《大地测量学基础》2 大地测量基础知识

合集下载

大地测量学基础(第1章 绪论New)

大地测量学基础(第1章 绪论New)
正在快速的发展变化之中。
发现活跃、综合性强:
范围:全球、深空 学科:地球物理、地质学、空间科学、天文学、大气科学、 海洋学; 手段:测绘仪器、计算机
测绘科学技术的基础 :是测绘科学技术进步的标志
3
第一章 绪 论
§1大地测量学的定义和基本内容 1.1大地测量学的定义
大地测量学 是指在一定的时间与空间参考系中,测量和描绘地球形状及 其重力场并监测其变化,为人类活动提供关于地球的空间信息的 一门学科。 经典大地测量:地球刚体不变、均匀旋转的球体或椭球体; 范围小。 现代大地测量:空间测绘技术(人造地球卫星、空间探测器), 空间大地测量为特征,范围大。
3) 重力测量有了进展:1673年荷兰的惠更斯
(C.Huygens)提出用摆进行重力测量的原理;设计和生 产了用于绝对重力测量以及用于相对重力测量的便携 式摆仪。极大地推动了重力测量的发展。
15
第三阶段:大地水准面阶段
从19世纪下半叶至20世纪40年代,人们将对椭球的认 识发展到是大地水准面包围的大地体。 几何大地测量学进展: 天文大地网的布设有了重大发展。全球三大天文大地 网的建立(1800-1900印度,一等三角网2万公里,平 均边长45公里;1911-1935美国一等7万公里;19241950苏联,7万多公里) 因瓦基线尺出现,平行玻璃板测微器的水准仪及因瓦 水准尺使用。
13

物理大地测量标志性成就:
1) 克莱罗定理的提出:法国学者克莱罗(A.C.Clairaut) 假设地球是由许多密度不同的均匀物质层圈组成的椭 球体,这些椭球面都是重力等位面(即水准面)。该椭 球面上纬度φ 的一点的重力加速度按下式计算:
e (1 sin )
2

大地测量学的定义、作用、基本体系和基本内容

大地测量学的定义、作用、基本体系和基本内容

大地测量学的定义、作用、基本体系和基本内容
(1)大地测量学的定义:大地测量学是地球科学的一个分支学科,是研究和测定地球的形状、大小、重力场、整体与局部运动和测定地面点的几何位置以及它们的变化的理论和技术的学科。

(2)大地测量学作用主要有四方面:
A.大地测量学在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用。

B.大地测量学在防灾,减灾,救灾及环境监测、评价与保护中发挥着独具风格的特殊作用。

C.大地测量是发展空间技术和国防建设的重要保障。

D.大地测量在当代地球科学研究中的地位显得越来越重要。

(3)大地测量学的基本体系由三个基本分支构成:几何大地测量学、物理大地测量学、空间大地测量学。

(4)基本内容:
1.几何大地测量学也就是天文大地测量学。

其基本任务是确定地球的形状和大小及确定地面点的几何位置。

2.物理大地测量学也有称为理论大地测量学。

其基本任务是用物理的方法(重力测量)确定地球形状及其外部重力场。

3.空间大地测量学主要研究以人造卫星及其它空间探测器为代表的空间大地测量学的理论、技术和方法。

大地测量学复习资料(考试必备)

大地测量学复习资料(考试必备)

⼤地测量学复习资料(考试必备)1.垂线同总地球椭球(或参考椭球)法线构成的⾓度称为绝对(或相对)垂线偏差2.以春分点作为基本参考点,由春分点周⽇视运动确定的时间,称为恒星时3.以真太阳作为基本参考点,由其周⽇视运动确定的时间,称为真太阳时。

⼀个真太阳⽇就是真太阳连续两次经过某地的上中天(上⼦午圈)所经历的时间。

4.以格林尼治平⼦夜为零时起算的平太阳时称为世界时5.原⼦时是⼀种以原⼦谐振信号周期为标准6.归算:就是把地⾯观测元素加⼊某些改正,使之成为椭球⾯上相应元素。

7.把以垂线为依据的地⾯观测的⽔平⽅向值归算到以法线为依据的⽅向值⽽加的改正定义为垂线偏差改正7.⼤地线椭球上两点间的最短程曲线。

8.设椭球⾯上P点的⼤地经度L,在此⼦午⾯上以椭圆中⼼O为原点建⽴地⼼纬度坐标系; 以椭球长半径a为半径作辅助圆,延长P2P与辅助圆相交P1点,则OP1与x 轴夹⾓称为P点的归化纬度u。

9.仪器加常数改正因测距仪、反光镜的安置中⼼与测距中⼼不⼀致⽽产⽣的距离改正,称仪器加常数改正,包括测距仪加常数和反光镜加常数。

10.因测距仪的基准频率等因素产⽣的尺度参数成为乘常数。

11.基本分划与辅助分划相差⼀个常数301.55cm,称为基辅差,⼜称尺常数12.控制⽹可靠性:控制⽹能够发现观测值中存在的粗差和抵抗残存粗差对平差的影响13.M是椭球⾯上⼀点,MN是过M的⼦午线,S为连接MP的⼤地线长,A为⼤地线在M点的⽅位⾓。

以M为极点;MN为极轴;P点极坐标为(S, A)⼀点定位,如果选择⼤地原点:则⼤地原点的坐标为:多点定位,采⽤⼴义弧度测量⽅程1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。

它的原点不在北京,⽽在前苏联的普尔科沃。

相应的椭球为克拉索夫斯基椭球。

1954年北京坐标系的缺限:①椭球参数有较⼤误差。

②参考椭球⾯与我国⼤地⽔准⾯存在着⾃西向东明显的系统性的倾斜,在东部地区⼤地⽔准⾯差距最⼤达+68m。

大地测量学复习要点总结

大地测量学复习要点总结

大地测量学复习重点第一章绪论1、测量学的分支:分为普通测量学(简称测量学)和大地测量学。

2、大地测量学的定义和作用定义:是指在一定的时间与空间参考系中,测量和描绘地球形状及其重力场并监测其变化,为人类活动提供关于地球的空间信息的一门学科。

作用:①大地测量学是一切测绘科学技术的基础。

在国民经济建设和社会发展中发挥着决定性的基础保证作用。

②大地测量学在防灾,减灾,救灾及环境监测、评价与保护中发挥着特殊作用。

③大地测量是发展空间技术和国防建设的重要保障。

3、大地测量学的基本体系由几何大地测量学(天文大地测量学)、物理大地测量学(理论大地测量学)、空间大地测量学构成。

4、几何大地测量学、物理大地测量学以及空间大地测量学的基本任务和内容①基本任务:是确定地球的形状和大小及确定地面点的几何位置。

主要内容:国家大地测量控制网(包括平面控制网和高程控制网)建立的基本原理和方法,精密角度测量,距离测量,水准测量;地球椭球数学性质,椭球面上测量计算,椭球数学投影变换以及地球椭球几何参数的数学模型等。

②基本任务:是用物理方法(重力测量)确定地球形状及其外部重力场。

主要内容:包括位理论,地球重力场,重力测量及其归算,推求地球形状及外部重力场的理论与方法。

③基本任务:主要研究以人造地球卫星及其他空间探测器为代表的空间大地测量的理论、技术与方法。

5、现代大地测量的特征答:①研究范围大(全球:如地球两极、海洋);②从静态到动态,从地球内部结构到动力过程;③观测精度越高,相对精度达到10-8~10-9,绝对精度可到达毫米;④测量与数据处理周期短,但数据处理越来越复杂。

第二章时间和坐标系统1、天球的概念概念:所谓天球,是指以地球质心O(或测站)为中心,半径r为任意长度的一个假想的球体。

在天文学中,通常均把天体投影到天球的球面上,并利用球面坐标来表达或研究天体的位置及天体之间的关系。

2、大地基准与大地基准的建立大地基准:指用以描述地球形状的参考椭球的参数,以及参考椭球在空间中的定位及定向,还有在描述这些位置时所采用的单位长度的定义。

大地测量学知识点

大地测量学知识点

第一章大地测量学定义广义:大地测量学是在一定的时间-空间参考系统中,测量和描绘地球及其他行星体的一门学科。

狭义:大地测量学是测量和描绘地球表面的科学。

包含测定地球形状与大小,测定地面点几何位置,确定地球重力场,以及在地球上进行必须顾及地球曲率的那些测量工作。

大地测量学最基本的任务是测量和描绘地球并监测其变化,为人类活动提供关于地球等行星体的空间信息。

P1 P4 P6(了解几个阶段、了解展望)大地测量学的地位和作用:1、大地测量学在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用2、大地测量学在防灾、减灾、救灾及环境监测、评价与保护中发挥着独具风貌的特殊作用3、大地测量是发展空间技术和国防建设的重要保障4、大地测量在当代地球科学研究中的地位显得越来越重要5、大地测量学是测绘学科的各分支学科(其中包括大地测量、工程测量、海洋测量、矿山测量、航空摄影测量与遥感、地图学与地理信息系统等)的基础科学现代大地测量学三个基本分支:几何大地测量学、物理大地测量学、空间大地测量学第二章幵普勒三大行星运动定律:1、行星轨道是一个椭圆,太阳位于椭圆的一个焦点上2、行星运动中,与太阳连线哎单位时间内扫过的面积相等3、行星绕轨道运动周期的平方与轨道长半轴的立方之比为常数地轴方向相对于空间的变化(岁差和章动)(可出简答题)地轴相对于地球本体内部结构的相对位置变化(极移)历元:对于卫星系统或天文学,某一事件相应的时刻。

对于时间的描述,可采用一维的时间坐标轴,有时间原点、度量单位(尺度)两大要素,原点可根据需要进行指定,度量单位采用时刻和时间间隔两种形式。

任何一个周期运动,如果满足如下三项要求,就可以作为计量时间的方法:1、运动是连续的2、运动的周期具有足够的稳定性3、运动是可观测的多种时间系统以地球自转运动为基础:恒星时和世界时以地球公转运动为基础:历书时 -太阳系质心力学时、地球质心力学时以物质内部原子运动特征为基础:原子时协调世界时(P23)大地基進:建立大地基准就是求定旋转椭球的参数及其定向(椭球旋转轴平行于地球的旋转轴,椭球的起始子午面平行于地球的起始子午面)和定位(旋转椭球中心与地球中心的相对关系)。

(最新整理)大地测量学基础

(最新整理)大地测量学基础

大地测量学基础编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(大地测量学基础)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为大地测量学基础的全部内容。

教案2014—2015学年第 1 学期授课班级:测绘工程1241-1242 课程名称:大地测量学基础任课教师:刘小强院部名称:土木工程学院二〇一四年八月十八日上课日期2014年 9 月 2 日第 1 讲章节第1章 绪论1.1 大地测量学的定义和作用1。

2 大地测量学的基本体系和内容1.3 大地测量学的发展简史及展望教学目的要求了解大地测量学的定义和作用理解大地测量学的基本体系和内容了解大地测量学的发展简史及展望重点及处理方法大地测量学的基本体系和内容 重点、详细讲授难点及处理方法无授课方式讲授时间分配5分钟10分钟20分钟40分钟10分钟教学内容1。

本门课程在测绘工程专业中的介绍2。

本门课程的主要内容与课程安排3.大地测量学的定义和作用4.大地测量学的基本体系和内容5.大地测量学的发展简史及展望6。

本讲小结5分钟主要教学方法与手段多媒体+板书+提问课后作业1.大地测量学有什么作用?试举例说明。

2.简述大地测量学的基本体系和内容。

参考资料《应用大地测量学(第三版)》,张华海,王宝山,赵长胜著,中国矿业大学出版社,2007《大地测量学基础(第一版)》,吕志平,乔书波著,测绘出版社,2010教学后记大地测量学的核心是定位,是一门重要的测绘基础学科.主要教学方法与手段多媒体+板书+提问课后作业1。

岁差和章动指的是什么?它们会造成什么影响? 2。

时间系统的要素是什么?如何描述时间系统?3.几种典型的时间系统各自有什么用途?参考资料《应用大地测量学(第三版)》,张华海,王宝山,赵长胜著,中国矿业大学出版社,2007《大地测量学基础(第一版)》,吕志平,乔书波著,测绘出版社,2010教学后记时间对于大地测量学而言是一个非常重要的参数。

大地测量学复习资料

大地测量学复习资料

1、普通测量学概念:研究地球表面局部区域内测绘工作的基本理论、仪器和方法的学科,是测绘学的一个基础部分。

局部区域指在该区域内进行测量、计算和制图时,可以不顾及地球的曲率,把这区域的地面简单地当作平面处理,而不致影响测图的精度。

普通测量学研究的主要内容,是局部区域内的控制测量和地形图的测绘。

基本工作包括距离测量、角度测量、高程测量和测绘地形图。

普通测量学随着测图区域和应用范围的日益扩大,相继发展和形成了大地测量学、摄影测量学、工程测量学和地图制图学等独立学科。

2、大地测量学定义:研究和确定地球的形状、大小、重力场、整体与局部运动和地表面点的几何位置以及它们的变化的理论和技术的学科。

它的基本任务是研究全球,建立与时相依的地球参考坐标框架,研究地球形状及其外部重力场的理论与方法,研究描述极移固体潮及地壳运动等地球动力学问题,研究高精度定位理论与方法。

3、岁差定义:地球瞬时自转轴在惯性空间不断改变方向的长期性运动。

(或因地球自转轴的空间指向和黄道平面的长期变化而引起的春分点移动现象。

)4、章动定义:地球瞬时自转轴在惯性空间不断改变方向的周期性运动。

(或地轴指向在空固坐标系中的周期变化。

)5、极移的定义:地球自转轴存在相对于地球体自身内部结构的相对位置变化,从而导致极点在地球表面上的位置随时间而变化。

时间系统满足的条件:运动是连续的;运动的周期具有足够的稳定性;运动是可观测的。

6、恒星时:以春分点作为基本参考点,由春分点周日视运动确定的时间。

7、世界时:以格林尼治平子夜为零时起算的平太阳时。

8、春分点和天球赤道面,是建立天球坐标系的重要基准点和基准面。

9、大地测量参考框架:是大地测量参考系统的具体实现,是通过大地测量手段确定的固定在地面上的控制网(点)所构建的,分为坐标参考框架、高程参考框架、重力参考框架。

10、测量常用的基准包括:平面基准、高程基准、重力基准。

11、椭球的定向:确定椭球旋转轴的方向,不论是局部定位还是地心定位,都应满足两个平行条件:①椭球短轴平行于地球自转轴;②大地起始子午面平行于天文起始子午面。

大地测量学复习资料#(精选.)

大地测量学复习资料#(精选.)

1.垂线偏差:地面一点上的重力向量g和相应椭球面上的法线向量n之间的夹角定义为该点的垂线偏差。

2.参考椭球:具有确定参数(长半径a和扁率α),经过局部定位和定向,同某一地区大地水准面最佳拟合的地球椭球,叫参考椭球。

3.大地线:椭球面上两点间的最短程曲线叫做大地线。

4.力高:水准面在纬度45度处的正常高。

5.大地主题解算:已知某些大地元素推求另一些大地元素的计算工作叫大地主题解算。

6.大地主题正算:已知P1点的大地坐标(L1,B1),P1至P2的大地线长S及其大地方位角,计算P2点的大地坐标(L2,B2)和大地线S在P2点的反方位角A21,这类问题叫做大地主题正算。

7.大地基准:是指能够最佳拟合地球形状的地球椭球的参数及椭球定位和定向8.高斯投影:横轴椭圆柱等角投影(假象有一个椭圆柱横套在地球椭球体外,并与某一条子午线相切,椭球柱的中心轴通过椭球体中心,然后用一定投影方法,将中央子午线两侧各一定范围内的地区投影到椭圆柱上,再将此柱面展开成投影面)。

9.大地测量学:是指在一定的时间与空间参考系中,测量和描绘地球形状及其重力场并监测其变化,为人类活动提供关于地球的空间信息的一门科学。

10.理论闭合差:由水准面不平行而引起的水准环线闭合差,称为理论闭合差。

11.地心坐标系:地心坐标系是在大地体内建立的O-XYZ坐标系。

原点O设在大地体的质量中心,用相互垂直的X,Y,Z三个轴来表示,X轴与首子午面与赤道面的交线重合,向东为正。

Z轴与地球旋转轴重合,向北为正。

Y 轴与XOZ平面垂直构成右手系。

12.高斯投影正、反算公式进行换带计算的步骤。

这种方法的实质是把椭球面上的大地坐标作为过度坐标。

首先把某投影带内有关点的平面坐标(x,y)1利用高斯投影反算公式换算成椭球面上的大地坐标(B,l),进而得到L=L0+l,然后再由大地坐标(B,l),利用投影正算公式换算成相邻带的平面坐标(x,y)2在计算时,要根据第2带的中央子午线来计算经差l,亦即此时l=L-L0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大地测量学基础
第二节 常用大地测量坐标系统
一、天球坐标系
用途:描述人造卫星的位臵采用天球坐标系是方便的。也 可以描述天空中的恒星的坐标。
Z
表示方式:球面坐标(r,α,δ) 或者直角坐标(X,Y,Z) 二者具有唯一的坐标转换关系。
X γ O α
P r δ
Y
大地测量学基础
第二节 常用大地测量坐标系统
2 2 2
大地测量学基础
第二节 常用大地测量坐标系统
四、高斯平面直角坐标系
建立过程:如下图
高斯正形投影又称横轴 等角切椭圆柱投影
大地测量学基础
第二节 常用大地测量坐标系统
四、高斯平面直角坐标系
高斯投影的特点: 1.椭球面上角度投影到平面上后保持不变 2.中央子午线投影后为X轴, 在X轴上投影后长度不变 3.赤道投影线为Y轴 4.中央子午线与赤道交点投影后为坐标原点 5.距中央子午线越远, 投影变形越大, 为减少变形应 分带投影
二、大地水准面
特点:地表起伏不平、地壳内部物质密度分布不均匀, 使得重力方向产生不规则变化。由于大地水准面处处与铅 垂线正交,所以大地水准面是一个无法用数学公式表示的 不规则曲面。故大地水准面不能作为大地测量计算的基准 面。
大地测量学基础
第一节 大地测量的基准面和基准线
三、参考椭球面
把形状和大小与大地体相近,且两者之间相对位臵确 定的旋转椭球称为参考椭球。参考椭球面是测量计算的基 准面,椭球面法线则是测量计算的基准线。
大地测量学基础
第二章 大地测量 基础知识
山东科技大学地科学院测绘系
大地测量学基础
第一节 大地测量的基准面和基准线
本节重点研究以下四个表面
地球自然表面
大地水准面
参考椭球面 总地球椭球
大地测量学基础
第一节 大地测量的基准面和基准线
一、地球的自然表面
大地测量是在地球自然表面上进行的,这个表面高低起 伏、很不规则,不能用数学公式描述。
二、地球坐标系
(四)地心坐标系 定义:建立大地坐标系时,如果选择的旋转椭球为总 地球椭球,椭球中心就是地球质心,再定义坐标轴的指向, 此时建立的大地坐标系叫做地心坐标系。 分类:地心大地坐标系与地心空间直角坐标系 应用:空间技术和卫星大地测量中
大地测量学基础
第二节 常用大地测量坐标系统
三、站心坐标系
以上几种时间系统在天文观测中得到了应用
大地测量学基础
第三节 时间系统
五、原子时(Intemational Atomic Time)
为了满足卫星定位的精度要求,1967年第13届国际计量大会定义 了更高精度的原子时。
以物质内部原子运动周期(如铯原子133能级辐射震荡频率 9192631170周为一秒)定义原子时(IAT)。原子时起点定在 1958年1月1日0时0分0秒(UT2),即在此时刻原子时与世界时重 合。但事后发现,原子时与世界时此刻之差为0.0039秒,此后, 原子时与世界时之差便逐年积累。
大地测量学基础
第一节 大地测量的基准面和基准线
五、垂线偏差
N 大地水准面
u
参考椭球面
大地水准面与椭球面在某一点 上的高差称为大地水准面差距,用 N表示。 同一测站点上铅垂线与椭球面法线 不会重合。两者之间的夹角u称为 垂线偏差
大地测量学基础
第二节 常用大地测量坐标系统
本节重点研究下列几个坐标系统:
大地纬度B—过P点的椭球面法线与椭球赤道面的夹角。由赤道起算, 从0到90°,向北为正,向南为负。
大地高H—由P点沿椭球面法线至椭球面的距离。 大地方位角A的定义是:过P点和另一地面点Q点的大地方位角A就是P 点的子午面与过P点法线及Q点的平面所成的角度,由子午面顺时针方 向量起。
大地测量学基础
第二节 常用大地测量坐标系统
地 球 黄 道 第二天 地 球 θ P 春分点
P
太阳
春分点
平太阳时=366.2422/365.2422恒星时=(1+0.002737909)恒星时
大地测量学基础
第三节 时间系统
守时与授时
守时: 将正确的时间保存下来
授时:
用精确的无线电信号播发时间信号
时间比对:守时仪器接收无线电时号然后与其时间进行 比对(俗称对表)
大地测量学基础
第三节 时间系统
一、恒星时(Sidereal Time) 恒星时是以春分点为参照点的时间系统(ST)。春分点(或 除太阳以外的任一恒星)连续两次经过测站子午圈的时间间隔为 一恒星日。 二、平太阳时(Mean Solar Time)
平太阳时是以平太阳(以平均速度运行的太阳)为参照点的 时间系统(MT)。平太阳连续两次经过测站子午圈的时间间隔为 一平太阳日。平太阳时从半夜零点起算称为民用时。
七、GPS时间系统
GPS时间系统为:秒长为IAT,时间起算点为1980.1.6.UTC 0时, 启动后不跳秒,连续运行的时间系统。 GPS时=原子时IAT-19s
大地测量学基础
第三节 时间系统
恒星时与平太阳时之间的关系
恒星日:一年等 于366.2422日 平太阳日:一年 等于365.2422日
第一天
大地测量学基础
第三节 时间系统
在卫星定位中,时间系统有着重要的意义。作为观测 目标的 GPS 卫星以每秒几千米的速度运动。对观测者而言, 卫星的位臵和速度都在不断地迅速变化。因此,在对卫星 的观测和跟踪定轨测量中,每给出卫星位臵的同时,必须 给出相应的瞬间时刻。
天文观测中,因地球自转的原因,天体的瞬间位臵都 与时间有关。 时间系统与坐标系统一样,应有其尺度(时间单位) 与原点(历元)。把尺度与原点结合起来,才能给出时刻 的概念。
二、地球坐标系
(三)空间大地直角坐标系 建立过程:原点O为椭球中心,Z轴与椭球旋转轴一致, 指向地球北极, X 轴与椭球赤道面和格林尼治平均子午面 的交线重合,Y轴与XZ平面正交,指向东方,X、Y、Z构成 右手坐标系,P点的空间大地直角坐标用(X,Y,Z)表示。
与大地坐标系的关系:对于用同一个旋转椭球定义的 地面或空间某一点的大地坐标( B , L, H )与空间大地直 角坐标(X,Y,Z)之间有如下的关系:
站心地平直角坐标系的定义是:原点位于地面测站点, z轴指向测站点的椭球面法线方向(又称大地天顶方向), x轴是原点的大地子午面和包含原点且和法线垂直的平面 的交线,指向北点方向,y轴与x、z轴构成左手坐标系。 类似于球面坐标系和直角坐标系,测站P至另一点 (如卫星)S的距离为r、方位角为A、高度角为h,构成站 心地平极坐标系。
三、世界时(Universal Time)
格林尼治的平太阳时(从半夜零点算起)定义为世界时(UT)。
由于地球自转的不稳定性,在UT中加入极移改正即得到 UT1。UT1加上地 球自转速度季节性变化后为UT2。以经度15度的倍数的子午线Ln所处地点 定义的民用时叫区时Tn。Tn=UT+n,n为时区号。
大地测量学基础
二、地球坐标系
(一)天文坐标系 地面点在大地水准面上的位臵用天文经度λ和天文纬 度φ表示。若地面点不在大地水准面上,它沿铅垂线到大 地水准面的距离称为正高H正。
大地测量学基础
第二节 常用大地测量坐标系统
二、地球坐标系
(二)大地坐标系 地面点在参考椭球面上的位臵用大地经度 L 和大地纬 度 B 表示。若地面点不在椭球面上,它沿法线到椭球面的 距离称为大地高H大。
第三节 时间系统
四、历书时(ET)与力学时(DT)
由于地球自转速度不均匀,用其定义的恒星时与平太阳时不 均匀。1958年第十届国际天文协会决定,自1960年起开始以地球 公转运动为基准的历书时代替世界时。历书时的秒长规定为1900 年1月1日12时整回归年长度的1/31556925.9747,起始历元定在 1900年1月1日12时。 历书时对应的地球运动理论是牛顿力学,根据广义相对论, 太阳质心系和地心系所定义的历书时间将不相同。于是,1976年 国际天文联合会定义了太阳系质心力学时(TDB)和地球质心力 学时(TDT)。
天球坐标系
地球坐标系
天文坐标系 大地坐标系
空间大地直角坐标系
地心坐标系
站心坐标系
高斯平面直角坐标系
大地测量学基础
第二节 常用大地测量坐标系统
一、天球坐标系
建立过程:地球质心可作为天球中心,地球自转轴延伸成 为天轴,天轴与天球交点为天极,地球赤道面与天球交线 称为天球赤道。地球绕太阳公转的轨道平面与天球交线为 黄道,通过天球中心且垂直于黄道平面的直线与天球交点 叫黄极。太阳由南半球向北半球运动所经过的天球黄道与 天球赤道的交点叫“春分点”。 定义:天球直角坐标系的原点O一般定义为地心,Z轴与地 球自转轴重合, XY 平面与赤道面重合, X 轴指向赤道上的 春分点γ。天球球面坐标系基准面是天球赤道面,基准点 是春分点。
陆地最高点-珠穆朗玛峰:峰顶岩面海拔高8844.43米
海洋最低点-马里亚纳海沟:-10911米
大地测量学基础
第一节 大地测量的基准面和基准线
二、大地水准面
设想海洋处于静止平衡状态时,将它延伸到大陆下面且 保持处处与铅垂线正交的包围整个地球的封闭的水准面,我 们称它为大地水准面。
大地测量学基础
第一节 大地测量的基准面和基准线
大地测量学基础
第一节 大地测量的基准面和基准线
三、参考椭球面-部分参考椭球参数一览表
参考椭球名称 贝塞尔 克拉克 赫尔墨特 海福特 克拉索夫斯基 1967年大地坐标系 国际大地测量与地球物理联合会 IUGG十六届大会推荐值 IUGG十七届大会推荐值 IUGG十八届大会推荐值 WGS-84 推求年代 1841 1866 1906 1909 1940 1971 1975 1979 1983 1984 长半径a 6377397.155 6378206.4 6378140 6378388 6378245 6378160 6378140 6378137 6378136 6378137 扁率f 1:299.1528128 1:294.9786982 1:298.3 1:297.0 1:298.3 1: 298.247167427 1:298.257 1:298.257 1:298.257 1: 298.257223563
相关文档
最新文档