大地测量学基础第5章大地测量仪器

合集下载

大地测量学

大地测量学

大地测量学大地测量学是地球学科的重要分支,是测绘科学的基础学科,在测绘专业的课程设置中占有重要的地位和作用。

其主要测定地球大小;研究地球形状;测定地面点的几何位置,将地面点沿法线方向投影于地球椭球面上,用投影点在椭球面上的大地纬度和大地经度表示该点的水平位置,用地面点至投影点的法线距离表示该点的大地高程。

这点的几何位置也可以用一个以地球质心为原点的空间直角坐标系中的三维坐标来表示。

就其本质来说,他是一门地球信息学,即为人类的活动提供地球空间信息的学科。

大地测量学的的内容包括几何大地测量学、物理大地测量学、空间大地测量学。

几何大地测量学主要是研究确定地球形状、大小和确定地面点三维空间的理论及技术、因此有关精密的角度、距离测量、水准测量,地球椭圆球体的参数及模型,椭圆面上测量成果的计算、平差、投影变换以及大地控制网建立的原理和技术方法等,是几何大地测量学的基本内容。

物理大地测量学研究用武力方法(重力测量)确定地球的形状及外部重力场。

它的主要内容是重力测量及其归化、地球及外部重力场模型、大地测量边值问题、重力为理论、球谐函数、利用重力测量研究地球形状及椭圆球体参数等。

空间大地测量学是研究以卫星及其它空间探测器实施大地测量的理论和技术。

主要内容包括卫星多普勒技术,海洋卫星雷达测高,激光卫星测距以及卫星定位系统(GPS)和GLONASS,我国的“北斗”卫星定位导航系统,卫星定位定轨理论以及应用卫星及空间探测器在全国性大地测量控制网,全球性的地球动态参数求定和重力场模型的精华、地壳形变、板块运功的、海空导航、导弹制导等方面的研究。

因此较确切地讲。

空间大地测量学的开创。

使大地测量学迈入了以可变地球为研究对象,实施全球动态就对测量的现代大地测量新时期。

学科发展史——萌芽阶段在17世纪以前,大地测量只是处于萌芽状态。

公元前 3世纪,亚历山大的埃拉托斯特尼首先应用几何学中圆周上一段弧AB的长度S、对应的中心角r同圆半径R的关系,估计了地球的半径长度,由于圆弧的两端A和B大致位于同一子午圈上,以后在此基础上发展为子午弧度测量。

《大地测量学基础》教学大纲

《大地测量学基础》教学大纲

大地测量学基础一、课程说明课程编号:010438Z10课程名称(中/英文):大地测量学基础/ Fundamental of Geodesy课程类别:必修学时/学分:48/3(其中实验学时:8)先修课程:测量学基础、测量平差基础适用专业:测绘工程教材、教学参考书:孔祥元,郭际明,刘宗泉.大地测量学基础,武汉大学出版社,2010(第二版)张华海等.应用大地测量学,中国矿业大学出版社,2012二、课程设置的目的意义该课程是测绘工程专业测量方向的核心课程。

目的是使学生掌握理解大地测量基本概念、理论与方法,熟悉和掌握各种等级控制网的布设、观测及数据处理。

通过该课程的学习,可以使学生理解和掌握坐标系统与时间系统、地球重力场、椭球大地测量、控制网建立原理等方面的专业知识,提高学生测绘理论基础与实践操作技能。

该门课程在测绘工程专业高素质人才的培养计划中具有重要地位并发挥重大作用。

三、课程的基本要求对应的专业培养要求1.3.2专业知识(1)熟悉大地测量基准及空间参考框架的概念与基础理论;(2)掌握卫星定位控制网、边角控制网、高程控制网等空间框架基准网设计与实施的原理与方法;(3)掌握不同等级控制网的设计、布设、施测与数据处理的技术方法及工程实施流程;2.2.1具有较强的创新意识和技术改造与创新的初步能力。

针对测绘产品的质量要求和生产技术问题能提出技术改造、工艺设计或者技术创新初步方案。

2.2.4思维活跃,具有开拓创新的意识与能力及较强的自学能力,能与时俱进地学习,适应未来发展的要求。

3.1.1能够控制自我并了解、理解他人需求和意愿;既能独立工作,又具有团队合作精神,适应竞争学会合作。

3.3.1具有良好的心理承受能力和抗压能力。

知识:掌握坐标系统与时间系统基本概念、地球重力场基本理论、地球椭球及其数学投影变换的基本理论、控制网建立原理、大地测量的基本技术与方法等方面的专业知识;能力:使学生具备布设各种等级控制网、制定控制测量观测计划及实施,数据获取及测量数据处理的能力。

大地测量学基础

大地测量学基础

3、现代在地测量的特征 、 1)、测量范围大,范围从地区、全球乃至宇宙空间; 、测量范围大,范围从地区、全球乃至宇宙空间; 2)、研究对象和范围不断深入、全面和精细,从静态测量 、研究对象和范围不断深入、全面和精细, 发展到动态测量, 发展到动态测量,从地球表面测绘发展到地球内部构造 及动力过程的研究; 及动力过程的研究; 3)、观测精度高; 、观测精度高; 4)、观测周期短。 、观测周期短。
2)、物理大地测量学(理论大地测量学) 、物理大地测量学(理论大地测量学) 基本任务:用物理方法(重力测量) 基本任务:用物理方法(重力测量)确定地球形状及其 外部重力场。 外部重力场。 主要内容:位理论,地球重和场,重力测量及其归算, 主要内容:位理论,地球重和场,重力测量及其归算, 推球地球形状及外部重力场的理论与方法。 推球地球形状及外部重力场的理论与方法。 3)、空间大地测量学 、 以人造地球卫星及其它空间探测器为代表的空间大地测量的理论、 以人造地球卫星及其它空间探测器为代表的空间大地测量的理论、 技术与方法。 技术与方法。
三、大地测量学的基本体系
1、 测量学的两个分支 、 普通测量学:研究小范围的地球表面, 普通测量学:研究小范围的地球表面,认为该范围的地 球表面是平面,且铅垂线彼此平行。 球表面是平面,且铅垂线彼此平行。 大地测量学:研究全球或大范围的地球,认为铅垂线彼 大地测量学:研究全球或大范围的地球, 此不平行,研究地球的形状、大小及重力场。 此不平行,研究地球的形状、大小及重力场。
大地测量学还可进一步 应用大地测量学: 应用大地测量学:以建立国家大地测量控制网为中心内容 椭球大地测量学:坐标系建立、地球椭球性质、 椭球大地测量学:坐标系建立、地球椭球性质、投影数学变换 大地天文测量学:测量天文经度、 大地天文测量学:测量天文经度、纬度及天文方位角 大地重力测量学:重力场、 大地重力测量学:重力场、重力测量方法 海洋大地测量学: 海洋大地测量学 地球动力学: 地球动力学 卫星大地测量学: 卫星大地测量学 大地测量数据处理学: 大地测量数据处理学

大地测量学基础:第5章 大地测量基本技术与方法(1)

大地测量学基础:第5章  大地测量基本技术与方法(1)
第五章 大地测量基本技术与方法
§5-1 建立国家平面大地控制网的基本原理 §5-2 建立国家高程控制网的基本原理 §5-3 建立工程测量控制网的基本原理 §5-4 大地测量仪器 §5-5 精密角度测量方法 §5-6 精密距离测量方法 §5-7 精密高差测量方法 备讲1—精密水准仪与水准尺的检验 备讲2—球气差系数和大气折光系数 备讲3—三角高程测量的精度 备讲4—垂线偏差对三角高程的影响
折角,折线上的转折点叫导线点(控制点)。 • 测定导线点平面坐标的工作叫导线测量。通过测量导线边长和转
折角,再根据起算点及附合点的已知数据,可求出所有导线点的 平面坐标。
β
D
• 导线的形式:附合导线、闭合导线、支导线和导线网。
• 导线网是由若干条附合导线或闭合导线构成的网状图形。 • 导线网包括:一个节点的导线网、两个以上节点的导线网和两个
A
a
az B
• VLBI测量长度的相对精度可达10-6。
• 该技术在研究地球极移、地球自转速率的短周期变化、地球固体 潮、大地板块运动的相对速率和方向中得到广泛的应用,在常规 大地测量中很少用。
3*、惯性测量系统(INS)
• 惯性测量是利用惯性力学基本原理,在相距较远的两点之间,对 装有惯性测量系统的运动载体(汽车或直升飞机)从一个已知点到另 一个待定点的加速度,分别沿三个正交的坐标轴方向对加速度分 量进行两次积分,从而求定其运动载体在三个坐标轴方向的坐标 增量,进而求出待定点的位置。
• 因此,在普遍应用全站仪和GPS定位技术的现代,城市控制测量 和工程控制测量基本上不采用三角网。
2. 导线测量法 • 导线:由设站点(控制点)连成的折线(若干条直线首尾相连)。 • 布设控制点时,使点与点之间单线相连形成链状折线,测量出边

大地测量学复习资料

大地测量学复习资料

一.概念(1)垂线偏差:地面一点上的重力向量g和相应椭球面上的法线向量n之间的夹角定义为该点的垂线偏差。

(2)大地水准面差距:(3)正高:以大地水准面为参照面的高程系统称为正高(4)正常高:以似大地水准面为参照面的高程系统称为正常高(5)力高:(6)参考椭球:具有确定参数( 长半径a和扁率α),经过局部定位和定向,同某一地区大地水准面最佳拟合的地球椭球。

(7)总地球椭球:除了满足地心定位和双平行条件外,在确定椭球参数时能使它在全球范围内与大地体最密合的地球椭球。

(8)正常椭球、水准椭球(9)大地高(10)法截面:过椭球面上任意一点可作一条垂直于椭球面的法线,包含这条法线的平面叫作法截面。

(11)卯酉圈:过椭球面上一点的法线,可作无限个法截面,其中一个与该点子午面相垂直的法截面,同椭球面相截形成的闭合的圈称为卯酉圈。

(12)相对法截线;过椭球面上一点A,可以做无数个法截面,其中通过椭球面上另一点B 的法截面与椭球面的交线,称为A、B相对法截线.(13)平均曲率半径(14)子午线收敛角(15)大地线:(16)大地元素(17)地图投影(18)七参数(19)天文大地点(20)拉普拉斯点(21)等量纬度(22)重力扁率(23)底点纬度(24)垂足纬度(25)岁差:地球受到日、月等天体的影响,导致地球旋转轴相对于空间围绕黄极呈倒圆锥体的运动,周期为26000年,这种长周期的运动称为岁差。

(26)章动:由于受到月球引力的影响,导致地球旋转轴绕黄极旋转的轨道不是平滑的小圆,而是类似圆的波浪曲线运动,周期为18.6年,振幅为9.21″的短周期运动。

2.大地测量学的研究内容;外业测量、内业计算的基准面、线。

①确定地球形状及外部重力场及其随时间的变化,建立统一的大地测量坐标系。

②建立和维护国家和全球的天文大地水平控制网、全球控制网。

③研究获得高精度测量成果的仪器和方法等。

④研究地球表面向椭球面和平面投影的数学变换及计算方法。

大地测量学基础知识

大地测量学基础知识

第一章1.大地测量学的定义大地测量学是在一定的时间-空间参考系统中,测量和描绘地球及其他行星体的一门学科。

2.大地测量学的基本体系以三个基本分支为主所构成的基本体系。

几何大地测量学物理大地测量学空间大地测量学3.大地测量学的基本任务精确确定地面点位及其变化研究地球重力场、地球形状和地球动力现象4.大地测量学的基本内容1、大地测量基础知识(基准面和基准线,坐标系统和时间系统,地球重力场等);2、大地测量学的基本理论(地球椭球基本的理论,高斯投影的基本理论,大地坐标系统的建立与坐标系统的转换等);3、大地测量基本技术与方法(经典的、现代的)4、大地控制网的建立(包括国家大地控制网、工程控制网。

形式有三角网、导线网、高程网、GPS网等);5、大地测量数据处理(概算与平差计算)。

5.大地测量学的基本作用1、为地形测图与大型工程测量提供基本控制;2、为城建和矿山工程测量提供起始数据;3、为地球科学的研究提供信息;4、在防灾、减灾和救灾中的作用;5、发展空间技术和国防建设的重要保障。

第二章1.岁差章动极移由于日、月等天体的影响,类似于旋转陀螺,地球的旋转轴在空间围绕黄极发生ε=︒,旋转周期为26000缓慢旋转,形成一个倒圆锥体,其锥角等于黄赤交角23.5年,这种运动称为岁差。

月球绕地球旋转的轨道称为白道,由于白道对黄道有约5︒的倾斜,使得月球引力产生的大小和方向不断变化,从而导致地球旋转轴在岁差的基础上叠加18.6年的短周期运动,振幅为9.21'',这种现象称为章动。

地球自转轴存在相对于地球体自身内部结构的相对位置变化,从而导致极点在地球表面上的位置随时间而变化,这种现象称为极移。

2.恒星时太阳时原子时以春分点作为基本参考点,由春分点周日视运动确定的时间,称为恒星时。

以真太阳作为基本参考点,由其周日视运动确定的时间,称为真太阳时。

原子时是一种以原子谐振信号周期为标准,并对它进行连续计数的时标。

大地测量仪器学

大地测量仪器学
圆水准器的格值,是指气泡由圆水准器分划中心向任意方向移动2毫米时,水准器所倾斜的角度。格值有8′、15′、30′、60′等。 长水准器(图4-1)和圆水准器(图4-2),一般均采用烧制过的石膏固结在水准器座上(图4-3)。为了提高气泡的衬度,在水准器底部垫一白纸或涂以白漆,在两侧衬以黑纸。在地下或夜间使用的仪器,可以涂上夜光材料,外加保护层。
大地测量仪器学
(一)补偿式水准器 在水准器内加入一玻璃棒,或一玻璃管,也可用一瓦形玻璃片,其目的在于减少水准器内所灌注的液体。 (二)断面为椭圆形的水准器 一般水准器断面均为圆形,这在工艺上比较简单,近来有的仪器已采用椭圆断面的水准器,如蔡司Ni 004精密水准仪。据计算,在截面积相同的情况下,具有宽弧面的椭圆形断面,液体所占面积比圆形断面的少。这样可以减小温度的影响,而不需要上述那根起补偿作用的玻璃棒。此外,这种水准器在同一格值和同一气泡长度的情况下,比圆形断面的灵敏度要高,主要原因是它的气泡大。这种水准器在结构上虽优于圆形断面水准器,但加工工艺比较复杂,对其置中精度与扁率的关系以及加工精度要求等还在探讨之中。
大地测量仪器学
长水准器:结构与基本参数标注见图4-5。尺寸及系列见表4-2。 水准器玻璃材料为温度计玻璃,九五灯工料或GG—17玻璃。水准器内填充的液体为精馏乙醇、乙醚或两者混合液。长水准器为了保证一定的气泡长度,采用补偿式和隔室式等多种形式。
如图4-5
大地测量仪器学
大地测量仪器学
对于换配质量不明的或者经过剧烈震动和温度剧烈变化的水准器,新出厂但长期存放过的仪器上的水准器,均应测定其格值,均匀性,气泡符合精度等,以便确定该仪器对某一等级测量工作的适应性。 测定格值的方法很多:如水准器检验仪法、脚螺旋法、竖盘直读法、标尺法以及竖轴倾斜法(康司托克法)。方法不同,但其实质相同,即要设法使待测水准器的气泡在使用范围内移动,同时把气泡移动时水准器倾角的变化量求出,最后把移动的格数除以倾角的变化量,即水准器的格值。 4.2 水准器灵敏度及其影响因素

大地测量学基础:第五章 大地测量技术-1-2-3

大地测量学基础:第五章 大地测量技术-1-2-3
三角点的密度是指每幅图中包含有多少个控制点,而测图的比 例尺不同,每幅图的面积也不同。所以,三角点的密度也用平 均若干平方公里有一个三角点来表示。常规大地测量和GPS测 量的基本要求:
(1)不同比例尺地图对大地点的数量要求 :
测图比例尺
1:5万 1:2.5万 1:1万
平均每幅图面积(km2) 350~500 100~125 15~20
国家平面大地控制网
惯性测量系统(INS)
惯性测量是利用惯性力学基本原理,在相距较远的两点之间, 对装有惯性测量系统的运动载体(汽车或直升飞机)从一个已知点 到另一个待定点的加速度,分别沿三个正交的坐标轴方向进行 两次积分,从而求定其运动载体在三个坐标轴方向的坐标增量 ,进而求出待定点的位置,它属于相对定位,其相对精度为 (1~2)·10-5,测定的平面位置中误差为±25cm左右。 优点:完全自主式,点间也不要求通视;全天候,只取决于汽 车能否开动、飞机能否飞行。 缺点:相对测量,精度不高。
平均每幅图的三角点个数
3
2~3
1
每点控制的面积(km2)
150
50
20
三角网的平均边长(km)
13
8
2~6
相应的三角网等级
二等
三等
四等
国家平面大地控制网布设原则
(2)GPS测量中两相邻点间的距离要求(单位:km):
等级 相邻点最小距离
A
100
B
15
C
5
D
2
E
1
相邻点最大距离 2000 250 40 15 10
测图比例尺
1∶5万 1∶2.5万 1∶1万 1∶5千 1∶2千
图根点对于三角点 的点位误差(m) ±5.0 ±2.5 ±1.0 ±0.5 ±0.2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

t?? ? ? ? 2?f
? ? N ?2? ? ? ? 2? (N ? ? N)
D ? c? ? N)
2f
2
u ? ?(称为“电子尺”)
2 N是整周未知数
8
大地测量仪器
2、电磁波测距仪分类 1).按测程分:短程(3km 以下)、中程(数公里至十余公
大地测量仪器
一、精密角度测量仪器 1、精密光学经纬仪:DJ 07,DJ 1,DJ 2,T3等; (1)精密光学经纬仪的主要特点 ①、角度标准设备:双面(对径)读数 ②、目标照准设备:望远镜经消色差处理。 ③、有强制归心机构,精密光学对中器,快速安平机构 ④、制造材料优质。
1
①、T3精密光学经纬仪基本构造
Ⅱ 69.0g
166o38′17.9
166
167
69
68
70
3
大地测量仪器
③ 、J 2光学经纬仪的构造 如图与J 6相比,增加了: 1、测微轮——读数时,对径分划线影像符合。 2、换像手轮——水平读数和竖直读数间的互换。 3、竖直读盘反光镜——竖直读数时反光。
竖直读盘 反光镜
测微轮
换像手轮
4
大地测量仪器
3
59o13′06. ″ 1
大地测量仪器
58 59 60 0 1
042 931 831
6
大地测量仪器
二、电磁波测距仪(Electronic Distance Measuring )
测距仪(EDM instrument)
反光棱镜(reflector)
S ? 1 Ct
B
2
7
1、相位式测距原理公式
大地测量仪器
④、DJ2的读数方法 一般采用对径重合读数法——转动测微轮,使上下分划线 精 确重合后读数。
5
DJ2 经纬仪度盘最小刻划
值为20′
测微尺总的读数为10′,分
为600小格,最小刻划为1″ 。
读数时先调测微轮,使度盘上
下刻划对齐。
2
右图读数:
3
度盘: 59o10′
测微尺:Ⅰ 03′06. ″0
Ⅱ 03′06. ″ 2
m
2 D
?
A2 ? ( B ?D ) 2 简写为
: mD
? ? ( A ? B ?D )
式中,A——固定误差;B——比例误差系数。 如:某测距仪出厂时的标称精度:±(2+2×10-6·D)mm , 简称“2+2”
10
三、全站仪(Total Station ) 1、全站仪(total station) 的发展
y ? x/tg? y ? x? /?
一般光栅度盘上刻有 1024条光栅条纹相邻两
条纹角距(光栅度盘的单位角值 φ0 )为:
?0
?
2?
1024
?
21?05.625??
16
? ? n? 0 ? ? ?
大地测量仪器
光栅度盘外侧对径处各装一个固定光栅探测
器L s,光栅度盘内侧对径处各装一个活动光栅 探测器LR, Ls 与LR之间的夹角即为所测角的 大小。
20
大地测量仪器
a
N3水准仪测微装置
当平行政璃板与水平视线正交时,水准标尺上读数应为 a,a在两相邻 分划148与149之间,此时测微分划上读数为 5mm ,而不是0。转动测微螺 旋,平行玻璃 板作前俯,使水平视线向下平移与就近的 148分划重合,这 时测微分划尺上的读数为 6.50 mm,而水平视线的平移量应为 6.50mm5mm ,最后读数为:
大地测量仪器
23
大地测量仪器
2、精密水准尺(因瓦水准尺)
精密水准尺的分划值有 10mm ,5mm 。 与N3水准仪配套的因瓦水准尺的分划 值是10mm ,右边一排为基本分划,从 0~ 300cm,左边一排为辅助分划,从300~ 600cm,基辅差为301.55cm。 与S1和Ni004水准仪配套的水准尺分划 值为5mm ,只有基本分划,分成两排,每 排分划之间的间隔也是10mm ,两排分划 错开,左边为单数分划,右边为双数分划 ,右边注记米数,左边注记分米,整个注 记从0.1至5.9m,分划格为5mm,分划 注记比实际大了一倍,所以观测值除以 2 才是实际值。
光栅度盘上有四个参考标志,用来初测 n φ0, ? φ要用脉冲填充的方法来测定。
17
大地测量仪器
四、GPS接收机 五、超站仪(Smart Station ):
全站仪与GPS 接收机的结合.
18
大地测量仪器
19
六、精密水准测量仪器 1、微倾精密水准仪
1)、 N3精密水准仪
大地测量仪器
N3精密水准仪微倾螺旋装置
15
2)、光栅度盘及其测角原理
大地测量仪器
仪器内安装刻有光栅的玻璃度盘(可旋转)和 与度盘严格平行的固定光栅平面,二者的光栅 相错一固定小角,如果两光栅的相对移动是沿 x方向从一条格线移到相邻的另一条格线,则 干涉条纹将在y方向上移动一整周,即光强由 暗到明,再由明到暗变化一个周期 ,于是干涉 条纹移动的总周数将等于所通过的格线数。反 之,如果数出和记录光感器所接收的光强曲线 总周数,便可测得移动量,再经过电信号转换, 最后得到角度值。
里)、远程(几十公里)。 2).按传播时间t的测定方法分:脉冲法测距、相位法测距。 3).按测距仪所使用的载波源分:光源(红外光源、激光光
源)、微波。 4).按测距精度分:Ⅰ级(mD≤5㎜)、Ⅱ级( 5㎜<mD≤10
㎜ )、Ⅲ级(10㎜<mD≤20㎜) 。
9
大地测量仪器
3、测距误差及标称精度
测距仪测距误差可表示为:
大地测量仪器
2
大地测量仪器
②、T3精密光学经纬仪读数方法
T3 度盘最小分划值为 4′ ,测微器 总读数为2′ ,分成600小格,每小 格值为0.2″ 。 读数前先调测微轮,使上下刻划对 齐,取两次读得的格数之和作为测 微读数秒值,如图:
度盘读数: 166o36'
743
643
测微器读数:Ⅰ 68.9g
宾得全站仪 PTS V2
14
南方NTS 202 205全站仪
大地测量仪器
2、全站仪测角原理
1)、编码度盘及其读数系统 将光学圆盘上刻制n(如 n=4)个马道,再将马道等分成 2n(如16)个
马区(则度盘分辨率为 2π/2n=22.5°),然后在每个马区将马道由里向外赋 予二进制代码,每个代码表示一个方向值。
a=148cm十(6.50mm 一5mm) 即a=148.650cm一5mm 。 由述可知,每次读数中应减去常数 (初始数)5mm .但因在水准测量中计算 高差 时能自动抵消这个常数,所以在水准测量作业时,读数、记录、计算 过程中部可以不考虑。
21
2)、 Ni004精密水准仪
大地测量仪器
22
3)、国产S1型精密水准仪
大地测量仪器
optical theodolite —electronic theodolite Steel tape ——— EDM
11
大地测量仪器
12
大地测量仪器
徕卡TPS700系 列卓越中文全 站仪
拓普康GTS 332W 全站仪
13
索佳10系列全站仪
大地测量仪器
尼康DTM801 系列全站仪
相关文档
最新文档