电变压器低压侧断路器的选择与整定

电变压器低压侧断路器的选择与整定
电变压器低压侧断路器的选择与整定

低压断路器的选择(分断能力)

低压断路器的选择:95%的人都不曾了解的东东! 如何正确选择低压断路器?以下五大步骤必不可少: (1)由线路的计算电流来决定断路器的额定电流;(大概有99%的设计者做到了这一条)。 (2)断路器的短路整定电流应躲过线路的正常工作启动电流。(大概有30%的设计者注意到了这一条)。 (3)按线路的最大短路电流来校验低压断路器的分断能力;(大概有10%的设计者注意到了这一条)。 (4)按照线路的最小短路电流来校验断路器动作的灵敏性,即线路最小短路电流应不小于断路器短路整定电流的1.3倍;(大概有5%的设计者注意到了这一条)。 (5)按照线路上的短路冲击电流(即短路全电流最大瞬时值)来校验断路器的额定短路接通能力(最大电流预期峰值),即后者应大于前者。(大概有1%的设计者注意到了这一条)。 “第3~5条只是厂家的事”这也是大部分设计人人的误区。就最常见的DZ20而言,断路器的分断能力一般可分高、中、低(H、M、L)三档,如果设计人选择了错误的档次,就可能造成分断能力不足,而这显然不是厂家的事情,而是必须由设计人运算后才可作出正确选择的。我们不宜把设计责任推到厂家或盘厂身上,呵呵。 开关厂家可以提供额定短路运行(或极限)分断能力值,也许还可以提供额定短路接通能力值,但是它一般不会给你提供具体系统及线路的短路电流值呀——该你算的,还得算,不可偷懒,也无法偷懒啊。 比如1600KV A变压器的低压母线上,短路全电流峰值可达100KA!这不是一般开关所能胜任的,也不是什么开关厂家可以替你分忧解难的。呵呵,万一出了事,设计还是唯一责任。——因为厂家已经提供了几十KA到上百KA的接通能力,可是你当时只是选择了较低接通能力的开关。出事了怎么还可以牵扯到开关厂家呢? 《工业与民用设计手册里》,第二版1995年才出来,第一版是1983年的事了,那时候我还不知道自己将来会搞电气,呵呵![/quote] 呵呵,我好像没说第几版吧;不过,第一版我手头曾经也有(名字似乎是《工厂配电设计手册》),要比第二版薄不少。 这本书确实有一些细节问题尚待研究。

断路器型号选择

低压断路器型号的含义是什么? 举例: HUM18-63C32/1 HU-----企业代号(环宇),M18---产品型号,63-----壳架等级, C------使用类别:照明电路(或者一般电路) 32-----额定电流,1-------1P(1极) 断路器DW17-400/3:DW-万能自动空气断路器; 17-设计代号;“-400”-额定电流(A);“/3”-3极。 (1)由线路的计算电流来决定断路器的额定电流;(大概有99%的设计者做到了这一条)。 (2)断路器的短路整定电流应躲过线路的正常工作启动电流。(大概有30%的设计者注意到了这一条)。 (3)按线路的最大短路电流来校验低压断路器的分断能力;(大概有10%的设计者注意到了这一条)。 (4)按照线路的最小短路电流来校验断路器动作的灵敏性,即线路最小短路电流应不小于断路器短路整定电流的1.3倍;(大概有5%的设计者注意到了一条)。 (5)按照线路上的短路冲击电流(即短路全电流最大瞬时值)来校验断路器的额定短路接通能力(最大电流预期峰值),即后者应大于前者。 问:空气开关(断路器)的极性和表示方法是怎样的? 单极220V 切断火线(小型断路器) 双极220V 火线与零线同时切断(DPN零线火线双进双出断路器) 三级380V三相线全部切断 四级380V三相火线一相零线全部切断。 断路器极数选用 对于微型断路器来说,1P+N、1P、2P一般都用来作为单相用电器的通断控制,但效果不同。 1P------单极断路器,具有热磁脱扣功能,仅控制火线(相线); 1P+N----单极+N断路器,同时控制火线、零线,但只有火线具有热磁脱扣功能;2P------单相2极断路器,同时控制火线、零线,且都具有热磁脱扣功能。 所以,可以得出以下结论: 1、为减少成本,用1P就可以,但上级断路器必须有漏电脱扣功能,检修时为防止火、零错乱造成事故,必须切断上级电源; 2、为检修时避免1条的问题,可用1P+N(即DPN); 3、用2P的理由:对于同样是18mm模数的断路器壳体而言,内部装1P和装1P+N 是有区别的,前者在短路事故状态下的“极限分断能力”肯定要高于后者,毕竟空间是影响分断能力的一个重要因素。所以,对于比较重要、检修与操作频繁、容易出现故障的用电回路,最好还是用2P(成本高些)。 1P+N=一极+零线保护的(如室内用电保护),常用于室内;1P=单极的,常用于单相小负荷(如室内照明回路);2P=二级,常用于较大负荷(如室外照明回路)。P---极。1P就是一个单个的开关,2P就是俩开关,1P+N就是开关内部一个

(完整)低压配电断路器选择

(完整)低压配电断路器选择 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)低压配电断路器选择)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)低压配电断路器选择的全部内容。

低压配电断路器选择 摘要介绍低压供配电系统中断路器的选择方法,断路器的主回路额定值的选取依据,断路器的选择性配合,三相短路电流与断路器脱扣电流间的对应关系 关键词断路器选择选择性配合三相短路电流极限分断能力运行分断能力 1、断路器的特性 断路器的特性包括断路器的型式(极数、电流种类)、主电路的额定值和极限值(包括短路特性)、控制电路、辅助电路、脱扣器型式(分励脱扣器、过电流脱扣器、欠电流脱扣器等)、操作过电压等。 现重点讨论断路器主电路的额定值和极限值的选择方法。 2、配电型断路器选择方法 配电线路保护的低压断路器选择方法可依据(《工业与民用配电设计手册》(第三版)P631) 1)、断路器额定电流的确定.断路器壳架等级额定电流I rQ和断路器反时限过电流脱扣器的额定电流I rt的确定如下 I rQ>= I rt >=I c 式中 I rQ-—断路器壳架等级的额定电流;I rt—反时限过电流脱扣器的额定电流; I c-线路的计算负荷电流,A; 2)、反时限过电流脱扣器的整定值(I set1)。 I z〉= I set1>=I c 式中 I c—线路的计算负荷电流,A;I z—导体的允许持续载流量,A; 另可参照《技术措施》,配电型断路器长延时过电流脱扣器的整定值应大于线路的计算电流,不考虑线路的尖峰电流。 I set1>= K zd1 I c 式中 K zd1—可靠系数,取1.1; 该式在现有设计中成为主要依据。 3)、定时限过电流脱扣器的整定值(I set2)。定时限过电流脱扣器主要用于保证保护

变压器低压侧出线电缆热稳定校验

变压器低压侧出线电缆热稳定校验 设计人员常对变压器高压侧电缆作短路热稳定校验。但低压侧电缆的短路热稳定校验往往容易被忽略,尤其是配至消防控制中心和弱电机房等处的出线回路,由于负荷容量不大、所选电缆截面较小,有时并不满足规范对电缆热稳定的要求。 1 电缆热稳定校验的重要性 根据GB 50054—2011《低压配电设计规范》第3.2.14条、第6.2.3条和GB 50217 2007《电力工程电缆设计规范》第3.7.7条的规定,电缆应能承受预期的故障电流或短路电流和短路保护的动作时间,对于非熔断器保护回路,应该校验电缆的相导体和保护导体的最小截面。 如果电缆不满足热稳定校验的要求.则在短路时电缆的绝缘层可能被破坏.同时可能影响到近旁的电缆和电气装置,甚至引发电气火灾。电缆的热稳定校验是设计过程中的重要环节。 2 变压器低压侧出线电缆的热稳定校验要求 根据GB 50054—2011第3.2.14条、第6.2.3条的规定,绝缘导体的热稳定,应按其截面积校验,且应符合下列规定: 当短路持续时间小于等于5 S(但不小于0.1 S)时,绝缘导体的截面积应符合下式: ------------- 短路持续时间小于0.1 s时,校验绝缘导体截面积应计入短路电流非周期分量的影响;大于5 S时.校验绝缘导体截面积应计入散热的影响。由上式可得:----------- 3 民用建筑中典型案例校验 3.1 短路参数计算 假设变压器高压侧的短路容量为S=300 MVA,则l 000 kVA变压器的低压出 I=1处(U n =0.38 kV,u k %=6)的短路电流计算如下: 取基准容量:S j =100 MVA,基准电压:U j = 1.05 U n =0.4 kV,基准电流: ----------- 电力系统的阻抗: ------ 变压器的阻抗: -------- 变压器低压出口处的短路阻抗: --------- 变压器低压出口处的短路电流: -------- 假设这个短路点远离发电厂,短路电路的总电阻较小,总电抗较大(R Σ≤XΣ/3)时,t一0.05 s。取短路电流峰值系数K P =1.8,矩路全电流最大有效值, I P =1.51 I K =1.51×22.8=34.4 kA 。 3.2 保护电器自动切断电流的动作时间 a.低压出线开关的主保护分闸时间(即低压馈线屏出线开关的脱扣时间) 可查样本获得。如出线开关的长延时整定电流值为40 A,由上面的数据可知,短路电流I K =22.8 kA,是长延时整定电流的570倍。一般带热磁脱扣器的断路器,

选择低压断路器应注意的几个问题

选择低压断路器应注意的几个问题 摘要:断路器广泛应用于低压配电系统中,是一种常用保护电器元件。在进行低压配电系统设计时,要正确选择断路器,对断路器过流脱扣器额定电流进行选择和整定,确保充分发挥断路器的保护作用。本文简要介绍选择低压断路器应注意的几个问题。 1.低压断路器的一些参数 断路器的额定电流:是指脱扣器能长期通过的电流。 断路器壳架等级额定电流:用基本几何尺寸相同和结构相似的框架或塑料外壳中所装的最大脱扣器额定电流表示。它决定了所能安装的脱扣器的最大额定电流值。 过电流脱扣器可分为过载脱扣器和短路(电磁)脱扣器,有长延时动作电流、短延时动作电流和瞬时动作电流之分。 断路器的额定极限短路分断能力:按规定的试验程序所规定的条件,不包括断路器继续承载其额定电流能力的分断能力;也就是断路器规定的试验电压及其它规定条件下的极限短路分断电流值,不考虑断路器继续承载它的额定电流。 额定运行短路分断能力:是指断路器在规定的试验电压及其它规定条件下的一种比额定极限短路分断电流小的分断电流值。 2.选择低压断路器的原则 2.1 额定工作电压和额定电流 额定工作电压不能低于线路额定电压,额定电流不能低于线路计算电流。应明确,断路器的额定电压与通断能力及使用类别有关,同一台断路器可以有几个额定工作电压和相对应的通断能力及使用类别。 2.2 长延时脱扣器整定电流Ir1 所选断路器的长延时脱扣器整定电流Ir1要大于或等于线路的计算负载电流,可按计算负载电流的1~1.1倍确定;同时应不大于线路导体长期许电流的0.8~1倍。 2.3 瞬时或短延时脱扣器的整定电流Ir2 所选断路器的瞬时或短延时时脱扣器整定电流应大于线路尖峰电流。配电断路器可按不低于尖峰电流1.35倍的原则确定;电动机保护电路,当动作时间不

低压断路器整定中的几个问题

低压断路器整定中的几个问题 低压断路器一般都具有过载长延时、短路瞬时两种保护。对于普通的断路器,过载保护采用热动型双金属片作热保护,短路保护采用电磁脱扣器,因机械配合精度难以做到很高,所以脱扣器误差较大,一般过载保护误差只能做到≯±10%,而短路保护误差只能做到≯±20%。随着电子技术的 推广应用和其产品可靠性的提高,现在许多新型的中、高档断路器普遍采用晶体管、单片微机等作电子脱扣器,其精度和性能有明显的提高,有的厂家产品过载保护误差能作到≯±5%、短路保护≯±10%。因此笔者认为,在进行断路器保护整定、验算时,对可靠系数等参数也不能一概套用设计手册中多年一直不变的系数,对不同的断路器应采用不同的系数。 1 长延时过电流脱扣器的动作电流整定公式 长延时过电流脱扣器的动作电流整定公式一般为: In≥Kzd1Ib 式中: Ib 为线路的计算电流; Kzd1 为低压断路器的长延时脱扣器的可靠系数,手册中一般推荐为1.1。实际上Kzd1 主要是考虑了断路器的误差,所以应根据长延时过电流脱扣器的误 差确定。对于一般的断路器如CM1、DZ20 等,长延时过电流脱扣器的误差为±10%,所以Kzd1 取1.1。但对于如Moller 公司的采用数字脱扣器的IZM 开关、施耐德公司的NS 开关配STR53 脱扣器时,其脱扣器的误差 ≯±5%,此时Kzd1 可取1.05。Kzd1 取小了,能更好地保护馈电电缆。 2 低压断路器动作的灵敏性校验 为使低压断路器可靠地切断接地故障,通常按下式校验断路器脱扣器动作的

低压断路器选用规则及示例

(1)由线路的计算电流来决定断路器的额定电流; (2)按线路的最大短路电流来校验低压断路器的分断能力; (3)按照线路的最小短路电流来校验断路器动作的灵敏性,即线路最小短路电流应不小于断路器短路整定电流的1.3倍; (4)断路器的短路整定电流应躲过线路的正常工作启动电流; (5)按照线路上的短路冲击电流(即短路全电流最大瞬时值)来校验断路器的额定短路接通能力(最大电流预期峰值),即后者应大于前者。 低压断路器的选用,应根据具体使用条件选择使用类别,选择额定工作电压、额定电流、脱扣器整定电流和分励、欠压脱扣器的电压电流等参数,参照产品样本提供的保护特性曲线选用保护特性,并需对短路特性和灵敏系数进行校验。当与另外的断路器或其他保护电器之间有配合要求时,应选用选择型断路器。 1、额定工作电压和额定电流低压断路器的额定工作电压Ue。和额定电流Ie。应分别不低于线路,设备的正常额定工作电压和工作电流或计算电流。断路器的额定工作电压与通断能力及使用类别有关,同一台断路器产品可以有几个额定工作电压和相对应的通断能力使用类别。 2、长延时脱扣器整定电流Ir1 所选断路器的长延时脱扣器整定电流Ir1应大于或等于线路的计算负载电流,可按计算负载电流的1~1.1倍确定;同时应不大于线路导体长期允许电流的0.8—1倍。 3、瞬时或短延时脱扣器的整定电流Ir2所选断路器的瞬时或短延时脱扣器整定电流Ir2应大于线路尖峰电流。配电断路器可按不低于尖峰电

流1.35倍的原则确定,电动机保护电路当动作时间大于0.02s时可按不低于1.35倍起动电流的原则确定,如果动作时间小于0.02s,则应增加为不低于起动电流的1.7—2倍。这些系数是考虑到整定误差和电动机起动电流可能变化等因素而加的。 4、短路通断能力和短时耐受能力校验低压断路器的额定短路分断能力和额定短路接通能力应不低于其安装位置上的预期短路电流。当动作时间大于0.02s时,可不考虑短路电流的非周期分量,即把短路电流周期分量有效值作为最大短路电流;当动作时间小于0.02s时,应考虑非周期分量,即把短路电流第一周期内的全电流作为最大短路电流。如校验结果说明断路器通断能力不够,应采取如下措施。 a)在断路器的电源侧增设其他保护电器(如熔断器)作为后备保护。 b)采用限流型断路器,可按制造厂提供的允通电流特性或限流系数(即实际分断电流峰值和预期短路电流峰值之比)选择相应的产品。 c)可改选较大容量的断路器。各种短路保护断路器必须能在闭合位置上承载未受限制的短路电流瞬态值,还须能在规定的延时范围内承载短路电流。这种短时承载的短路电流值应不超过断路器的额定短时耐受能力,否则也应采取措施或改变断路器规格。断路器产品样本中一般都给出产品的额定峰值耐受电流和额定短时耐受电流(1s电流)。当为交流电流时,短时耐受电流应以未受限制的短路电流周期分量的有效值为准。 5、灵敏系数校验所选定的断路器还应按短路电流进行灵敏系数校验。灵敏系数即线路中最小短路电流(一般取电动机接线端或配电线路末端的两相或单相短路电流)和断路器瞬时或延时脱扣器整定电流之比。两相短

10KV变压器高低压侧电流计算

10KV变压器高低压侧电流计算 三相变压器额定电流的计算公式为: Ⅰ=变压器额定容量÷(1.732 ×变压器额定电压) 1、快速估算法 变压器容量/100,取整数倍,然后*5.5=高压侧电流值,如果要是*144,就是低压侧电流值! 比如说1000KVA的变压器/100取整数倍后是10,那么高压侧电流就是10*5.5=55A,低压侧电流就是10*144=1440A 2、线性系数法 记住一个常用容量的变压器高低压侧电流值,其它容量的可以进行线性推导 比如说1000KVA的变压器,高压侧电流计算值是57.73,低压侧电流计算值是1443.42,那么记住这个数值,其它容量的可以以此推导,比如说1600KVA的变压器,高压侧电流就是1600/1000*57.73=92.368A,低压侧电流就是1600/1000*1443.42=2309.472A 3、粗略估算法 高压侧电流=变压器容量/20,低压侧电流=变压器容量*2 比如说1000KVA的变压器,高压侧电流=1000/20=50A,低压侧电

流 =1000*2=2000A,这种方法过于粗糙,一般都是设计院用来开关元型选型、电缆选型和校验的时候常用的方法 4、公式计算法 I=S/1.732/U I--电流,单位A S--变压器容量,单位kVA U--电压,单位kV 5、最大电流计算 需要考虑过载系数、过载时限、变压器寿命、电动机起动系数、涌流、高频负荷如电机的高频谐波等综合因素了,这样计算就非常麻烦了。 只说一个简单的,在过载的情况下,油变的过载系数是1.2,干式的过载系数是1.5,也就是通过上述方法计算出变压器的额定电流值之后,再乘以过载系数,从而得到最大电流值,用以高低压侧开关的整定和变压器后备限流熔断器数值的设计和整定! 值得注意一点:10 KV 变压器的输出电压为 400 V ,不是 380 V ,这是变压器的标准设计

低压断路器的选用和整定原则及方法

低压断路器的选用和整定原则及方法 【摘要】本文阐述了低压配电系统断路器选用和整定方法和原则,有助于发挥其控制、测量和保护作用,有利于低压配电系统安全、可靠、连续运行。 【关键词】断路器;选型;整定;方法;原则 低压配电系统的主要任务是确保其安全、可靠、连续运行,出现故障时尽快切除故障回路并保证非故障回路正常运行。随着电气技术发展,低压断路器已逐步实现了智能化、模块化和小型化,合理选择并整定低压断路器,有助于发挥其控制、测量和保护作用,也是保证上述要求的重要环节。 四川维尼纶厂30万吨/年醋酸乙烯项目低压配电系统按照中石化框架协议采购ABB低压开关柜,柜内配ABB E系列框架断路器和T系列塑壳断路器。下面详细阐述本项目低压各级断路器的选用和整定原则及方法。 一、低压各级断路器的选用原则和方法 低压断路器最常见负载有配电类、电动机类和家用电器类三类,应根据不同的负载性质及要求选用不同保护特性的断路器。配电线路应选用配电型断路器,配电型断路器有选择性与非择性之分。电动机保护型断路器只要有过载长延时和短路瞬时的两段保护性,可选用非选择性断路器。家用和类似场所的保护型断路器是一种额定电流在63 A以下的小型非选择性断路器。低压断路器选用的主要原则有: (1)根据低压配电系统的负载性质、故障类别以及对线路保护的要求,来确定选用的断路器类型。 (2)断路器的额定电压、额定频率应与所在回路的标称电压及标称频率相适应,断路器的额定电流不应小于所在回路的负载计算电流。 (3)断路器应适应所在场所的环境条件。 (4)断路器应满足短路条件下的动稳定、热稳定要求,用于断开短路电流时应满足短路条件下的通断能力。 在低压配电系统中,要保证上、下两级断路器之间选择性动作,一般上一级断路器采用选择性断路器,下一级断路器采用非选择性断路器或选择性断路器,利用短延时脱扣器的延时动作或延时动作时间的不同以获得选择性。对于重要负荷的配电线路上下级间的断路器应采用选择性保护断路器。参照E系列框架式断路器和T系列塑壳断路器以及T系列塑壳断路器间选择性配合表,低压配电系统各级断路器的选用方法如下:

如何正确选择低压断路器

如何正确选择低压断路器?以下五大步骤必不可少: (1)由线路的计算电流来决定断路器的额定电流;(大概有99%的设计者做到了这一条)。 (2)断路器的短路整定电流应躲过线路的正常工作启动电流。(大概有30%的设计者注意到了这一条)。 (3)按线路的最大短路电流来校验低压断路器的分断能力;(大概有10%的设计者注意到了这一条)。 (4)按照线路的最小短路电流来校验断路器动作的灵敏性,即线路最小短路电流应不小于断路器短路整定电流的1.3倍;(大概有5%的设计者注意到了这一条)。 (5)按照线路上的短路冲击电流(即短路全电流最大瞬时值)来校验断路器的额定短路接通能力(最大电流预期峰值),即后者应大于前者。 首先,按1条选择的断路器,再区分A,B,C,D型的适用场所。 3,4,5条都是厂家的事了,现在的微断分断能力都达到15KA,主要是第4条,施耐德等产品也给出了配电长度表。

查表! 不可以无条件用在低压屏上。 “第3~5只是厂家的事”?这也是大部分设计人人的误区。就最常见的DZ20而言,断路器的分断能力一般可分高、中、低(H、M、L)三档,如果设计人选择了错误的档次,就可能造成分断能力不足,而这显然不是厂家的事情,而是必须由设计人运算后才可作出正确选择的。我们不应把设计责任推到厂家或盘厂身上,如果说第4条还可以由厂家提供简化表格来勉强解决问题的话,第3、5条是厂家无法提供什么表格的。 开关厂家可以提供额定短路运行(或极限)分断能力值,也许还可以提供额定短路接通能力值,但是它一般不会给你提供具体系统及线路的短路电流值呀——该你算的,还得算,不可偷懒,也无法偷懒。

比如1600kVA变压器的低压母线上,短路全电流峰值可达100KA!这不是一般开关所能胜任的,也不是什么开关厂家可以替你分忧解难的。呵呵,万一出了事,设计还是唯一责任。——因为厂家已经提供了几十kA到上百kA的接通能力,可是你当时只是选择了较低接通能力的开关。出事了怎么还可以牵扯到开关厂家呢? 低压屏上不要用微断的,宁可用熔断器! 现在的民用设计除了算负荷,算电流,其他的校验很少有人做,如此设计,却也没出什么大事,原因何在呢?即使出了问题,也很难找到设计身上,因为使用方经常更改引结负荷。 设计者一般宁可选大,整定大。。。分断能力大。。。至少在近期不会出事,很少去管灵敏度。与电力设计的严禁态度相比,建筑电气设计十分混乱。 我敢说,民用建筑电气设计者有一半不会短路电流计算,包括所谓的高工。。。。 其实小容量的变压器低压母线上,甚至可以使用15KA微断的。 “出事了很少找到设计头上”?那大多是因为“事故调查组组长”,往往就是属于设计之列的!

低压系统短路电流计算与断路器选择

低压系统短路电流计算与断路器选择 低压系统短路电流计算是电气设计中的一项重要组成部分,计算数据量大,过程繁琐,设计人员大多以经验估算,常常影响设计质量,甚至埋下安全隐患。本文拟在通过对低压短路电流的计算简述以及实例介绍,说明低压断路器的选择及校验方法。 在设计中,短路电流计算与断路器选择的步骤如下: ①简单估算低压短路电流; ②确定配电中心馈出电缆满足热稳定的最小截面; ③选择合适的低压断路器; ④合理选择整定值,校验灵敏度及选择性。 1.低压短路电流估算 1.1短路电流的计算用途 短路电流的计算用途主要有以下几点: ①校验保护电器的整定值,如断路器、熔断器的分断能力应大于安装处最大预期短路电流。 ②确定保护电器的整定值,使其在短路电流对开关电器及线路器材造成破坏之前切断故障电路。 ③校验开关电器及线路器材的动热稳定是否满足规范和实际运行的要求。 1.2短路电流的计算特点 短路电流计算的特点:

①用户变压器容量远小于系统容量,短路电流周期分量不衰减。 ②计入短路各元件有效电阻,但不计入元件及设备的接触电阻和电抗。 ③因线路电阻较大,不考虑短路电流非周期分量的影响。 ④变压器接线方式按D、yn11考虑。 1.3短路电流的计算方法 短路电流计算的方法: ——三相短路电流或单相短路电流kA; 式中 I k Z ——短路回路总阻抗mΩ(包括系统阻抗、变压器阻抗、母 k 线阻抗及电缆阻抗等,其中阻抗还包括电阻、电抗、相保电阻、相保电抗) U——电压V(用于三相短路电流时取230,用于单相短路电流时取220) 1.4短路电流的计算示例 下面通过范例来叙述低压短路电流的计算过程。

ABB低压断路器的选择

ABB低压断路器的选择 1进线及分段开关的选择 1.1保护的配置 用于变压器低压侧的进线开关,由于高压侧已经有较完善的保护,通常只需配置过载保护和短路短延时保护;因为与下级配合问题,不能设速断保护; 选用PR122/P 有L、S、I三段保护的电子脱扣器完全满足要求。 分段开关的过载保护已没有意义,可设定与进线相同,便于与进线开关互换;短延时保护动作值与进线同,但时间定值要改短,以便与进线开关配合; 1.2应用举例:1000kV A,4.5% ,6/0.4kV, 96.2/1443A, 低压母线最大短路电流26.81kA,最小24.5kA 选用E2N断路器配PR122/P电子脱扣器(也可选PR121/P,但没有显示窗,整定用拨盘且级差大) I u=2000A,I n=2000A 评论:本例也可以选用EIB,50kA,I u=1600A,I n=1600A,但没有发展余地,当变压器改为1250kV A,E2N(2000A)仍然可用,只需改变I1、I2设定值。 1.2.1进线开关 (1)过载保护的设定-L功能: I1=(1.05*1.05*I tn)/I n=(1.1025*1443)/2000=1590.9=0.795I n 取I1=0.80I n=1600A (步长为0.01) 设t1=12s (3倍I1时)-整定范围3-144s,步长3s 验算是否满足: a与短延时保护相配合,即当低压母线最大三相短路时,动作时间不小于0.4s b躲过大型电动机起动时间和电机群自起动时间。 k=(3I1)2*12=108I12当二次侧最大短路时,I k=26810A/1600=16.75I1 t=108I12/(16.75I1)2=0.385s<0.4s 不满足 取t1=15s,k=(3I1)2*15=135I12 , 当低压母线最大三相短路时保护动作时间t t=135I12/(16.75I1)2=0.48s>0.4s 满足要求 低压电动机起动时间一般在5-10s,且此时过载倍数远不会超过变压器额定电流的3.3倍(3I1/1443=3*0.8*2000/1443=3.3)满足要求 当变压器过载1.2倍时,保护动作时间t=135I12/(1.2*1443/1600)2I12=115s (2)短路短延时保护设定-S功能: I2=(1.2*2.5* I tn)/I n=(1.2*2.5*1443)/2000=2.16I n 取I2=2.2I n=4400A(步长为0.1) I2的整定要躲过大型电动机起动电流或电机群自起动电流(过负荷系数2.5就是考虑上述因素); t2=0.4s t=k,定时限 校验灵敏度: 二次侧最小短路时,I k=24.5 kA, 所以,K L=0.866*24500/2.2*2000=4.8>1.3 满足要求 (3)短路瞬动-I功能:关断 如果设定,则要大于二次侧最大三相短路电流,即:使该保护不起作用 I3=(1.5*I k)/I n=(26810*1.5)/2000=20.1 取I3=15I n,(设定范围最大为15倍),所以 必须关断,否则将失去选择性。 式中,I k为低压母线最大三相短路电流(假定一次侧短路容量为300MV A)

干式变压器低压出线方式及其接口配合

(1)低压标准封闭母线:工程配线若选用封闭母线(也称插接式母线或密集型母线槽),相应之变压器可提供标准封闭母线端子,方便与外部母排的联接。 带外壳(IP20)产品,在外壳顶盖上配套提供封闭母线法兰;不带外壳(IP00)产品,只提供封闭母排接线端子。 (2)低压标准横排侧出线:当中试高测变压器与低压配电屏并排放置时,为方便其端子间的联接,变压器可提供低压横排侧出线,通常与GGD、GCK、MNS等低压屏相配,变压器厂与开关厂要签署接口配合纪要,确认配合接口详尽尺寸,保证现场安装顺利。 (3)低压标准立排侧出线:与横排侧出线相似,武汉中试高测电气有限公司当选用多米诺屏等母排为竖向布置的低压配电屏时,变压器可提供低压立排侧出线。 目前,我国树脂绝缘干式变压器年产量已达10000MVA,成为世界上干式变压器产销量最大的国家之一。随着低噪(2500KVA以下配电变压器噪声已控制在50DB以内)、节能(空载损耗降低达25%)的SC (B)9系列的推广应用,使得我国干式变压器的性能指标及其制造技术已达到世界先进水平。 随着干式变压器的推广应用,其生产制造技术也获得长足发展,可以预测,未来的干式变压器将在如下几方面获得进一步发展。 (1)节能低噪:随着新的低耗硅钢片,箔式绕组结构,阶梯铁心接缝,环境保护要求,噪声研究的深入,以及计算机优化设计等新材料、新工艺、新技术的引入,将使未来的干式变压器更加节能、更加宁静。 (2)高可靠性:提高产品质量和可靠性,将是人们的不懈追求。在电磁场计算、波过程、浇注工艺、热点温升、局放机理、质保体系及可靠性工程等方面进行大量的基础研究,积极进行可靠性认证,进一步提高干式变压器的可靠性和使用寿命。 (3)环保特性认证:以欧洲标准HD464为基础,开展干式变压器的耐气候(C0、C1、C2)、耐环境(E0、E1、E2)及耐火(F0、F1、F2)特性的研究与认证。 (4)大容量:从50~2500KVA配电变压器为主的干式变压器,向10000~20000KVA/35KV电力变压器拓展,随着城市用电负荷不断增加,城网区域变电所越来越深入城市中心区、居民小区、大型厂矿等负荷中心,35KV大容量的小区中心供电电力变压器将获广泛应用。 (5)多功能组合:从单一变压器向带有风冷、保护外壳、温度计算机接口、零序互感器、功率计量、封闭母线及侧出线等多功能组合式变压器发展。 (6)多领域发展:从以配电变压器为主,向发电站厂用变压器、励磁变压器、地铁牵引整流变压器、大电流电炉变压器、核电站、船用及采油平台用等特种变压器及多用途领域发展。

低压断路器及选型

低压断路器 一、低压断路器的分类 低压断路器(曾称自动开关)就是一种不仅可以接通与分断正常负荷电流与过负荷电流,还可以接通与分断短路电流的开关电器。低压断路器在电路中除起通断控制作用外,还具有保护功能,如过负荷、短路、欠压与漏电保护等。低压断路器可以手动直接操作与电动操作,有的还可以实现远方遥控操作。 低压断路器的分类:低压断路器的分类方式很多 按结构形式可分为: 框架式断路器(ACB)又称开启式、万能式断路器。比如ABB的F、Emax系列、施耐德的M、MT系列、穆勒的IZM系列、西门子的WL系列、国产的DW系列等。框架式断路器所有零件都装在一个绝缘的金属框架内,常为开启式,可装设多种附件,更换触头与部件较为方便。有手操动、储能式、非储能式以及电动式等操动形式。按安装方式可分为固定式与抽屉式两种,固定式外壳采用金属材料,外形尺寸较大,防护等级较低;抽屉式采用工程塑料外壳,结构较为紧凑,防护等级高,检修方便,多用在电源端总开关。过电流脱扣器有热磁式、电磁式(单磁)、电子式与智能化脱扣器等几种。断路器具有长延时、短延时、瞬时三段保护及接地保护,每种保护整定值均根据其壳架等级在一定范围内可选择或调整。随着微电子技术的发展,现在部分智能型断路器具有区域选择联锁功能,充分保证了动作的灵敏性与选择性。ACB的最大特点就是容量大、极限短路分断能力高与足够的短时耐受电流,有的断路器的额定电流高达5000 A,额定短时耐受(允许)电流Icw 高达100kA (1S)。这使得ACB的有很好的选择性与稳定性。ACB的功能完善但价格贵,多用于作为低压配电系统的主开关,以及重要的、负载较大的主干线的保护。 塑壳式断路器(MCCB)又称装置式断路器,比如ABB的lsomaxS、Tmax系列、施耐德的NS、NSX系列、国产的DZ20系列等。所有零件都密封于外壳中,辅助触点、欠压脱扣器以及分励脱扣器等多采用模块化,由于结构非常紧凑,MCCB基本不能检修。MCCB多为手动操作,大容量也有选择电动操作。由干电子式保护脱扣器的应用,MCCB也具备了三段保护特性,但由于价格因素,采用热磁式或电磁式脱扣器的断路器用量更大。MCCB的特点就是体积小、接触防护好、安装使用方便、价格相对便宜。但与ACB比,MCCB的容量小,短路分断能力低,选择性与短时耐受能力差。近年来新型MCCB容量已经做到3000A,极限短路分断能力高达150kA以上,但因结构上的原因,短时耐受能力就是最大短板,使选择型MCCB的应用受到局限。由于上述原因,MCCB 主要用于未端线路与一些分干线,主要作电动机、小容量配电线路。 还有一类叫微型断路器(MCB)又称微断,比如ABB的S250系列、施耐德的C65系列、国产的DZ47系列等。实际上也就是塑壳断路器的一种,因其体积很小把它另列,微断的特点就是结构紧凑、接触防护好、安装使用方便、价格便宜,与塑壳式断路器相比容量更小,短路分断能力更低,短时耐受能力更差,主要做微小型电动机、小容量配电线路与照明保护与家用。 按保护负载性质与特性可分为:配电保护型、电动机保护型与家用保护型断路器。 按脱扣器类型可分为:电磁(单磁)脱扣器、热磁脱扣器与电子脱扣器,电子脱扣器还可分为拨动开关式、智能数显式。 按使用类别分为非选择型(A类)与选择型(B类)。 A类,这类断路器不设置任何脱扣延时,只要达到定值立即跳闸。承受短路的时间就就是瞬时脱扣器动作的时间。此时选择断路器可按Ics或Icu满足短路预期电流,考虑到更严格一些的使用条件,一般我们习惯按Ics满足短路预期电流选择。 B类,这类断路器为了实现选择性在小于Icw的短路时延时一定时间脱扣。此时选择断路器就必须按Icw满足短路预期电流。

10KV变压器低压侧断路器的选 择与整定 - 2018.1.5

10KV变压器低压侧断路器的选择与整定 一、低压侧断路器的选择与整定 1、变压器低压侧进线断路器长延时过电流脱扣器的整定倍数 在个别的设计中,进线断路器长延时过电流脱扣器整定值为 I r=1.1I n,这是错误的,正确的应为I r=1.0I n (其中,I n为脱扣器额定电流)。因为变压器低压侧进线断路器一般采用框架断路器,通常选用的有ABB、施耐德、西门子、穆勒或国产的常熟断路器厂等的产品,其脱扣器均为四段保护的电子脱扣器;其中长延时过电流脱扣器的整定值为I r=(0.4-1.0)I n,各个产品的整定电流级差是不相同的。 如施耐德的micrologic2.0a/5.0/6.0/7.0脱扣器: I r= (0.4/0.5/0.6/0.7/0.8/0.9/0.95/0.98/1.0) I n。 如ABB的pr121/p脱扣器:I r =(0.4-1.0) I n,级差为0.025 I n; pr121/p、pr123/p脱扣器:I r =(0.4-1.0) I n,级差为0.01 I n 。 常熟ES35脱扣器:I r =(0.4-1.0) I n 所以进线断路器的长延时过电流脱扣器整定为1.1倍的额定电流是做不到的,这个问题的出现可能是与配电变压器低压侧进线断路器长延时过电流整定电流宜为变压器低压侧额定电流的1.1倍之说相混淆了。 2 、变压器低压侧进线断路器的保护整定 长延时过电流脱扣器整定为 式中,为断路器长延时脱扣器可靠系数,取1.1; 为变压器低压侧额定电流。 短延时过电流脱扣器整定为 时限可取0.4s,要与高压侧配合 , 式中,m为过电流倍数,可取2-4;为断路器短延时脱扣器可靠系数,取1.3。

低压断路器的选择浅析

摘要:随着我国现代化建设的飞速发展,新建住宅、商业、工业等项目越来越多,功能也越来越复杂,其对用电要求也越来越高。而对工程实际运用来说,低压断路器是直接保证供电回路安全的重要设备,低压断路器如何选用得安全、经济、合理显得尤为重要。 关键词:低压断路器;电子脱扣器;热磁脱扣器;电磁脱扣器 中图分类号:tu855 文献标识码:a 断路器是一种能够接通、承载以及分段正常电路条件下的电流,也能在规定的非正常电路(例如短路)下接通、承载一定时间和分段电流的一种机械开关电器。低压断路器广泛地应用于低压配电系统各级馈电回路,各种机械设备的电源控制和用电终端的控制和保护。在使用低压断路器的过程中如何科学地选型,避免因断路器选型不当及安装不合理,造成其不能发挥应有控制与保护作用,并在运行中存在一定安全隐患,既降低系统保护运行的可靠性,又对使用人员的人身安全构成相应威胁。所以如何科学合理地选择使用低压断路器是保证系统安全有效运行关键。 一、低压断路器的特性 1.低压断路器的基本特性主要体现在 (1)额定电压ue:这是断路器在正常(不间断的)的情况下工作的电压; (2)额定电流in:配有专门的过电流脱口继电器的断路器在制造厂家规定的环境温度下所能无限承受的最大电流值,不会超过电流承受部件规定的温度限值; (3)额定极限短路分断能力icu:是断路器能够分断而不被损害的最高(预期的)电流值; (4)过载保护(ir或irth)和短路保护(im)的脱扣电流整定范围。 2.低压断路器的脱扣器类型有 (1)电磁脱扣器:只提供磁保护,也就是短路保护。 (2)热磁脱扣器:提供磁保护和热保护,热保护也就是过载保护。一般来说,电路中都用热磁脱扣器来提供短路和过载保护,只有一些特殊场合用电磁脱扣器提供短路保护,而由其他元件(如热继电器)来提供过载保护。但其只能提供二段保护;动作值误差比较大,不可以调节。 (3)电子脱扣器可以有以上所有功能,并可以方便地进行整定,且能够提供三段甚至四段保护,动作比较精准,可以调节。 二、低压断路器的选择 低压断路器的选择需要考虑如下因数:断路器所在设备系统的电气特性;断路器的使用环境(如周围环境温度、罩棚或开关柜的外护物,当地气候条件等);短路电流分断和接通能力;断路器操作要求(如分级跳闸、遥控要求和指示及相关辅助触点,辅助跳闸线圈以及它们间的连接要求);安装规定,特别是对人身的保护;负荷特性(如电动机、荧光灯、低压变压器等),本文主要从短路电流计算和热稳定校验等方面探讨低压断路器的选择。 《低压配电设计规范》gb50054-2011第3.1.1条要求:“电器的额定电流不应小于所在回路的计算电流;电器应满足短路条件下的动稳定与热稳定的要求;用于断开短路电流的电器应该满足短路条件下的接通能力和分段能力”。第6.2.1条要求:“配电线路的短路保护电器,应在短路电流对导体和连接处产生的热作用和机械作用造成危害之前切断电源”。第6.2.4条要求:“当短路保护电器为断路器时,被保护线路末端的短路电流不应小于断路器瞬时或短延时过电流脱扣器整定电流的1.3倍”。 下面通过案例进行相关分析: 在以上计算结论的前提下,现对单元配电总箱的出线开关进行校验。由于通常甲方要求不标示所选断路器型号,只用代号mccb表示塑壳断路器,现选取常熟开关厂和施耐德电气有

干式变压器的低压出线方式

干式变压器的低压出线方式 干式变压器低压出线方式有哪些?SC(B)9系列大致含义? 干式变压器低压出线方式有哪些? 1、低压标准封闭母线:工程配线若选用封闭母线(也称插接式母线或密集型母线槽),相应之干式变压器可提供标准封闭母线端子,方便与外部母排联接。 带外壳(IP20)产品,外壳顶盖上配套提供封闭母线法兰;不带外壳(IP00)产品,只提供封闭母排接线端子。 2、低压标准横排侧出线:当干式变压器与低压配电屏并排放置时,为方便其端子间联接,变压器可提供低压横排侧出线,通常与GGD、GCK、MNS等低压屏相配,变压器厂与开关厂要签署接口配合纪要,确认配合接口详尽尺寸,保证现场安装顺利。 3、低压标准立排侧出线:与横排侧出线相似,当选用多米诺屏等母排为竖向布置低压配电屏时,变压器可提供低压立排侧出线。 SC(B)9系列是什么东西? 树脂绝缘干式变压器是我公司引进国外先进技术,自主开发了SC9、SCB9系列以及SC10、SCB10系列干式变

压器,由于线圈被环氧树脂包封,所以难燃,防火、防爆、免维护,无污染,体积小,可直接安装在负荷中心。一般现在有些使用的ZSG三相干式变压器也是基于这个理念的。同时科学合理的设计和浇注工艺,使产品局部放电量更小,噪声低,散热能力强,在强迫风冷条件下可以在125%额定负载下长期运行,并配有智能温控仪,具有故障报警,超温报警,超温跳闸以及黑匣子功能,并通过RS485串行接口与计算机相连,可以集中监视和控制。 由于我们公司干式变压器具有以上特点,因此广泛应用于输变电系统,如宾馆饭店,机场,高层建筑,商业中心,住宅小区等重要场所,以及地铁,冶炼,电厂,轮船,海洋钻井平台等环境恶劣场所。

低压断路器整定

低压断路器整定 一、意义 1、躲过线路正常电流,当发生故障电流时分断断路器以保护线路或负载 2、上下级断路器间实现选择性配合 二、方法 1、固定动作定值断路器:选择不同额定电流的断路器 2、可调动作定值断路器:选择合适额定电流的断路器,调整断路器脱扣器上动作电流值、动作时间值 三、原则 1、保证可靠保护: ⑴低压断路器过流脱扣器额定电流的选择 低压断路器过流脱扣器的额定电流IN.OR不小于线路的计算电流I30,即IN.OR≥I30。 ⑵低压断路器过流脱扣器动作电流的整定 ①瞬时过电流脱扣器动作电流的整定。低压断路器所保护的对象中,有某些电器设备,这些电器设备在启动过程中,会在短时间内产生数倍于其额定电流的高峰值电流,从而使低压断路器在短时间内承受较大的尖峰电流。瞬时过电流脱扣器的动作电流Iop o 必须躲过线路的尖峰电流Ipk,即Iop o ≥Krel·Ipk,式中Krel为可靠系数。在选用断路器时,应注意使低压断路器的瞬时过电流脱扣器的整定电流躲过尖峰电流,以免引起低压断路器的误动作; ②短延时过流脱扣器动作电流和动作时间的整定。短延时过流脱扣器的动作电流Iop s ,也应躲过线路的尖峰电流Ipk,即Iop s ≥Krel·Ipk,式中Krel为可靠系数。短延时过流脱扣器的动作时间一般分0.2S、0.4S和0.6S三种,按前后保护装置的保护选择性来确定,应使前一级保护的动作时间比后一级保护的动作时间长一个时间级差; ③长延时过流脱扣器动作电流和动作时间的整定。长延时过流脱扣器主要是用来保护过负荷,因此其动作电流Iop l 只需要躲过线路的最大负荷电流即计算电流I30,即Iop l ≥Krel.I30,式中Krel为可靠系数。长延时过流脱扣器的动作时间应躲过允许短时过负荷的持续时间,以免引起低压断路器的误动作; ④过流脱扣器的动作电流与被保护线路的配合要求。为了不致线路因出现过负荷或短路引起绝缘线缆过热受损甚至失火,而其低压断路器不跳闸事故的发生,低压断路器过流脱扣器的动作电流Iop应符合公式的要求,Iop≤Kol.Ial,式中Ial—绝缘线缆的允许载流量;Kol—绝缘线缆的允许短时过负荷系数,对瞬时和短延时过流脱扣器,一般取4.5;对长延时过流脱扣器,做短路保护时取1.1,只做过负荷保护时取1。

相关文档
最新文档