 菲波那西(Fibonacci)法......74 §4.4.3 黄金分割(0.618 法) (76)§4.5 无约束最优化的梯度方法(多维) (77)§4.5.1 最速下降法......77 §4.5.2 牛顿法 (83)§4.6 无约束最优化的直接方法(多维) (85)§4.6.1 模式法......86 §4.6.2 单纯形法 (88)§4.7 约束最优化问题 (91)§4.7.1 参数变换法......92 §4.7.2 外罚函数法......94 §4.7.3 内罚函数法 (99)第五章灵敏度计算与容差分析 (102)§5.1 灵敏度计算 (103)§5.1.1 §5.1.2 §5.1.3 §5.1.4 灵敏度定义......103 灵敏度的直接计算法 (103)伴随网络法......105 大变化灵敏度的计算 (106)§5.2 容差分析 (107)§5.2.1 最坏情况分析......107 §5.2.2 统计分析 (108)附录微波电路设计举例 (112)II第一章绪论§1.1 微波电路§1.1.1 什么是微波电路?微波电路顾名思义,就是传播微波信号的电路,相对于低频电路,它的频率更高,难度更大。

微波电路及其PCB技术设计知识

微波电路及其PCB技术设计知识

微波电路及其PCB技术设计知识微波电路及其PCB技术设计知识随着科技的不断发展,微波技术在通信、雷达、航空航天等领域中逐渐得到广泛应用。

微波电路是微波技术的核心,而微波电路的设计和制作依靠着PCB技术。

本文将从微波电路的基本概念和PCB技术的基本流程入手,介绍微波电路及其PCB 技术的设计知识。

一、微波电路的基本概念微波电路是指在微波频段(1~300GHz)内工作的电路,通常包括射频电路、微波电路和毫米波电路。

微波电路与一般的低频电路相比,有着不同的特点和要求。

微波电路的特点主要有以下几个方面:1.工作频率高,信号波长短。

微波波长在厘米至毫米级别,与低频电路相比要短得多。

因此在微波电路的设计中,需要特别注意电路的尺寸和传输线的特性阻抗等参数。

2.信号传输损耗大。

由于传输线的损耗、元器件的损耗、导体的损耗等原因,微波电路的传输损耗要比低频电路大得多。

因此,在设计微波电路时需要充分考虑信号传输损耗和信噪比问题。

3.信号噪声低。

微波电路的信噪比要求高,因为在微波频段内,信号与噪声的比例要比低频电路低得多。

因此,在设计微波电路时需要考虑降低噪声的影响,提高信号的质量和可靠性。

4.稳定性要求高。

微波电路的稳定性要求比低频电路高,因为微波电路中的元器件往往是高精度、高质量的,其参数变化容易引起整个电路的性能变化甚至发生故障。

二、PCB技术的基本流程PCB(Printed Circuit Board,印刷电路板)技术是目前电子制造领域中使用最广泛的电路板制造技术之一。

在微波电路的制造过程中,PCB技术也占据着至关重要的地位。

下面简要介绍PCB技术的基本流程,以便更好地理解微波电路和PCB技术的设计。

1.设计。

首先需要进行PCB设计,即绘制电路原理图、布局图和走线图。

PCB设计软件有Altium Designer、Cadence Allegro等。

2.制板。

根据设计好的电路图纸,将其转化为PCB板图,然后使用制板机进行制板。

《微波电路》课件

《微波电路》课件
高频段、大带宽
随着信息技术的不断发展,微 波电路的工作频率和传输带宽
也在不断增大。
集成化、小型化
随着微电子技术的发展,微波 电路的集成化程度越来越高, 体积越来越小。
多功能化
微波电路正向着多功能化的方 向发展,如同时处理多种信号 、实现多种功能等。
低成本、低功耗
随着市场竞争的加剧,低成本 、低功耗的微波电路成为研究
测试技术
微波电路的测试包括信号源测试、接 收机测试和系统测试等。信号源测试 主要是测试信号源的频率、功率和调 制等特性;接收机测试主要是测试接 收机的灵敏度、动态范围和抗干扰能 力等特性;系统测试主要是将微波电 路与其他系统进行集成测试,验证整 个系统的性能和功能。
05
微波电路的典型应用案例
微波通信系统中的微波电路
微波电路与生物医学工程 的融合
生物医学工程中的无损检测、生物传感器等 技术需要利用微波电路进行信号传输和处理 ,这种交叉融合有助于推动两个领域的共同
发展。
THANKS
感谢观看
系统误差
系统误差是由测量系统的硬件设备、线路损耗、连接器失 配等因素引起的误差。这些误差可以通过校准和修正来减 小。
方法误差
方法误差是由测量方法本身引起的误差,如信号源的频率 稳定度、测量接收机的动态范围等。这些误差可以通过选 择合适的测量方法和条件来减小。
微波电路的调试与测试技术
调试与测试的重要性
新型微波半导体材料
新型微波半导体材料如宽禁带半导体材料(如硅碳化物和氮 化镓)具有高电子迁移率和化学稳定性,为微波电路的发展 提供了新的可能性。
新型微波器件在微波电路中的应用
新型微波电子器件
随着微电子技术的不断发展,新型微波 电子器件如微波晶体管、微波集成电路 等不断涌现,这些器件具有体积小、重 量轻、可靠性高等优点,在雷达、通信 、导航等领域得到广泛应用。

微波电路设计基础

微波电路设计基础

一、基础1、数字微波应用微波是无线电波的一种。

在我国无线电广播按波长分为:长波(LW) 波长在介于1000~2000米,中波(MW)波长在介于200-600米、短波(SW)波长在介于10~100米。

CDMA800工作波长(~、~)米。

在我国分配微波频率为:微波通信的特点:视距传输;电波在传播过程中遇到尺寸和工作波长相近的障碍物时,会绕过障碍物向前传播,这种现象叫做电波的绕射。

微波通信建设快、投资小、应用灵活;传输质量可靠,抗干扰能力强。

至今与光缆通信和卫星通信并列为现代通信传输的三大支柱,在中等容量的网络中,微波传输是一种最灵活、适应性最强的通信手段。

在移动网络中的应用:在移动接入网络中,随着网络不断扩容和无缝覆盖的需求,新建了大量移动基站,如城区的“楼宇室内覆盖”,边远地区的“边际网覆盖”,沿海地区“海岛移动覆盖”。

但由于市政建设限制(如架空线难、开挖路面铺管道难),在自然环境很恶劣的山区和海洋,光缆建设非常困难、造价太高,造成大量光纤死角,部分基站的接入必须采用无线方式解决,产生了大量无线传输需求。

如沿海城市大连,拥有诸多的岛屿,岛屿上的移动通信成为大连移动提高移动网络覆盖率的重要任务。

大连采用SDH微波作为各海岛移动基站的中继链路,并通过与光传输系统的连接,组成完整的传输网络。

SDH微波链路干线全长公里,支线全长公里,最长站距公里,最短站距公里,平均站距公里,且全部为跨海电路(跨海微波链路的设计,由于海面环境和气候情况复杂,通常是所有微波应用中难度最大)。

使用微波设备不仅可以缓解传输网络资源不足的压力。

而且提高了整个网络工程进度,降低了整个网络投资。

在移动核心网络中,微波设备可提供高达的传输容量,用来与光纤混合组网,作为城域光环和重要链路的备份。

在3G网络中,Node-B对传输容量要求已经远远的大于2G网络中BTS 对传输容量的要求,Node-B上已经不再只有E1接口, 而是可以提供STM-1接口和IP接口的基站。

微波电路CAD基础讲解

微波电路CAD基础讲解
D P( ,)max 4 P( ,)av A
(总)波束范围 A(或波束立体角)由主瓣范围加上副瓣范围所 构成。 波束范围越小,则定向性越高。
天线增益 G kD
效率因子k(0 k 1)
3. 天线&微带天线
天线增益实际上是在波阵面某一给定方向天线辐射强度的量度。 天线增益是一个实际(或现实)参量。由于天线总有损耗
(天线或天线罩的欧姆损耗),天线辐射功率比馈入功率总要 小一些,所以天线增益总要比天线方向性小一些。有很多设 计良好的天线,其 k 值可以接近于1,但实际上G总是小于D且 以D为理想的最大值。
3. 天线&微带天线
天线基础
天线的特性参数
③天线效率
天线效率为天线辐射功率Pr与天线输入功率Pin(辐射功率Pr
微波电路CAD基础讲解
3. 天线&微带天线
天线基础
3. 天线&微带天线
天线基础
天线是一种导行波与自由空间波之间的转换器件或换能器。 接收端:将空间传播的电磁波转换为高频电流 发射端:将发射机的高频电流转换为空间电磁波
3. 天线&微带天线
天线基础
天线辐射电磁波原理
导线载有交变电流时,就可以形成电磁波的辐射,辐射 的能力与导线的长短和形状有关。如果导线位置如由于两导 线的距离很近,且两导线所产生的感应电动势几乎可以抵消, 因而辐射很微弱。如果将两导线张开,这时由于两导线的电 流方向相同,由两导线所产生的感应电动势方向相同,因而 辐射较强。当导线的长度l远小于波长时,导线的电流很小, 辐射很微弱。
3. 天线&微带天线
天线基础
天线的特性参数 ⑥输入阻抗&驻波比
为使天线能获得最多的功率,应使天线与馈线匹配。因 此,当天线的输入阻抗等于传输线的特性阻抗时,天线获得 最大的功率。 驻波比(VSWR):由于入射波能量传输到天线输入端未被全波 吸收(辐射)、产生反射波,迭加而成。

微波电路

微波电路

半径 ±
2
1
1/2 0
缩小为点(1,0)
直线,对应纯电阻
r ↑,半径↓
圆心都在r=1直线上 都在(1,0)点与实轴相切
2.Smith圆图
映射图形表示法-Smith圆图
2.Smith圆图
Smith圆图
2.Smith圆图
普通负载的阻抗变换分析
确定电路阻抗响应,以预言RF/MW系统的性能。
过程:
角映射原理为基础的图解方法,即Smith圆图。Smith圆图能 够在一个图中简单直观地显示传输线阻抗及反射系数。
理解:
Smith圆图实际上是(电压)反射系数的极坐标图; 一种求解传输线问题的辅助图形; 电阻圆和电抗圆是正交的。 用Smith圆图思考,可以开发出关于传输线和阻抗匹配问题 的直观想象力。
jL1
Z0
zin
jtand2
d2 1arctanZL0 n
2.Smith圆图
特殊变换分析—短路线变换
通过短路传输线实现容性和感性电抗
2.Smith圆图
导纳变换
1d zin rjx1d
由归一化阻抗表达式经过倒置,可得
yin
Yin Y0
1 zin
1d 1d
1 1
e e
j j
d d
在归一化输入阻抗表达式中用-1=exp(-j*pi)乘以反射系数, 等效于在复平面上旋转180°
并联电感 gjbj 1Lgjb1L
2.Smith圆图
特殊变换分析—开路线变换
为了获得纯感性或容性电抗,必须沿r=0的圆工作,从 起始点Γ=1顺时针方向旋转。
容性电抗 jX c
11
jCZ0
zinjcotd1
d1

微波电路设计

微波电路设计

微波电路设计下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!微波电路设计是电子工程领域中的重要分支,它涉及到从微波信号的传输到处理的各个方面。

微波电路基本原理与设计方法

微波电路基本原理与设计方法

微波电路基本原理与设计方法微波电路是指工作频率在1 GHz至300 GHz范围内的电路。

由于微波信号的特殊性质,微波电路的设计与普通射频电路有较大的区别。

本文将介绍微波电路的基本原理和设计方法。

一、微波电路的基本原理微波电路的基本原理包括微波信号传输特性、微波谐振现象以及微波传输线特性等。

1. 微波信号传输特性微波信号在传输过程中会产生传播损耗、反射损耗和衰减损耗等。

了解微波信号传输特性对于微波电路的设计至关重要。

2. 微波谐振现象微波电路中常常使用谐振器来实现对特定频率微波信号的选择性放大或滤波。

因此,了解微波谐振现象对于微波电路的设计和优化至关重要。

3. 微波传输线特性微波传输线是微波电路中的重要组成部分,其特性包括传输线的阻抗特性、传播常数特性等。

了解微波传输线特性可以帮助我们设计出更加优秀的微波电路。

二、微波电路的设计方法微波电路的设计方法通常包括仿真分析、参数优化和实验验证等步骤。

1. 仿真分析仿真分析是微波电路设计的重要环节之一。

通过使用专业的微波电路仿真软件,可以对设计方案进行仿真分析,从而评估其性能和可行性。

常用的微波电路仿真软件包括ADS、CST等。

2. 参数优化通过对仿真得到的电路参数进行优化,可以得到更佳的性能。

参数优化方法有很多种,可以使用遗传算法、粒子群算法等进行优化。

3. 实验验证在完成仿真分析和参数优化后,需要进行实验验证。

通过在实际硬件中实现设计方案,并利用专业的测量仪器对其进行测试,从而验证设计方案的性能和可行性。

总结:微波电路的基本原理和设计方法是微波电路领域的重要内容。

了解微波电路的基本原理,可以更好地进行微波电路的设计和优化。

同时,合理运用仿真分析、参数优化和实验验证等方法,可以设计出性能优秀的微波电路。

在今后的微波电路设计中,我们应该继续深入学习和探索微波电路的基础知识,不断提高自己的微波电路设计能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、基础1、数字微波应用微波是无线电波的一种。

在我国无线电广播按波长分为:长波(LW) 波长在介于1000~2000米,中波(MW)波长在介于200-600米、短波(SW)波长在介于10~100米。

CDMA800工作波长(35.93~36.36、34.09~34.48)米。

在我国分配微波频率为:微波通信的特点:视距传输;电波在传播过程中遇到尺寸和工作波长相近的障碍物时,会绕过障碍物向前传播,这种现象叫做电波的绕射。

微波通信建设快、投资小、应用灵活;传输质量可靠,抗干扰能力强。

至今与光缆通信和卫星通信并列为现代通信传输的三大支柱,在中等容量的网络中,微波传输是一种最灵活、适应性最强的通信手段。

在移动网络中的应用:在移动接入网络中,随着网络不断扩容和无缝覆盖的需求,新建了大量移动基站,如城区的“楼宇室内覆盖”,边远地区的“边际网覆盖”,沿海地区“海岛移动覆盖”。

但由于市政建设限制(如架空线难、开挖路面铺管道难),在自然环境很恶劣的山区和海洋,光缆建设非常困难、造价太高,造成大量光纤死角,部分基站的接入必须采用无线方式解决,产生了大量无线传输需求。

如沿海城市大连,拥有诸多的岛屿,岛屿上的移动通信成为大连移动提高移动网络覆盖率的重要任务。

大连采用SDH微波作为各海岛移动基站的中继链路,并通过与光传输系统的连接,组成完整的传输网络。

SDH微波链路干线全长162.28公里,支线全长66.68公里,最长站距34.80公里,最短站距6.89公里,平均站距19.08公里,且全部为跨海电路(跨海微波链路的设计,由于海面环境和气候情况复杂,通常是所有微波应用中难度最大)。

使用微波设备不仅可以缓解传输网络资源不足的压力。

而且提高了整个网络工程进度,降低了整个网络投资。

在移动核心网络中,微波设备可提供高达2.5Gbps的传输容量,用来与光纤混合组网,作为城域光环和重要链路的备份。

在3G网络中,Node-B对传输容量要求已经远远的大于2G网络中BTS 对传输容量的要求,Node-B上已经不再只有E1接口, 而是可以提供STM-1接口和IP接口的基站。

因此,带来移动基站传输接入网络的升级和扩容需求。

当今,数字微波设备在统一平台上同时可以传输TMD和IP业务,容量可以从E1~STM-1,同时满足2G、3G以及2G/3G共站传输的需求。

在移动应急通信或临时通信中,如移动应急通信车等。

2、自由空间的电波传播2.1、自由空间传播损耗在自由空间传播的电磁波不产生反射、折射、吸收和散射等现象,也就是说,总能量并没有被损耗掉。

L T-R=20lg(4πL Km/λ)=32.45+20lgf MHz+20lgL km=92.45+20lgf GHZ+20lgL km上式中:L T→R------T和R间的直接视通的自由空间衰减(单位为dB)。

L km-------T和R间的距离。

(单位为Km)λ------传播电波的波长(单位为米)。

f MHz, f GHZ-------传播电波的频率,单位分别为MH Z、和GH Z设发信功率P t=1W,工作频率f=3.8GHz,两站相距45km,收发天线增益G t=G r=39dB,收发两端馈线系统损耗L ft=L fr =2 dB,收发两端分路系统损耗L bt=L br=1 dB。

求:在自由空间传播条件下接收机的输入电平和输入功率。

解:P t=10lg1000mW=30 dBm在自由空间传播条件下,自由空间传播损耗:L s(dB)=92.45.4+20lg 45 +20lg 3.8≈137 dB137.1099Pr(dBm)=Pt(dBm)+(Gt+Gr)-(Lft+Lfr)-(Lbt +Lbr)-Ls=30+(39+39)-(2+2)-(1+1)-137=-35 dBmPr(mW)=10-35/10=0.00032 mW=0.32 μW0.000322.2、费涅耳区半径惠更斯原理:光和电磁波都是一种振动,振动源周围的媒质是有弹性的,一点的振动可通过媒质传递给邻近的质点,并依次向外扩展,而成为在媒质中传播的波。

根据惠更斯-费涅耳原理,在电波的传输过程中,波阵面上的每一点都是一个进行二次辐射的球面波的波源,这种波源称为二次波源。

而空间任一点的辐射场都是由包围波面的任意封闭曲面上各点的二次波源发出的波在该点相互干涉,叠加的结果。

显然,封闭曲面上各点的二次波源到达接收点的远近不同,这就使得接收点的信号场强的大小发生变化,分析这种变化引入费涅耳区的概念。

由图可见r1+r2-d 就是反射波和直射波的行程差Δr=nλ/2。

显然当Δr 是半波长的奇数倍时,反射波和直射波在R 点的作用是相同的且是最强的,此时的场强得到加强;而Δr 为半波长的偶数倍长时,反射波在R 点的作用是相互抵消的,此时R 点的场强最弱。

我们就把这些n 相同的点组成的面称为费涅耳区, 费涅耳区就是以收发点为焦点的一系列椭球面所包围的空间。

费涅耳区上一点P 到收发点连线的垂直距离称为费涅耳区半径,用Fn 表示。

dd d n Fn 21λ=2.2.1、 第一费涅耳区半径当n=1 时,F1称为第一费涅耳区半径。

dd d F 211λ=式中:F1------第一费涅耳区半径,m ; λ------工作波长,m ;d------收发天线之间的距离为,Km;d1、d2------分别为障碍点与收发天线之间的距离,Km ;2.2.2、 最小费涅耳区半径理论证明,在相当于第1费涅尔区面积1/3的圆孔就能获得自由空间传播。

F0代表该圆孔的半径,称为最小费涅尔区半径。

1210313F dd d F ==λfdd d 1021=0.186967式中:Fo------称为最小费涅尔区半径,m ; λ------工作波长,m ; f------工作频率,GHz ;d------收发天线之间的距离为,Km;d1、d2------分别为障碍点与收发天线之间的距离,Km ;第一费涅尔半径 F1和最小费涅尔半径 F0是微波通路勘测中两个重要的物理参量, F0被称为障碍物禁区。

显然,当波长λ和距离d 一定时,F0与d1、d2的位置有关,且中点(d1 = d2)处的F0最大。

3、 余隙3.1、 余隙传播余隙是指在微波传播路径的剖面图上,收发两点的连线与最高障碍物顶点之间的距离。

如下图所示,hc 即为余隙。

从图中几何关系可知,收发两点的连线在障碍点的高度h 为: h =dH h d H h d )()(112221+++=考虑地球凸起he 后,余隙hc 等于:=c h 3112221)()(H he dH h d H h d --+++=3211122212)()(H ad d d H h d H h d --+++=式中:a ----为地球半径,单位为米。

H3—为微波中继剖面中,障碍点顶端的海拔标高;4、 大气折射4.1、 大气折射从地面算起,垂直向上,可把大气分为6层,依次称作对流层、同温层、中间层、电离层、超离导以及逸散层。

对流层是指自地面向上大约10km 范围的低空大气层。

对流层集中了整个大气质量的四分之三。

对流层的大气压力、温度及湿度都随离开地面的高度而变化、是不均匀的,会使电波产生折射。

由于对流层的折射率随高度而变,因此电波在对流层中传输时会发生不断的折射,从而导致轨迹弯曲,这种现象称为大气折射。

折射率梯度dhdn 折射率梯度表示折射率随高度的变化率。

折射率梯度不同,对流层中电波传播路径有如下三种类型:1、零折射: 折射率dhdn=0,对流层大气为均匀大气,电波射线为直线,射线的曲率半径为∞;2、负折射: 折射率dhdn>0,折射率随高度增加而增加,上层空间的电波射线速度小,下层空间电波射线速度大,电波传播的轨迹向上弯曲与地面的弯曲反向,称为负折射;以上两种情况很少发生。

3、正折射: 折射率dhdn<0,折射率随高度增加而减小,上层空间的电波射线速度大,下层空间电波射线速度小,电波传播的轨迹向下弯曲与地面的弯曲同向,称为正折射。

正折射中又可根据特殊的折射率dhdn分成三种特殊的折射: (1)标准大气折射:在正常标准大气下的折射;(2)临界折射:电波射线的曲率半径刚好等于地球的半径,水平发射的电波射线将与地球同步弯曲,形成一种临界状态;(3)超折射:电波射线的曲率半径小于地球曲率的为超折射, 有逆温层(气温随高度增加)或水汽随高度急剧减小时,可以形成超折射。

此时电波从上层折回,再被下层反射,似在波导内传播一样,产生这种现象的空气层称为大气波导。

大气波导可在一个薄层内使电磁能向远方传播,这个薄层在对流层中可以是贴地面的,也可以是悬空的。

临界折射和超折射可使电波传播距离远远超过视距,特别是海上的大气波导,这也是有时能收到远地的超短波信号的主要原因。

折射4.2、 等效地球半径由上所述,由于大气的折射作用,使实际的电波传播不是按直线进行,而是按曲线传播的,但为了链路附加衰落因子计算方便,仍假设电波射线按直线传播,而认为地球半径有了变化,即由实际半径变为等效半径。

定义等效地球半径因子K 为 :a a K e==dhdn a+11 式中:a e 等效地球半径; a 实际地球半径;由上式可见: 负折射,折射率dhdn>0、K <1,等效地球半径a e 减小; 正折射,折射率dhdn<0、K >1,等效地球半径a e 增大; 4.3、 等效地球凸起高度不考虑地球折射时,地球凸起高度he =ad d 221,考虑大气的折射作用后,等效地球凸起高度he :he =aKd d 221 式中:d1------记录点到起始点的距离,(Km); d2------记录点到终点距离,(Km);he 等效地面突起的高度------由于大气折射而产生的等效地面突起的高度(m )。

K----为等效地球半径系数;正常传输剖面图K =4/3,最坏气象传输剖面图K MIN =2/3;a ----为地球半径;一般取a=6370 km 。

4.4、 余隙计算前面没有考虑大气折射时电波传播余隙hc 等于:=c h 3112221)()(H he d H h d H h d --+++3211122212)()(H ad d d H h d H h d --+++=考虑大气的折射作用后,等效地球凸起高度he 有了变化,所以余隙hc 也发生了变化:c h 3211122212)()(H akd d d H h d H h d --+++=式中:hc —为中继剖面中,发收两点间射线中心线在障碍点上方的传播余隙;单位为米。

H1——为中继剖面中,发端天线地面的海拔高度;单位为米。

h1--- 发端天线中心对地面的挂高;单位为米。

H2——为中继剖面中,收端天线地面的海拔高度;单位为米。

相关文档
最新文档