小学奥数基础教程附练习题和答案三年级讲全册版

合集下载

小学奥数基础教程附练习题和答案三年级讲全册版

小学奥数基础教程附练习题和答案三年级讲全册版

小学数学奥数基础教程(三年级)本教程共30讲第1讲加减法的巧算在进行加减运算吋,为了又快又准确,除了要熟练地拿握计算法则外,还需要拿握一些巧算方法。

加减法的巧篡藝是“捷整:就是将算式中的数分成若干込使每组的运算结果都是整十.整百、整千……的数‘再将各组的结果求和。

这种'"化零如整'‘的思想是加减法巧算的基础,先讲加袪的巧算。

加法具有以下两个运算律:加祛交换律两个数相加,交换抑数的位置,它们的和不麦.BPa + b=b + .1,其中弘b各表示任意一数o例如」5f=&十5。

一般地,多个数相加,任意改变相加的次序,其和不变。

例如,a + b-t-c-l-d = d't-b + a+c =*"'其中也V,⑺d各表示任意一数*加祛结合律’三个数相加.先把前两个数相加,再加上第三个数f或者,先把后两个数相加,再与第一个数相加,它们的和不恕即a. + b-Fc=Ca + b)+e-^+(b4-crh其中赴虬u各表示任意一数亡例如,4-9+7=(4+9 片7=4+(9+ 7 )Q一般地,多个数〔三个臥上湘皿可先对其中几个数相加’再与其它数相加。

把加法交换律与加法^吉合律综合起来应用,就得到加法的一些巧算方祛「L凑甦法先把加在一起为整十、整寻整千……的加数加起来然后再与其它的数相例[计算:(1)23十刃十苗十47十(2X13504 49 + 6釣+(51+ 32 + 1650)。

解=(1)23+54+ 18 + 47 + 82=(23 十47)十(15+82)+54= 70+ 100+54 = 224?(2X13504 49 + 68)4 (51 + 324- 1650)=1350 + 49+6£+ 51+ 32+1650= (1350+ 1650}-F(49-F51)+(68 + 32)= 3000 +100+ 100 = 3200o2■借数凑整法有些题目直观上凑整不明显,这吋可借数"凑藝例^ 计算9%+d可在85中借岀=4,即把对拆分成24+6L这样就可以先用9飞加上24, '「凑”成1000,然后再加&“例 2 计算:(1)57 4-64 + 238-1-465(2)4993+3996+5997+848o解;⑴57 + 64+23S+46= 57 + (62+2)+238+(43 + 3)= (57+43)+(62 + 238)+2+3= 100+ 300 + 2 + 3 = 405;(2)4993+3996+5997 +8J8“=4993 + 3996+5997+(7 + 4+3 + 834)=(4993+7〕+(3996+4)+ (5997+3)+834=5000 + 4000+ 6000+ 834= 15834。

新人教版三年级小学数学全册奥数(含答案)

新人教版三年级小学数学全册奥数(含答案)

新人教版小学数学三年级全册奥数附参考答案第1讲寻找规律一、知识要点按照一定次序排列起来的一列数,叫做数列。

如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。

按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。

寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。

善于发现数列的规律是填数的关键。

二、精讲精练【例题1】在括号内填上合适的数。

(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()举一反三1:1.在下面的括号里填上合适的数。

(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()2.按规律填数。

(1)2,8,32,128,(),()(2)1,5,25,125,(),()3.先找规律再填数。

12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。

(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()(3)3,4,7,3,4,10,3,4,13,(),(),()举一反三2:1.按规律填数。

(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()2.在括号里填上适当的数。

(1)18,3,15,4,12,5,(),()(2)1,15,3,13,5,11,(),()3.找规律填数。

(1)4,7,8,4,6,13,4,5,18,(),(),()(2)1,2,3,2,4,6,3,8,9,(),(),()【例题3】先找出规律,再在括号里填上合适的数。

(1)2,5,14,41,()(2)252,124,60,28,()(3)1,2,5,13,34,()(4)1,4,9,16,25,36,()练习3:1.按规律填数。

三年级奥数基础教程-横式数字谜_小学

三年级奥数基础教程-横式数字谜_小学

三年级奥数基础教程-横式数字谜_小学在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。

解数字谜题确实是求出这些被擦去的数或用字母、文字代替的数的数值。

例如,求算式324+□=528中□所代表的数。

依照“加数=和-另一个加数”知,□=582-324=258。

又如,求右竖式中字母A,B所代表的数字。

明显个位数相减时必须借位,因此,由12-B=5知,B=12-5=7;由A-1=3知,A=3+1=4。

解数字谜问题既能增强数字运用能力,又能加深对运算的明白得,依旧培养和提高分析问题能力的有效方法。

这一讲介绍简单的算式(横式)数字谜的解法。

解横式数字谜,第一要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。

由它们推演还能够得到以下运算规则:由(1),得和-一个加数=另一个加数;其次,要熟悉数字运算和拆分。

例如,8可用加法拆分为8=0+8=1+7=2+6=3+5=4+4;24可用乘法拆分为24=1×24=2×12=3×8=4×6(两个数之积)=1×2×12=2×2×6=…(三个数之积)=1×2×2×6=2×2×2×3=…(四个数之积)例1 下列算式中,□,○,△,☆,*各代表什么数?(1)□+5=13-6;(2)28-○=15+7;(3)3×△=54;(4)☆÷3=87;(5)56÷*=7。

解:(1)由加法运算规则知,□=13-6-5=2;(2)由减法运算规则知,○=28-(15+7)=6;(3)由乘法运算规则知,△=54÷3=18;(4)由除法运算规则知,☆=87×3=261;(5)由除法运算规则知,*=56÷7=8。

【最新】三年级奥数精品教材附答案

【最新】三年级奥数精品教材附答案

答:5,5,5×5+4=29,29
练习 5:下面算式中,除数和商相等,被除数最小是几?
(1)[ ]÷[ ]=[ ]……6
(2)[ ]÷[ ]=[ ]……8
(3)[ ]÷[ ]=[ ]……3
(4)[ ]÷[ ]=[ ]……9
(5)[ ]÷[ ]=[ ]……7
(6)[ ]÷[ ]=[ ]……2
【答案】(1)55 (2)89 (3)19 (4)109
3.找规律填数。
-1-
三年级奥数 1 至 40 讲参考答案
(1)4,7,8,4,6,13,4,5,18,( 4 ),( 4 ),(
23 )
(2)1,2,3,2,4,6,3,8,9,( 4 ),( 16 ),( 12 )
【例题 3】先找出规律,再在括号里填上合适的数。 (1)2,5,14,41,( 128) 41+3×3×3×3 (2)252,124,60,28,( 6 ) 减 4 除 2 (3)1,2,5,13,34,(89) 34×3-13 (4)1,4,9,16,25,36,(49) 7×7 练习 3:按规律填数。 (1)2,3,5,9,17,( ),( ) (2)2,4,10,28,82,( ),( ) (3)94,46,22,10,( ),( ) (4)2,3,7,18,47,( ),( ) 【答案】(1)33,65(2)244,730(3)6,3(4)123,322
__________________________________________________________________________
【答案】(1)①18,1;9,2;6,3②63,1;21,3;9,7;7,9;3,21
③30,1;15,2;10,3④42,1;21,2;14,3;7,6

苏教版小学数学奥数基础教程(三年级)

苏教版小学数学奥数基础教程(三年级)

苏教版小学数学奥数基础教程(三年级)一、拓展提优试题1.有9颗钢珠,其中8颗一样重,另有一颗比这8颗略轻,用一架天平最少称几次,可以找到那颗较轻的钢珠?2.某个码头有一艘渡船.有一天,这艘船从南岸出发驶向北岸,来回送游客,一共202次(来回算做两次),此时,渡船停靠在岸.3.小华、小俊都有一些玻璃球.如果小华给小俊4个,小华的玻璃球的个数就是小俊的2倍;假如把小俊的玻璃球给小华2个,那么小华的玻璃球的个数就是小俊的11倍.小华原来有个玻璃球,小俊原来有个玻璃球.4.红星小学组织学生参加演练,一开始只有40个男生参加,后来调整队伍,每次调整减少3个男生,增加2个女生,那么调整次后男生女生人数就相等了.5.古希腊的数学家们将自然数按照以下方式与多边形联系起来,三边形数:1,3,6,10,15,……四边形数:1,4,9,16,25,……五边形数:1,5,12,22,35,……六边形数:1,6,15,28,45,……按照上面的顺序,第8个三边形数为__________.6.如图的两个竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么所代表的四位数是()A.5240B.3624C.7362D.75647.动物园的饲养员把一堆桃子分给若干只猴子,如果每只猴子分6个,剩57个桃子;如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个.那么,有()个桃子.A.216B.324C.273D.3018.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长小,把这两个正方形放在大正方形上(如图),大正方形露出的部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是()平方厘米.A.25B.36C.49D.649.有20间房间,有的开着灯,有的关着灯,在这些房间里的人都希望与大多数房间保持一致.现在,从第一间房间的人开始,如果其余19间房间的灯开着的多,就把灯打开,否则就把灯关上,如果最开始开灯与关灯的房间各10间,并且第一间的灯开着.那么,这20间房间里的人轮完一遍后,关着灯的房间有()间.A.0B.10C.11D.2010.○○÷□=14…2,□内共有种填法.11.一群鸭子对一群狗说:“我们比你们多2只.”狗对鸭子说:“我们比你们多10条腿.”那么鸭子和狗共只.12.如图所示,从正三角形的边作一个正方形,再用与正三角形不相邻的正方形一边做一个正五边形,再从与正方形不相邻的正五边形一边作一个正六边形,继续以相同的方式再作一个正七边形,依序再作一个正八边形,这样形成了一个多边形,请问这个多边形有个边.13.小明有一本100道题的练习册,他决定单数的日子做2道题,双数的日子做3道题,如果周六或周日则额外多做2道题.小明从12月25日星期四开始做题,他1月26日能将练习册上的题都做完.14.交通小学的男生人数是女生人数的7倍,而且男生比女生多了900人,那么交通小学的男生和女生一共有人.15.在一根绳子上依次穿入5颗红珠、4颗白珠、3颗黄珠和2颗蓝珠,并按照此方式不断重复,如果从头开始一共穿了2014颗珠子,那么第2014颗珠子的颜色是色.【参考答案】一、拓展提优试题1.解:(1)把9个钢珠平均分成3组,把其中两组放在天平上称量,若重量一样,则较轻的在第三组;若重量不一样,则较轻的在天平上升的一组;(2)再把有较轻的钢珠的一组,拿出两个分别放在天平的左右两边,若天平平衡,则剩下的一个就是较轻的,若天平不平衡,则上升一方就是较轻的;这样用2次就一定能找出那个较轻的钢珠.答:用一架天平最少称2次,可以找到那颗较轻的钢珠.2.解:在摆渡奇数次后,船在北岸,摆渡遇数次后,船在南岸.202为奇数,则摆渡202次后,小船在南岸.故答案为:南.3.解:设小俊原来有x个玻璃球,(x﹣2)×11=(x+4)×2+4+2,11x﹣22=2x+8+4+2,11x﹣2x﹣22=2x+14﹣2x,9x﹣22+22=14+22,9x÷9=36÷9,x=4,(4+4)×2,=10×2,=20(个),答:小华原来有20个,小俊原来有4个,故答案依次为:20,4.4.解:40÷(3+2)=40÷5=8(次)答:调整8次后男生女生人数就相等了.故答案为:8.5.找规律【难度】☆☆☆【答案】36三边形:1、1+2、1+2+3、1+2+3+4、1+2+3+4+5、1+2+3+4+5+6、……、1+2+3+…+8=36.6.解:根据左边的数字谜中,可分析出A、C是相邻的,B、D是差2 的.右边的数字谜中,显然=19,若个位没有向十位进位,则F、J分别是0、4,E、I是 8、3 或 6、5,但无论是哪组解都不能满足左边数字谜“A、C相邻,B、D差2”的要求.故知右边个位向十位进位了,F+J=14,F、J只能分别是8、6,E+I=10,E、I 只能分别是3、7,此时得到=5240.故选:A.7.解:依题意可知:如果每只猴子分6个,剩57个桃子.如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个证明少了5×9+6=51;猴子共有(57+51)÷(9﹣6)=36(只);桃子共有36×6+57=273.故选:C.8.解:根据分析,一条阴影部分的面积为10÷2=5平方厘米.因为都是整数,所以只能为1×5.故,大正方形面积=(1+5)×(1+5)=6×6=36平方厘米.故选:B.9.解:因为最开始开灯和关灯的各是10间,由于第一间的灯是开着的,所以,第一间人看到的,开灯的9间,关灯的10间,之后,他就关灯,以后无论开灯的出来看,还是关灯的出来看,始终关灯的多,即:一轮结束,灯全部会关闭,故选:D.10.解:因为余数<除数,所以□>2,因为14×6+2=86,14×7+2=100,被除数是两位数,所以□内最大填6,所以□内共有4种填法:3、4、5、6.故答案为:4.11.解:根据分析,再加两只狗,狗与鸭子数量相同,狗的腿数比鸭子多:10+4×2=18(条)鸭子有:18÷(4﹣2)=9(只);狗有:9﹣2=7(只);狗和鸭子共有:9+7=16(只).故答案是:16.12.解:(3﹣1)+(4﹣2)+(5﹣2)+(6﹣2)+(7﹣2)+(8﹣1)=2+2+3+4+5+7=23(条)答:这个多边形有 23个边.故答案为:23.13.解:依题意可知:12月做题数量为:2+3+4+5+2+3+2=21(题);1月1日至1月7日也同样做了21题.1月8日至1月14日由于多了一个双数日子,所以做了22题.1月15日至1月21日做21题.这时候共做21+21+22+21=85题.接下来22日开始做题数量为3+2+5+4=14题.目前共做题85+14=99题,还需要1天.故答案为:2614.解:900÷(7﹣1)=900÷6=150(人)150×(7+1)=150×8=1200(人)答:交通小学的男生和女生一共有 1200人.故答案为:1200.15.解:5+3+4+2=14(个)2014÷14=143…12,所以第2014颗珠子是第144周期的第12个,是黄颜色;答:第2014颗珠子的颜色是黄色.故答案为:黄.。

小学数学奥数基础教程(三年级)目录

小学数学奥数基础教程(三年级)目录

小学数学奥数基础教程(三年级)目录(含答案).word文档下载地址文档贡献者:与你的缘..第1讲加减法的巧算练习1.第2讲横式数字谜(一)练习2.第3讲竖式数字谜(一)练习3.第4讲竖式数字谜(二)练习4.第5讲找规律(一)练习5.第6讲找规律(二)练习6.第7讲加减法应用题练习7.第8讲乘除法应用题练习8.第9讲平均数练习9.第10讲植树问题练习10.第11讲巧数图形练习11.第12讲巧求周长练习12.第13讲火柴棍游戏(一)练习13.第14讲火柴棍游戏(二)练习14.第15讲趣题巧解练习15.第16讲数阵图(一)练习16.第17讲数阵图(二)练习17.第18讲能被2,5整除的数的特征练习18.第19讲能被3整除的数的特征练习19.第20讲乘、除法的运算律和性质练习20.第21讲乘法中的巧算练习21.第22讲横式数字谜(二)练习22.第23讲竖式数字谜(三)练习23.第24讲和倍应用题练习24.第25讲差倍应用题练习25.第26讲和差应用题练习26.第27讲巧用矩形面积公式练习27.第28讲一笔画(一)练习28.第29讲一笔画(二)练习29.第30讲包含与排除练习30。

小学数学奥数基础教程(三年级)目30讲全

小学数学奥数基础教程(三年级)目30讲全

小学奥数基础教程(三年级)- 1 -小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除一、两、三位数乘一位数(一)二、两、三位数乘一位数(二)三、乘法分配律数学智慧园(一)四、等量替换五、两、三位数除以一位数(一)六、两、三位数除以一位数(二)七、和差问题数学智慧园(二)八、图形空格填数九、归一问题十、和倍问题十一、差倍问题数学智慧园(三)十二、两积之和第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。

解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。

例如,求算式324+□=528中□所代表的数。

根据“加数=和-另一个加数”知,□=582-324=258。

又如,求右竖式中字母A,B所代表的数字。

显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A-1=3知,A=3+1=4。

解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。

这一讲介绍简单的算式(横式)数字谜的解法。

解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。

三年级奥数(40讲):三年级奥数答案

三年级奥数(40讲):三年级奥数答案

第1讲寻找规律一、知识要点按照一定次序排列起来的一列数,叫做数列。

如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。

按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。

寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。

善于发现数列的规律是填数的关键。

二、精讲精练【例题1】在括号内填上合适的数。

(1)3,6,9,12,( 15 ),( 18 )(2)1,2,4,7,11,( 16),( 22)(3)2,6,18,54,( 162 ),( 486 )练习1:在括号内填上合适的数。

(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【答案】(1)12,14(2)26,37(3)512,2048(4)625,3125(5)6,1【例题2】先找出规律,再在括号里填上合适的数。

(1)15,2,12,2,9,2,( 6 ),( 2 )(2)21,4,18,5,15,6,( 12 ),( 7 )练习2:按规律填数。

(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,(),()(5)1,2,5,14,(),()【答案】(1)8,1(2)81,2(3)9,6(4)7,9(5)41,122【例题3】先找出规律,再在括号里填上合适的数。

(1)2,5,14,41,( 128)41+3×3×3×3 (2)252,124,60,28,( 6 )减4除2 (3)1,2,5,13,34,(89)34×3-13 (4)1,4,9,16,25,36,(49) 7×7练习3:按规律填数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学奥数基础教程(三年级)本教程共30讲小学数学奥数基础教程(三年级)本教程共30讲第19讲能被3整除的数的特征上一讲我们讲了能被2,5整除的数的特征,根据这些特征,很容易就能判别出一个数是否能被2或5整除。

同学们自然会问,有没有类似的简便方法,直接判断一个数能否被3整除?我们先具体观察一些能被3整除的整数:18,345,4737,2567418能被3整除,1+8=9也能被3整除;345能被3整除,3+4+5=9也能被3整除;4737能被3整除,4+7+3+7=21也能被3整除;25674能被3整除,2+5+6+7+4=24也能被3整除。

怎么这么巧?我们再试一个:7896852能被3整除,7+8+9+6+8+5+2=45也能被3整除。

好了,不用再试了,同学们可能已经在想:“是不是所有能被3整除的数的各位数字的和都能被3整除?”结论是肯定的。

它的一般性证明这里无法介绍,我们用一个具体的数来说明一般性的证明方法。

由99和9都能被3整除,推知(7×99+4×9)能被3整除。

再由741能被3整除,推知(7+4+1)能被3整除;反之,由(7+4+1)能被3整除,推知741能被3整除。

因此,判断一个整数能否被3整除的简便方法是:如果整数的各位数字之和能被3整除,那么此整数能被3整除。

如果整数的各位数字之和不能被3整除,那么此整数不能被3整除。

例1判断下列各数是否能被3整除:2574,38974,587931。

解:因为2+5+7+4=18,18能被3整除,所以2574能被3整除;因为3+8+9+7+4=31,31不能被3整除,所以38974不能被3整除;因为5+8+7+9+3+1=33,33能被3整除,所以587931能被3整除。

为了今后使用方便,我们介绍一个表示多位数的方法。

当一个多位数中有一个或几个数字用字母来表示时,为防止理解错误,就在这个多位数的上面划一线段来表示这个多位数。

例如,表示这个三位数的百、十、个位依次是3,a,5;又如,表示这个四位数的千、百、十、个位依次是a,b,c,d。

例2六位数能被3整除,数字a=?解:2+5+7+a+3+8=25+a,要使25+a能被3整除,数字a只能是2,5或8。

即符合题意的a是2,5或8。

例3由1,3,5,7这四个数字写成的没有重复数字的三位数中,有几个能被3整除?解:在1,3,5,7这四个数中,任取三个,共有4组:1,3,5;1,3,7;1,5,7;3,5,7。

其中,1+3+5和3+5+7能被3整除,所以,由1,3,5或3,5,7写成的没有重复数字的三位数能被3整除。

由1,3,5可写成135,153,315,351,513,531六个三位数;同理,由3,5,7也能写成6个三位数。

所以,符合题意的三位数有6×2=12(个)。

例4被2,3,5除余1且不等于1的最小整数是几?解:除1以外,被2除余1的所有整数是3,5,7,9,11,…,27,29,31,33,…被3除余1的所有整数是4,7,10,13,16,19,22,25,28,31,…被5除余1的所有整数是6,11,16,21,26,31,36,…上面三列数中,第一个同时出现的数是31,所以31是同时满足被2,3,5除均余1且不等于1的最小数。

例4中使用的方法是解这类题型的基本方法,但不够简捷。

一个较简捷的方法是:因为5大于2和3,所以先从被5除余1的数1,6,11,16,21,26,31,36,…中找出第一个(1除外)同时满足被2和3除都余1的数31,就为所求。

到五年级学了更多的知识后,还可直接由2×3×5+1=31得到所求数。

例5同时能被2,3,5整除的最小三位数是几?解:能被5整除的三位数是100,105,110,115,120,125,…其中,第一个能同时被2,3整除的数是120(它是偶数,且1+2+0=3),故120为所求。

练习191.直接判断25874和978651能否被3整除。

3.由2,3,4,5这四个数字写成的没有重复数字的三位数中,有几个能被3整除?4.(1)被2,3除余1且不等于1的最小整数是几?(2)被3,5除余2且不等于2的最小整数是几?5.同时能被2,3,5整除的最小自然数是几?6.同时能被2,3,5整除的最大三位数是几?7.一根铁丝长125厘米,要把它剪成长2厘米、3厘米、5厘米的三种不同规格的小段。

最多能剪成多少段?答案与提示练习191.不能;能。

2.a=0,3,6,9。

3.12个。

4.(1)7;(2)17。

5.30。

6.990。

7.60段。

提示:要使剪成尽量多的小段,2厘米长的应尽量多。

因为三种规格都要有,125为奇数,剪去若干个2厘米长的小段后,剩下的长度仍是奇数,所以3厘米、5厘米长的至少要3段,125=114+3+3+5=2×57+3×2+5×1,所以2厘米的剪57段,3厘米的剪2段,5厘米的剪1段,此时剪成的小段最多,为57+2+1=60(段)。

小学数学奥数基础教程(三年级)本教程共30讲第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。

解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。

例如,求算式324+□=528中□所代表的数。

根据“加数=和-另一个加数”知,□=582-324=258。

又如,求右竖式中字母A,B所代表的数字。

显然个位数相减时必须借位,所以,由12-B =5知,B=12-5=7;由A-1=3知,A=3+1=4。

解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。

这一讲介绍简单的算式(横式)数字谜的解法。

解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。

由它们推演还可以得到以下运算规则:由(1),得和-一个加数=另一个加数;其次,要熟悉数字运算和拆分。

例如,8可用加法拆分为8=0+8=1+7=2+6=3+5=4+4;24可用乘法拆分为24=1×24=2×12=3×8=4×6(两个数之积)=1×2×12=2×2×6=…(三个数之积)=1×2×2×6=2×2×2×3=…(四个数之积)例1下列算式中,□,○,△,☆,*各代表什么数?(1)□+5=13-6;(2)28-○=15+7;(3)3×△=54;(4)☆÷3=87;(5)56÷*=7。

解:(1)由加法运算规则知,□=13-6-5=2;(2)由减法运算规则知,○=28-(15+7)=6;(3)由乘法运算规则知,△=54÷3=18;(4)由除法运算规则知,☆=87×3=261;(5)由除法运算规则知,*=56÷7=8。

例2下列算式中,□,○,△,☆各代表什么数?(1)□+□+□=48;(2)○+○+6=21-○;(3)5×△-18÷6=12;(4)6×3-45÷☆=13。

解:(1)□表示一个数,根据乘法的意义知,□+□+□=□×3,故□=48÷3=16。

(2)先把左端(○+○+6)看成一个数,就有(○+○+6)+○=21,○×3=21-6,○=15÷3=5。

(3)把5×△,18÷6分别看成一个数,得到5×△=12+18÷6,5×△=15,△=15÷5=3。

(4)把6×3,45÷☆分别看成一个数,得到45÷☆=6×3-13,45÷☆=5,☆=45÷5=9。

例3(1)满足58<12×□<71的整数□等于几?(2)180是由哪四个不同的且大于1的数字相乘得到的?试把这四个数按从小到大的次序填在下式的□里。

180=□×□×□×□。

(3)若数□,△满足□×△=48和□÷△=3,则□,△各等于多少?分析与解:(1)因为58÷12=4……10,71÷12=5……11,并且□为整数,所以,只有□=5才满足原式。

(2)拆分180为四个整数的乘积有很多种方法,如180=1×4×5×90=1×2×3×30=…但拆分成四个“大于1”的数字的乘积,范围就缩小了,如180=2×2×5×9=2×3×5×6=…若再限制拆分成四个“不同的”数字的乘积,范围又缩小了。

按从小到大的次序排列只有下面一种:180=2×3×5×6。

所以填的四个数字依次为2,3,5,6。

(3)首先,由□÷△=3知,□>△,因此,在把48拆分为两数的乘积时,有48=48×1=24×2=16×3=12×4=8×6,其中,只有48=12×4中,12÷4=3,因此□=12,△=4。

这道题还可以这样解:由□÷△=3知,□=△×3。

把□×△=48中的□换成△×3,就有(△×3)×△=48,于是得到△×△=48÷3=16。

因为16=4×4,所以△=4。

再把□=△×3中的△换成4,就有□=△×3=4×3=12。

这是一种“代换”的思想,它在今后的数学学习中应用十分广泛。

下面,我们再结合例题讲一类“填运算符号”问题。

例4在等号左端的两个数中间添加上运算符号,使下列各式成立:(1)4 4 4 4=24;(2)5 5 5 5 5=6。

解:(1)因为4+4+4+4<24,所以必须填一个“×”。

4×4=16,剩下的两个4只需凑成8,因此,有如下一些填法:4×4+4+4=24;4+4×4+4=24;4+4+4×4=24。

(2)因为5+1=6,等号左端有五个5,除一个5外,另外四个5凑成1,至少要有一个“÷”,有如下填法:5÷5+5-5+5=6;5+5÷5+5-5=6;5+5×5÷5÷5=6;5+5÷5×5÷5=6。

相关文档
最新文档